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Referees' comments: 

Referee #1 : 

The authors present a computational pipeline that allows for the design of complex folds such as 

IgG's, beta barrels, and TIM barrels, which are challenging to design computationally. They use a 

variation of a previously established pipeline that integrates AlphaFold2, Rosetta, and ProteinMPNN. 

This method is applied to “challenging folds”, such as the IgGs, TIM barrel, and beta barrel. 

The main application of this work is to design folds found in membrane proteins but not in soluble 

proteins. Membrane proteins often exhibit unique topologies not found in soluble forms. The 

motivation for the work thus is to see whether the limited overlap in topology is observed in water 

soluble versus membrane proteins can be attributed to an intrinsic property of membrane proteins 

from, or rather simply be a consequence of the environment. 

The authors find that the sequence optimizing component, ProteinMPNN, needs to be trained 

exclusively on soluble proteins in order to yield soluble, folded proteins. The designed sequences 

have minimal sequence homology with native ones yet mostly reproduce the folds attempted, albeit 

with backbone RMSD ranging from 2 Å to 5.4 Å. Interestingly, the sequences obtained recovered 

only some of the evolutionary conserved signatures – for example, most of the G in TIM barrel loops, 

but not the proline-rich sequence in the transmembrane domains; other features not recovered may 

have functional roles. 

Although the concept of solubilizing membrane proteins to elucidate details on their structure is not 

new and has been explored in previous studies, this paper contains a very powerful computational 

pipeline that should be generalizable. In general, the initial motivation for these efforts was to 

provide structural information on membrane protein structure, when structural studies were 

challenging (e.g. very early designs on heme-binding proteins inspired by Cyt bc complex, or ion 

channels). Structures of these early designs are available (PNAS, 2004, DeGrado and colleagues). 

However, this motivation has become somewhat less relevant due to technical improvements in 

structure determination of membrane proteins. The authors cite most of the existing literature, with 

the exception of work by Shuguang Zhang using a simplified QTY code, which has proven surprisingly 

simple and successful (reviewed in Protein Design: From the Aspect of Water Solubility and Stability, 

Chem. Rev. 2022, 122:14085–14179, https://doi.org/10.1021/acs.chemrev.1c00757). No structures 

are available, however, for QTY designs. One should note that GCPRs have intrinsic dynamics that 

underpin their activity in signaling, thus replicating a “fixed” state per se is not biologically or 

functionally relevant--other than the challenge of achieving a fold not found in water soluble 

proteosome; that bridge, however, was crossed long ago with the design of Top7. 



As it is often the case, the de novo designed proteins are very stable to thermal denaturation. The 

biophysical characterization presented, is limited to temperature challenge, whereas chemical 

denaturation would be more informative of the interactions that stabilize the protein. 

Although this is undoubtedly an advance in the application of LLMs to protein design, neither the 

level of novelty or the application raises to the general interest for a Nature paper. 

Referee #2: 

The manuscript from Goverde et al. is an important contribution to the fields of de novo protein 

design, protein folding and applications of deep learning. The authors demonstrate that novel 

sequences can be generated that adopt target folds of complex protein topologies, including 

membrane proteins. To my knowledge, this is the first demonstration of deep learning algorithms to 

successfully achieve complex folds, with the notable addition that soluble analogues of integral 

membrane proteins could be designed. 

This work combines two previously published methods, AF2seq and ProteinMPNN into “AF2seq-

MPNN” and as such, could be viewed as an iterative advance. However, I believe this manuscript is 

an important addition to field. Interest to the broader readership of Nature would be increased by 

better describing potential applications of this technology in particular with regards to generating 

soluble membrane proteins. 

Major points 

• In terms of methodology, the primary advance is combining AF2seq and ProteinMPNN. Comparing

Figs S1 and S2 demonstrates why this was done, since AF2seq-generated structures passed to

ProteinMPNN succeed in generating final target fold structures for both the TIM-barrel and GPCR

cases, whereas backbone structures from x-ray, backrub and MD simulation succeed only in the TIM-

barrel case and fail completely on the GPCR test case.

The reasons as to why the other structure methods fail is not investigated, and this work would 

benefit from additional analysis. Was the GPCR structure (6FFI) in the ProteinMPNN training set? In 

the ProteinMPNN work (Dauparas et al., Science, 2022), it is noted that “Training with backbone 

noise improves model performance for protein design”. If the final ProteinMPNN model was trained 

with backbone noise, does the AF2seq process essentially impart the correct amount of backbone 

noise? Although a few methods were assessed (backrub and MD simulation) might there be a 

simpler way to add noise to the input structures? 

It would be interesting to see how the input backbone structures compare, for example by 

calculating all backbone dihedral angles and creating a UMAP plot, to see where the structure-

generating methods cluster (x-ray, backrub, MD, AF2seq). 

• Along similar lines, Fig 1d: why do the AF2seq backbones generate so many more diverse



sequences? Is this because the input structures are themselves more diverse (greater dynamic range 

in Figs S1a, S2a)? The dihedral UMAP plot may give an indication of structural diversity. 

• The authors note “AF2-based design approaches have been shown to generate plausible protein 

backbones, however, their performance in sequence design was suboptimal as evidenced by the low 

experimental success rates”. Although it is difficult to quantify “success”, since it is dependent on 

the number of generated sequences that are taken for experimental validation and the criteria of 

success, the broad success rate in the manuscript under review appears to be in-line with the papers 

cited: 

Designs taken for expression Passing SEC-MALS % success 

Wicky, Science, 2022 [HALs] 96 21 22 

Goverde et al, Protein Sci, 2023 39 7 17.9 

IGF 19 4 21 

BBF 25 6 24 

TIM TBF 25 5 20 

CLF 13 3 23 

RPF 15 3 20 

GLF 56 10 17.8 

• The authors note sequences are generated “without the need for experimental optimization or 

empirical restraints”. However, the manuscript documents an empirical optimization of the 

computational procedure, by first applying MPNNbias and then training and applying MPNNsol to 

generate membrane protein folds with suitable hydrophilic residues. It should therefore be noted 

that future similar applications of this procedure may require additional empirical optimization of 

the computational procedure. 

• Please clarify this sentence: “the GPCR X-ray target contained an endolysin domain that was 

inserted into one of the loops to enhance protein solubility for crystallization (residues 679 to 838). 

Therefore, we predicted the GPCR sequence using the X-ray target as a template” – does this mean 

the GPCR sequences that were generated also contained an endolysin-like domain? If so, we do not 

know if the GLF designs are soluble due to the AF2seq-MPNNsol method or if they are soluble due to 

the endolysin-like domain. From the sequence length of the GLF designs, this does not appear to be 

the case (there is no endolysin-like domain), but the manuscript would benefit from making this 

clear to the reader. 

• Potential applications are referred to but are somewhat over-stated and rather general: “Another 

exciting perspective is the creation of soluble analogues of membrane proteins that retain many of 

the native features of the original membrane proteins, such as enzymatic or transport functions, 

which could greatly accelerate the study of their function in more biochemically accessible soluble 

formats” – is a valid statement; however since their natural function is clearly related to the position 

and relation to the membrane these aspects may be compromised. Further “Similarly, this would be 

critical to facilitate the development of novel drugs and therapies that target this challenging class of 

proteins” – this is overstated and so should be toned down or further guidance on how this 

technology would be enabling for the development of novel drugs should be given. 



A significant disadvantage of the GPCR sequences is that the GLF generated do not contain the 

conserved toggle switches thought to be crucial for the key conformational changes that relate to 

activation upon agonist binding (such as DRY motif, NPxxY motif). The current protocol would 

therefore require significant work to create ‘functionally active’, ligand-binding, soluble GPCRs that 

can undergo relevant conformational changes. It should be noted that creation of soluble, 

functionally-active GPCRs would require further optimization using the AF2seq-MPNNsol method. 

• The generation of soluble membrane proteins is an intriguing development, but it should be noted

in the text that these have been engineered in the past using physics-based methods; for example,

see “Computational design of water-soluble analogues of the potassium channel KcsA, Slovic et al.,

PNAS, 2004”.

Minor points 

• It would be beneficial to the reader to have an idea of the similarity between the AF2seq-

generated sequences and those generated by ProteinMPNN.

• It is interesting that in the membrane protein section, the AF2seq sequences had a low fraction of

apolar surface residues yet did not express soluble constructs. What is the distribution across the

CLF/RPF/GLF targets?

• Fig. S18b caption: “sequence diversity of all BBF designs” I believe should read “sequence diversity

of all GLF designs”.

• Ref 71: the correct citation for the AMBER ff99SB used in AF2 is “Hornak et al., Proteins, 2006”.

Reviewers: Callum Dickson and Fiona Marshall, Novartis 

Referee #4: 

----------- 

Summary of the key results: 

This article describes a workflow for designing protein sequences adopting desired folds by 

leveraging recent advancements in AF2 (sequence-to-structure prediction) and ProteinMPNN 

(structure-to-sequence prediction). At each iteration, a structure is predicted for the sequence, and 

a loss derived from the similarity and confidence of AF2 output to the target is computed. The 

structure is deconstructed to a sequence via ProteinMPNN, and by continuously iterating, a 

sequence predicted to fold into the target fold is produced. Authors demonstrate that on backbone 

fold design, the method outperforms pre-AF2 methods. The authors then demonstrate the precision 

of such an approach via experimental characterization, and examine the well-posed problem of 

designing soluble proteins adopting folds primarily observed in membrane-bound proteins. Using 

ML-proposed designs and with various rounds of filtering, authors successfully produce soluable

analogs of membrane proteins with interesting biophysical characterization and crystallization to



enable new directions for membrane proteomic research. 

----------- 

Originality and significance: 

The problem-finding in this work is done well from a machine learning (ML) perspective. Recent 

works have pointed towards the eminently-realizable potential of being able to design sequences 

that adopt particular folds with help from deep learning, but few have applied it to wet lab verified 

experiments. This work further finds a subproblem that is well-suited to this advance, and yields 

interesting novel insights into the membrane proteome. This elucidation of the biophysics of 

membrane proteins can inform many other aspects of membrane proteome research, e.g. its 

evolution and bioengineering use. 

While the method is sound, the novelty might be lacking for the Nature readership. From the 

perspective of pushing the ML for proteins community forward, it would be more exciting to see 

methods that suggests a fundamental paradigm shift in how we conceive the problem. Using 

AlphaFold2 for design is a paradigm that the community has been exploring since its release, and 

computationally-enabled with the open-source ColabDesign repository 

(https://github.com/sokrypton/ColabDesign). Verkuil et al 

(https://www.biorxiv.org/content/10.1101/2022.12.21.521521v1) and Hie et al. 

(https://www.biorxiv.org/content/10.1101/2022.12.21.521526v1) uses similar paradigms involving 

iterative tinkering of the sequence to optimize against AlphaFold2 produced outputs. 

To further enforce this workflow as a fundamental paradigm that the community should embrace, 

the work may benefit from addressing other paradigms for sequence design to form specific folds: 

Retraining language models to make them structure aware (e.g. https://arxiv.org/abs/2302.01649) 

Simultaneous generation of sequence and structure conditioned on fold specification 

(https://www.biorxiv.org/content/10.1101/2023.05.08.539766v1). 

Recent diffusion based models such as RFDiffusion (https://www.nature.com/articles/s41586-023-

06415-8) 

----------- 

Data & methodology: validity of approach, quality of data, quality of presentation 

From the perspective of pushing forward the machine learning for protein design community: 

- Direct comparisons to recent deep learning baselines (e.g. those mentioned in the section above) 

and ablations would certainly be helpful. Though the shortcoming is not critical, given that the 

primary contribution of the work is to membrane proteomics, the strength of the proposed method 

currently feels under-supported. 

- Are model weights publicly available? https://github.com/bene837/af2seq/tree/main points to 

placeholder directories. Would be great to clarify where they are. 

- Using AF2 in single sequence mode begs the question of if using OmegaFold 

(https://www.biorxiv.org/content/10.1101/2022.07.21.500999v1) or ESMFold 

(https://www.biorxiv.org/content/10.1101/2022.07.20.500902v1) can work better, since they 



demonstrate better results in the single sequence regime. 

- Chaining these models together greatly amplifies hallucination effects and model uncertainty. It is 

known that AF2 can be subjected to adversarial attacks (https://arxiv.org/abs/2305.08929) and 

produce confident predictions for sequence which do not fold experimentally 

(https://www.biorxiv.org/content/10.1101/2023.05.23.541774v1). Tying back to the overall 

comment of proposing a paradigm shift, I would be more convinced if this was addressed. 

----------- 

Conclusions: robustness, validity, reliability: 

As addressed previously, the work provides a compelling investigation and harness recent 

methodological progress to an interesting problem. The strength of this workflow paradigm over 

other approaches is less robust. 

----------- 

Suggested improvements: experiments, data for possible revision 

The article may benefit from addressing a few points: 

- What fraction of designs passed the selection threshold? I.e. if one were to sample more proteins, 

what fraction might be expected to be viable? 

- More information on how the soluble variant of ProteinMPNN is trained would be helpful, as it 

seems to be a key ingredient in the empirical success. For example, knowing the dataset size can 

inform how portable this retraining technique is to other domains. 

- How exactly were the sequences initialized? Lines 462-465 gives a rough outline of this, but it is 

unclear what the motivation for this was. The authors point towards a lack of structural diversity, 

and it would be interesting to see how different initializations affect the diversity-quality trade off. 

- How "confident" were the designs? A figure demonstrating how the argmax value in the PSSM 

changes overtime would be interesting. 

- What were the weights for the individual loss terms for the final model? This is interesting both 

from a reproducibility perspective, as well as deriving insight into how the frame-based loss, 

distogram loss, and pLDDT / pTM interplay. 

----------- 

References: appropriate credit to previous work? 

These works may be pertinent for the references list: 

- Validation of de novo designed water-soluble and transmembrane proteins by in silico folding and 

melting. Hermosilla et al., 2023 (https://www.biorxiv.org/content/10.1101/2023.06.06.543955v2) 

- Structure-informed Language Models Are Protein Designers. Zheng et al., 2023 

(https://arxiv.org/abs/2302.01649) 



----------- 

Clarity and context: lucidity of abstract/summary, appropriateness of abstract, introduction and 

conclusions 

- The work introduces the method with AF2seq; while this is great for understanding the thought

evolution behind the project, the article becomes more difficult to follow without referencing that

work. It may be better to describe the method as is, and appending notes on which components

came from AF2-design.

- Caption of Fig 3.: The terms "design" and "target" may be confusing for general audiences, and it

would be clearer to specify which are crystallized structures from the PDB and which are AF2

predicted, etc.

- The machine learning methods would greatly benefit from an expanded write-up, such as including

pseudocode for key algorithms. Previously published ML for protein design publications in this

journal (e.g. Jumper et al., Watson et al.) includes supplemental material at a level of detail that

makes it possible to essentially implement the code from scratch; the write-up in its current form

falls short of this.

Minor: 

- Caption of Supp. Fig 1 should be "designed", not "desgined"

- Line 192: open bracket

----------- 

Overall Recommendation: 

The work combines progress in fold-specific sequence design with deep learning to open problems in 

understanding transmembrane proteins. This sets a great example of problem-finding for future ML 

for protein design works. My background does not allow me to meaningfully comment on the 

impact that this work can have on transmembrane protein research; for the ML component alone, I 

might expect an algorithm in Nature to propose a fundamental paradigm shift, which the work falls 

short of in its current form. The work is strong, and would be very interesting to readers in more 

targeted publications than Nature. I would overall recommend Reject or Accept with Major 

Revisions, depending on the strength of the experimental contribution as gauged by other 

reviewers.
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Referees' comments – Goverde & Pacesa, et al. 2023 

Referee #1 : 

The authors present a computational pipeline that allows for the design of complex folds such 
as IgG's, beta barrels, and TIM barrels, which are challenging to design computationally. They 
use a variation of a previously established pipeline that integrates AlphaFold2, Rosetta, and 
ProteinMPNN. This method is applied to “challenging folds”, such as the IgGs, TIM barrel, and 
beta barrel. 

The main application of this work is to design folds found in membrane proteins but not in 
soluble proteins. Membrane proteins often exhibit unique topologies not found in soluble 
forms. The motivation for the work thus is to see whether the limited overlap in topology is 
observed in water soluble versus membrane proteins can be attributed to an intrinsic 
property of membrane proteins from, or rather simply be a consequence of the environment. 

The authors find that the sequence optimizing component, ProteinMPNN, needs to be trained 
exclusively on soluble proteins in order to yield soluble, folded proteins. The designed 
sequences have minimal sequence homology with native ones yet mostly reproduce the folds 
attempted, albeit with backbone RMSD ranging from 2 Å to 5.4 Å. Interestingly, the sequences 
obtained recovered only some of the evolutionary conserved signatures – for example, most 
of the G in TIM barrel loops, but not the proline-rich sequence in the transmembrane 
domains; other features not recovered may have functional roles. 

Although the concept of solubilizing membrane proteins to elucidate details on their structure 
is not new and has been explored in previous studies, this paper contains a very powerful 
computational pipeline that should be generalizable. In general, the initial motivation for 
these efforts was to provide structural information on membrane protein structure, when 
structural studies were challenging (e.g. very early designs on heme-binding proteins inspired 
by Cyt bc complex, or ion channels). Structures of these early designs are available (PNAS, 
2004, DeGrado and colleagues). However, this motivation has become somewhat less 
relevant due to technical improvements in structure determination of membrane proteins. 
The authors cite most of the existing literature, with the exception of work by Shuguang Zhang 
using a simplified QTY code, which has proven surprisingly simple and successful (reviewed in 
Protein Design: From the Aspect of Water Solubility and Stability, Chem. Rev. 2022, 
122:14085–14179, https://doi.org/10.1021/acs.chemrev.1c00757). No structures are 
available, however, for QTY designs. One should note that GCPRs have intrinsic dynamics that 
underpin their activity in signaling, thus replicating a “fixed” state per se is not biologically or 
functionally relevant--other than the challenge of achieving a fold not found in water soluble 
proteosome; that bridge, however, was crossed long ago with the design of Top7.  

R: We thank the reviewer for the assessment. Indeed, many of the typical sequence signatures 
of some of these folds were not recapitulated in our designs, however, this was intended, as 
it demonstrates that the sequence space of these folds is far greater than that found in nature 
(most likely due to functional constraints). Although impressive and important work has been 
done previously by other groups to generate soluble membrane proteins, these methods 
were usually applied to a very specific subgroup of membrane proteins, and do not offer a 

Author Rebuttals to Initial Comments:
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generalisable approach. We believe that our approach would offer an exciting alternative, 
with deep learning approaches providing greater accuracy and success rates than before. 

While the QTY code methodology provides similar advantages, such as its simplicity 
and generalisability, GPCRs solubilised using this method still require either mild detergent 
(Tegler et al 2020 Sci. Reports) or purification under denaturing conditions and refolding in a 
strong reducing environment to be extracted (Zhang et al 2018 PNAS; Qing et al 2019 PNAS; 
Hao et al 2020 QRB Discovery).  Our designs can be easily expressed in E.coli with no special 
buffer requirements or refolding, and result in high protein yields. 

This is most likely a specific problem of GPCR folds, where the presence of a 
hydrophilic core and then the introduction of a hydrophilic surface would cause problems 
during protein folding in solution. Therefore, utilising our methodology to generate stable 
hydrophobic cores for these folds circumvents this problem, at the cost of certain functional 
aspects, such as conformational changes. Nevertheless, functional interacting epitopes 
important for G-protein, drug, or antibody binding can be preserved, as we demonstrate in 
the newly added data shown in Figures 5 and 6. 

Lastly, only AlphaFold2-based structural models of QTY designs have been described 
so far (Skuhersky et al 2021 Life; Smorodina et al 2022 Sci. Reports). The structures closely 
match the native GPCRs, but examination of the methodology shows that these 
mutated/designed proteins were predicted using multiple-sequence alignments (MSAs). This 
has been in the past shown to make AF2 insensitive to mutations (Buel & Walters 2022 NSMB; 
Roney & Ovchinnikov 2022 Phys. Rev. Lett; Pak et al 2023 PLos ONE; Stein & Mchaourab 2023 
bioRxiv; https://alphafold.ebi.ac.uk/faq), therefore most plausible mutants would be 
predicted “correctly”. This is in contrast to our single-sequence prediction, where no MSAs 
were utilised, therefore AF2 has to rely on learned structural principles. In addition, our 
experimental structures demonstrate that soluble versions of membrane proteins do 
recapitulate the native folds faithfully. Relative to the point brought up about the design of 
Top7, where a new complete fold was created, we see this as a different challenge than that 
of what we sought to ask in this current work, which was directed to topologies existent in 
membrane environments.  

Overall, our approach provides several advantages over existing techniques when it 
comes to design of complex folds with functional sites, especially when accuracy for 
conformation-specific design is required. We demonstrate this in both GPCR folds and claudin 
folds, where functional interaction sites can be either preserved during design or grafted into 
protein scaffolds which benefit from the built-in stability and overall biochemical tractability. 
 
As it is often the case, the de novo designed proteins are very stable to thermal denaturation. 
The biophysical characterization presented, is limited to temperature challenge, whereas 
chemical denaturation would be more informative of the interactions that stabilize the 
protein. 
 
R: We agree that chemical denaturation would provide us with deeper insights into the nature 
of the design’s stability, unfortunately, we were not able to perform these experiments due 
to technical limitations of our CD setup. Given the wealth of structural and functional 
information included in the manuscript we deemed that there is a good level of understanding 
of the interactions occurring within the structures of these designs. From the structures we 
can observe that likely the high thermal stability of our designs stems from the tightly packed 
and stable hydrophobic cores that were designed by AF2seq+MPNN, and which are often 

https://alphafold.ebi.ac.uk/faq
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observed in de novo designed proteins (Wicky et al 2022 Science, Dauparas et al 2022 Science, 
Watson et al 2023 Nature, and others). 

Although this is undoubtedly an advance in the application of LLMs to protein design, neither 
the level of novelty nor the application raises to the general interest for a Nature paper. 

R: We would like to highlight that large language models (LLMs) were not used in the design 
of proteins in this study, all protein design procedures were solely structure-based. In more 
technical terms, at the time of submission there were several manuscript utilizing similar 
AlphaFold2-based methods for design (Jendrusch et al 2021 bioRxiv, Moffat et al 2021 
bioRxiv, Wicky et al 2022 Science), however, these previously published methods apply 
stochastic Markov Chain Monte Carlo sampling to apply mutations randomly and then predict 
these sequences with AlphaFold2 and score, which can be computationally expensive. Our 
approach backpropagates through the AlphaFold2 network and directly utilises the trained 
network weights to generate plausible protein sequences compatible with the provided fold. 
This approach is similar to the approach developed by Wang et al., however, for their 
approach there was no structural validation of the AF2-generated designs (Wang et al. 2022). 
We acknowledge that while our approach is not entirely novel, the complexity of the folds 
designed, their functionalization, as well as the generation of conformation-specific designs 
are all significant advances that stand in the cutting edge of the field of protein design and 
such approaches will be broadly applicable in areas of fundamental biology and 
biotechnology. Moreover, our computational design efforts are presented with a significant 
amount of experimental characterization and structure determination data that is uncommon 
in many computational protein design papers.   

Referee #2 : 

The manuscript from Goverde et al. is an important contribution to the fields of de novo 
protein design, protein folding and applications of deep learning. The authors demonstrate 
that novel sequences can be generated that adopt target folds of complex protein topologies, 
including membrane proteins. To my knowledge, this is the first demonstration of deep 
learning algorithms to successfully achieve complex folds, with the notable addition that 
soluble analogues of integral membrane proteins could be designed. 

This work combines two previously published methods, AF2seq and ProteinMPNN into 
“AF2seq-MPNN” and as such, could be viewed as an iterative advance. However, I believe this 
manuscript is an important addition to field. Interest to the broader readership of Nature 
would be increased by better describing potential applications of this technology in particular 
with regards to generating soluble membrane proteins. 

R: We thank the reviewers for their kind words. 

Major points 

In terms of methodology, the primary advance is combining AF2seq and ProteinMPNN. 
Comparing Figs S1 and S2 demonstrates why this was done, since AF2seq-generated 
structures passed to ProteinMPNN succeed in generating final target fold structures for both 
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the TIM-barrel and GPCR cases, whereas backbone structures from x-ray, backrub and MD 
simulation succeed only in the TIM-barrel case and fail completely on the GPCR test case. 
 
The reasons as to why the other structure methods fail is not investigated, and this work 
would benefit from additional analysis. Was the GPCR structure (6FFI) in the ProteinMPNN 
training set? In the ProteinMPNN work (Dauparas et al., Science, 2022), it is noted that 
“Training with backbone noise improves model performance for protein design”. If the final 
ProteinMPNN model was trained with backbone noise, does the AF2seq process essentially 
impart the correct amount of backbone noise? Although a few methods were assessed 
(backrub and MD simulation) might there be a simpler way to add noise to the input 
structures? 
 
R: We have checked and the 6FFI structure (along with many other GPCR structures) was 
indeed present in the original ProteinMPNN training set, which would explain why designing 
using original weights results in the design of membrane sequences. The training of soluble 
MPNN was performed the same way as the original MPNN, including backbone noise, with 
the exception of excluding membrane structures. We performed a comprehensive analysis of 
various levels of backbone noise applied to the crystal structure template of the TIM barrel 
fold during sequence design and included these results as a new Supplementary Figure S2.  
 
To summarise, levels of 0.5 Å noise are comparable to the crystal structure only. Noise levels 
above 0.7 Å mostly result in low confidence designs and adversarial sequences. While levels 
of 0.6 Å show good RMSD values compared to the starting template and good confidence 
values in single sequence predictions, they display higher levels of sequence recovery and e-
values (when BLASTed against a database of natural proteins) compared to AF2seq. We also 
note that such analysis would look very different for other folds, especially more complex 
natural folds like GPCR, which cannot be predicted in single sequence mode without prior 
AF2seq optimisation. 
 
 
It would be interesting to see how the input backbone structures compare, for example by 
calculating all backbone dihedral angles and creating a UMAP plot, to see where the structure-
generating methods cluster (x-ray, backrub, MD, AF2seq). 
 
R: We have generated a UMAP plot of dihedral angles of (a) input structures generated using 
different backbone perturbation methods and of (b) resulting MPNN redesigned and 
repredicted output designs, including crystal structures where different levels of Gaussian 
noise (based on comment above) were applied to the backbone during inference. It is 
noteworthy that MD-based backbones cluster far away from other backbone generation 
methods (both input and output), most likely due to large variation of backbone 
conformations, as apparent from large RMSD values (Supplementary Figure 1a). While 
Rosetta Backrub methods and gaussian noise perturbations occupy a similar UMAP region in 
the angles of output MPNN designs (b), AF2seq backbones are located in a separate and very 
tight cluster in the output but cluster around the crystal structure and backrub methods in 
the input (a). While difficult to interpret, we hypothesize that templates resulting from 
AF2seq, similarly to AF2 predictions, sample more frequently native-like configurations in 
contrast to physics-based methods such as Rosetta or MD. 
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Along similar lines, Fig 1d: why do the AF2seq backbones generate so many more diverse 
sequences? Is this because the input structures are themselves more diverse (greater 
dynamic range in Figs S1a, S2a)? The dihedral UMAP plot may give an indication of structural 
diversity. 

R: The sequence diversity of resulting MPNN designs when using AF2seq backbones as input 
stems primarily from the completely novel protein cores that are designed during the AF2seq 
step. To illustrate this point we updated Fig 1c to include conservation of the core residues 
and surface residues. ProteinMPNN generally exhibits high levels of sequence conservation 
in the core (Supplementary Figure 2, and Dauparas et al. 2022 Science), and by generating 
novel core sequences prior to MPNN optimisation we can achieve much higher levels of 
sequence novelty compared to other approaches. 

The authors note “AF2-based design approaches have been shown to generate plausible 
protein backbones, however, their performance in sequence design was suboptimal as 
evidenced by the low experimental success rates”. Although it is difficult to quantify 
“success”, since it is dependent on the number of generated sequences that are taken for 
experimental validation and the criteria of success, the broad success rate in the manuscript 
under review appears to be in-line with the papers cited: 
Designs taken for expression Passing SEC-MALS % success 
Wicky, Science, 2022 [HALs] 96 21 22 
Goverde et al, Protein Sci, 2023 39 7 17.9 
IGF 19 4 21 
BBF 25 6 24 
TIM TBF 25 5 20 
CLF 13 3 23 
RPF 15 3 20 
GLF 56 10 17.8 

R: We would like to point out that we tested the indicated amounts of proteins for expression 
but for the membrane analogues actually only few were further purified and taken for SEC-
MALS analysis. In addition, many of the expressed constructs were taken directly from the 
AF2seq pipeline, which later on became clear to result in non-purifiable proteins, to give a 
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contrast to our MPNN-optimised approach. Here is an updated table with a breakdown of the 
designs that perhaps illustrates this better, with success rates based on the designs with 
biophysical characterisation: 
 

Fold Tested 
AF2seq 
designs 

Tested 
AF2seq+
MPNN 
designs 

Soluble 
AF2seq 
designs 

Soluble 
success 

% 

Further 
purified 

Passing 
SEC-

MALS 

CD+SEC-MALS 
success % 

IGF 10 9 7 37 7 4 57 

BBF 8 17 17 68 11 6 54 

TIM 12 13 14 56 9 5 55 
CLF 10 27 13 35 5 4 80 

RPF 7 20 17 63 5 5 100 
GLF 12 37 33 85 10 10 100 

 
 
The authors note sequences are generated “without the need for experimental optimization 
or empirical restraints”. However, the manuscript documents an empirical optimization of the 
computational procedure, by first applying MPNNbias and then training and applying 
MPNNsol to generate membrane protein folds with suitable hydrophilic residues. It should 
therefore be noted that future similar applications of this procedure may require additional 
empirical optimization of the computational procedure. 
 
R: We apologise for the ambiguity in our statement, we were referring to the parametric 
design of certain folds, such as the TIM barrel in Huang et al. 2016, where extensive design 
constraints were applied to achieve such fold, followed by visual inspection and rational 
optimization of the structure. In all our design trajectories, only the structure of the desired 
fold is needed to guide design. The creation of MPNNsol was then a specific adaptation that 
was necessary to address the unique challenge of designing soluble membrane protein folds. 
Traditional ProteinMPNN was recognizing the membrane folds and designing them as such, 
although the original weights still remain effective for the design of soluble proteins. 
Gathering from the results of our work, MPNNsol can likely be applied to the solubilization of 
other membrane folds without additional tuning.  
 
Please clarify this sentence: “the GPCR X-ray target contained an endolysin domain that was 
inserted into one of the loops to enhance protein solubility for crystallization (residues 679 to 
838). Therefore, we predicted the GPCR sequence using the X-ray target as a template” – does 
this mean the GPCR sequences that were generated also contained an endolysin-like domain? 
If so, we do not know if the GLF designs are soluble due to the AF2seq-MPNNsol method or if 
they are soluble due to the endolysin-like domain. From the sequence length of the GLF 
designs, this does not appear to be the case (there is no endolysin-like domain), but the 
manuscript would benefit from making this clear to the reader. 
 
R: Thank you for the suggestion, we have further clarified this point in the methods section. 
We removed the endolysin domain prior to design and replaced it with a generic linker. 
Therefore, all GLF designs consist of purely the GPCR fold and are soluble on their own. 
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Potential applications are referred to but are somewhat over-stated and rather general: 
“Another exciting perspective is the creation of soluble analogues of membrane proteins that 
retain many of the native features of the original membrane proteins, such as enzymatic or 
transport functions, which could greatly accelerate the study of their function in more 
biochemically accessible soluble formats” – is a valid statement; however since their natural 
function is clearly related to the position and relation to the membrane these aspects may be 
compromised. Further “Similarly, this would be critical to facilitate the development of novel 
drugs and therapies that target this challenging class of proteins” – this is overstated and so 
should be toned down or further guidance on how this technology would be enabling for the 
development of novel drugs should be given. 

R: We thank the reviewers for their input. We have revised our language to better reflect the 
possibilities that our soluble analogues provide. Additionally, we have now included proof of 
principle experiments demonstrating that the functional epitopes of natural membrane 
proteins can be recapitulated with our soluble analogues using two complementary 
procedures (Figure 5 & 6).  
Firstly, functional epitopes can simply be grafted onto the designed soluble analogues, as 
demonstrated by chimeras of the Ghrelin receptor which could still be recognised by an 
antibody raised against the natural membrane protein. 
Secondly, we have extended our design methodology to constrain the natural functional 
epitopes during design. This way, we could generate soluble versions of claudins that are 
bound by the Clostridium perfringens enterotoxin - a common pathogenic agent in 
gastrointestinal disease. More importantly, we were able to use this method to perform 
conformation-specific design of GPCR proteins, in both active and inactive state, to facilitate 
or preclude G-protein binding, as demonstrated by our experimental binding assays. 
We believe that these experiments underscore the potential of our approach to investigate 
functional aspects of membrane proteins in solution and thereby accelerate the search for 
protein-based and, potentially, small molecule-based therapeutics targeting these folds. 

A significant disadvantage of the GPCR sequences is that the GLF generated do not contain 
the conserved toggle switches thought to be crucial for the key conformational changes that 
relate to activation upon agonist binding (such as DRY motif, NPxxY motif). The current 
protocol would therefore require significant work to create ‘functionally active’, ligand-
binding, soluble GPCRs that can undergo relevant conformational changes. It should be noted 
that creation of soluble, functionally-active GPCRs would require further optimization using 
the AF2seq-MPNNsol method. 

R: We acknowledge that this might have been an overstatement on our part. While the fully 
de novo designed soluble analogues would not be able to recapitulate this characteristic, we 
believe that our novel approach, outlined in our response above, where functionally relevant 
epitopes are constrained during design, might lead to partial or in some cases full restoration 
of such function. However, further research would be necessary to demonstrate this. In the 
meantime, we have appropriately rephrased this section of the manuscript. 

The generation of soluble membrane proteins is an intriguing development, but it should be 
noted in the text that these have been engineered in the past using physics-based methods; 
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for example, see “Computational design of water-soluble analogues of the potassium channel 
KcsA, Slovic et al., PNAS, 2004”. 

R: Thank you, we have added references to rational- (QTY code) and force field-based 
methods to the main text. 

Minor points 

It would be beneficial to the reader to have an idea of the similarity between the AF2seq-
generated sequences and those generated by ProteinMPNN. 

R: We have generated a plot showcasing the TIM barrel fold (PDB: 5BVL) sequence 
conservation between: 1) MPNN designed sequences and the input PDB 
2) AF2seq designed sequences and the input PDB
3) AF2seq designed sequences vs AF2seq-MPNN designed sequences

We observe similar trends as previously, where MPNN recovers 40-50% of the input 
sequence, confirming that the sequence novelty originates from AF2seq design. 

It is interesting that in the membrane protein section, the AF2seq sequences had a low 
fraction of apolar surface residues yet did not express soluble constructs. What is the 
distribution across the CLF/RPF/GLF targets? 

Initially, we did not test many AF2seq designs for other folds, as we observed very early on 
that such designs rarely result in soluble expression. We have now tested an appropriate 
number of high-ranking AF2seq designs for both CLF and RPF analogues, and observe very 
poor solubility of the designs despite their low surface hydrophobicity. 
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Fig. S18b caption: “sequence diversity of all BBF designs” I believe should read “sequence 
diversity of all GLF designs”. 

R: Thank you, this has been corrected. 

Ref 71: the correct citation for the AMBER ff99SB used in AF2 is “Hornak et al., Proteins, 
2006”. 

R: Thank you for spotting this error, we have corrected the citation. 

Reviewers: Callum Dickson and Fiona Marshall, Novartis 

Referee #4 : 

----------- 
Summary of the key results: 

This article describes a workflow for designing protein sequences adopting desired folds by 
leveraging recent advancements in AF2 (sequence-to-structure prediction) and ProteinMPNN 
(structure-to-sequence prediction). At each iteration, a structure is predicted for the 
sequence, and a loss derived from the similarity and confidence of AF2 output to the target is 
computed. The structure is deconstructed to a sequence via ProteinMPNN, and by 
continuously iterating, a sequence predicted to fold into the target fold is produced. Authors 
demonstrate that on backbone fold design, the method outperforms pre-AF2 methods. The 
authors then demonstrate the precision of such an approach via experimental 
characterization, and examine the well-posed problem of designing soluble proteins adopting 
folds primarily observed in membrane-bound proteins. Using ML-proposed designs and with 
various rounds of filtering, authors successfully produce soluable analogs of membrane 
proteins with interesting biophysical characterization and crystallization to enable new 
directions for membrane proteomic research. 

----------- 
Originality and significance: 

The problem-finding in this work is done well from a machine learning (ML) perspective. 
Recent works have pointed towards the eminently-realizable potential of being able to design 
sequences that adopt particular folds with help from deep learning, but few have applied it 
to wet lab verified experiments. This work further finds a subproblem that is well-suited to 
this advance, and yields interesting novel insights into the membrane proteome. This 
elucidation of the biophysics of membrane proteins can inform many other aspects of 
membrane proteome research, e.g. its evolution and bioengineering use. 

R: We thank the reviewer for the kind words. 

While the method is sound, the novelty might be lacking for the Nature readership. From the 
perspective of pushing the ML for proteins community forward, it would be more exciting to 
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see methods that suggests a fundamental paradigm shift in how we conceive the problem. 
Using AlphaFold2 for design is a paradigm that the community has been exploring since its 
release, and computationally-enabled with the open-source ColabDesign repository 
(https://github.com/sokrypton/ColabDesign). Verkuil et al 
(https://www.biorxiv.org/content/10.1101/2022.12.21.521521v1) and Hie et al. 
(https://www.biorxiv.org/content/10.1101/2022.12.21.521526v1) uses similar paradigms 
involving iterative tinkering of the sequence to optimize against AlphaFold2 produced 
outputs. 
To further enforce this workflow as a fundamental paradigm that the community should 
embrace, the work may benefit from addressing other paradigms for sequence design to form 
specific folds: 
Retraining language models to make them structure aware (e.g. 
https://arxiv.org/abs/2302.01649) 
Simultaneous generation of sequence and structure conditioned on fold specification 
(https://www.biorxiv.org/content/10.1101/2023.05.08.539766v1). 
Recent diffusion based models such as RFDiffusion 
(https://www.nature.com/articles/s41586-023-06415-8) 

R: We acknowledge the reviewer’s concern regarding the novelty of our approach. There have 
been other studies utilising AlphaFold2 for design (Jendrusch et al 2021 bioRxiv, Moffat et al 
2021 bioRxiv, Wicky et al 2022 Science), however, in most cases AlphaFold2 is used to score 
the designed sequences, rather than design them directly. AF2seq functions similarly to 
ColabDesign (developed independently in parallel), where we backpropagate through the 
AlphaFold2 network to generate plausible sequences for the target fold, and therefore utilise 
its learned knowledge of protein structure for design. However, as stated in our replies to 
other reviewers, we believe that the strength of our approach is its generalisability and high 
experimental success rate in producing native-like topologies, focusing especially on 
producing soluble versions of membrane proteins, which would be difficult to achieve with 
language model-based approaches, as these have the tendency to generate significantly more 
false positive designs than AF2 (Hermosilla et al 2023 bioRxiv). We do acknowledge that 
structure conditioned RF diffusion in combination with soluble MPNN could also work in 
generating soluble membrane topologies. The main usage of AF2seq is the generation of 
realistic backbones with plausible starting sequences, which is in contrast to RFdiffusion, 
where no starting sequence is provided. Furthermore, in the latest version of our manuscript 
we have added significant additional in silico and experimental data. This elevates the work 
beyond the design of structural folds and introduces the design of function into this very 
important class of proteins in biology, bringing another dimension to this work that surpasses 
and strengthens the computational aspect.   

----------- 
Data & methodology: validity of approach, quality of data, quality of presentation 

From the perspective of pushing forward the machine learning for protein design community: 
Direct comparisons to recent deep learning baselines (e.g. those mentioned in the section 
above) and ablations would certainly be helpful. Though the shortcoming is not critical, given 
that the primary contribution of the work is to membrane proteomics, the strength of the 
proposed method currently feels under-supported. 
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R: We thank the reviewer for the suggestion. While such an analysis would be very insightful, 
we believe the strength of our approach lies in its generalisability and the biochemical 
problem it was applied to. On the computational side we presented multiple metrics for the 
dependency of backbone generation and sequence design steps. We also studied the effect 
of different levels of noise during the inference of MPNN-based sequence design, and lastly 
the levels of sequence diversity in the different regions of the protein. While these are not 
the more traditional ablation tests, which in some of the modules we are using are 
complicated to perform without retraining (e.g. AF module), in our opinion we have 
investigated our design approach to a significant level of depth. In addition, the large body of 
experimental data, specifically structural data, should attest and support the robustness of 
the approach in a level that computational benchmarks do not provide.      
 
 
Are model weights publicly available? https://github.com/bene837/af2seq/tree/main points 
to placeholder directories. Would be great to clarify where they are. 
 
R: We use the original AlphaFold2 monomer model weights for AF2seq design. We have now 
clarified this in the methods and data availability sections and added instructions to the github 
repository. 
 
Using AF2 in single sequence mode begs the question of if using OmegaFold 
(https://www.biorxiv.org/content/10.1101/2022.07.21.500999v1) or ESMFold 
(https://www.biorxiv.org/content/10.1101/2022.07.20.500902v1) can work better, since 
they demonstrate better results in the single sequence regime. 
 
R: Although language-model based prediction algorithms have been previously suggested to 
be applicable to the structure prediction of designed proteins, it has since been shown that 
they may be suboptimal predictors of de novo proteins 
(https://www.biorxiv.org/content/10.1101/2023.06.06.543955v2). In such pipelines, 
language model embeddings serve as replacements for multiple-sequence alignments to 
provide co-evolutionary information and guide structure prediction. In the case of designed 
proteins, this may prove misleading, and therefore result in confident predictions of even 
spurious protein sequences. Single sequence mode in AF2 can overcome this obstacle by not 
relying on any co-evolutionary information, but rather on the learned structural properties of 
proteins. Although false positives may still occur, in our experience, high confidence scores 
resulting from single sequence AF2 predictions of MPNN-optimised designs seem to be very 
good indicators of experimental success. 
 
Chaining these models together greatly amplifies hallucination effects and model uncertainty. 
It is known that AF2 can be subjected to adversarial attacks 
(https://arxiv.org/abs/2305.08929) and produce confident predictions for sequence which do 
not fold experimentally (https://www.biorxiv.org/content/10.1101/2023.05.23.541774v1). 
Tying back to the overall comment of proposing a paradigm shift, I would be more convinced 
if this was addressed. 
 

https://www.biorxiv.org/content/10.1101/2023.06.06.543955v2
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R: While hallucination effects are certainly a great concern, especially in protein design, we in 
fact observe that including ProteinMPNN in the design pipeline actually rescues any 
adversarial sequences that AF2seq might produce. This is supported by experimental data in 
Fig 4e, where af2seq designs rarely, if ever, can be produced experimentally, while their 
MPNN-optimised counterparts work most of the time. 

----------- 
Conclusions: robustness, validity, reliability: 

As addressed previously, the work provides a compelling investigation and harness recent 
methodological progress to an interesting problem. The strength of this workflow paradigm 
over other approaches is less robust. 

----------- 
Suggested improvements: experiments, data for possible revision 
The article may benefit from addressing a few points: 

- What fraction of designs passed the selection threshold? I.e. if one were to sample more
proteins, what fraction might be expected to be viable?

R: To provide a clearer idea of the designs that pass the filters, we refer to Supp Fig. S5,  which 
shows that in silico success rates are dependent on the size and complexity of the fold. We 
acknowledge that this doesn't give a good representation of what designs pass all of the 
filters, hence we summarise all designs in the table below which has also been added to the 
supplementary information as table S2. 

Fold total designs designs passing filter in silico success (%) 

IGF 150 34 23% 

BBF 72 26 36% 

TBF 144 84 58% 

CLF 750 52 7% 

RPF 1769 32 2% 

GLF 1063 176 17% 

From our previous experience, we have found that TM-score and pLDDT of the AF2 predicted 
model correlate with the in vitro success rate (Goverde et al. 2022). A correlation between 
the RMSD and pLDDT of the AF2 generated model and the in vitro success rate was also 
previously observed (Hermosilla et al., 2023, Bryant et al., 2022). Hence, we expect a 
reduction in experimental success rates if lower the pLDDT threshold to increase in silico 
success rates. We could potentially relax the TM-score threshold, which would increase in 
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silico success rates, but result in more structural diversity between the designs and the target 
fold. 

More information on how the soluble variant of ProteinMPNN is trained would be helpful, as 
it seems to be a key ingredient in the empirical success. For example, knowing the dataset 
size can inform how portable this retraining technique is to other domains. 

R: For more details regarding the training of proteinMPNN we refer to the original paper 
Dauparas et al 2022 Science. The training of soluble proteinMPNN is identical to the original 
proteinMPNN, with the exception that membrane proteins are completely excluded from the 
dataset. We have found that 6FFI (GPCR), amongst other membrane targets, was indeed  part 
of the training set, which would explain why the original proteinMPNN was redesigning these 
proteins as membrane proteins. The set of excluded membrane proteins can be found in the 
ProteinMPNN github repo 
https://github.com/dauparas/ProteinMPNN/blob/main/soluble_model_weights/excluded_
PDBs.csv 

How exactly were the sequences initialized? Lines 462-465 gives a rough outline of this, but it 
is unclear what the motivation for this was. The authors point towards a lack of structural 
diversity, and it would be interesting to see how different initializations affect the diversity-
quality trade off. 

R: We thank the reviewer for raising this point. This analysis was performed in our previous 
study (Goverde et al. 2022). In the starting sequence, the amino acid identities are assigned 
according to which Secondary Structural Element (SSE) they are expected to form according 
to DSSP. Next, helical residues get assigned alanines, beta-sheets valines, and loops glycines 
(see Fig S2. in Goverde et al 2022). In the current study, several initialization strategies were 
tried out, such as polyalanine and random sequences. However, even though these 
sequences would eventually converge, for quick convergence (within 500 iterations) SSE-
initialization was needed (See Figure 1c in Goverde et al. 2022). Since AF2 is deterministic in 
single sequence prediction mode, we mutate 10% of the sequence to get different starting 
points resulting in different points of convergence. This results in generated sequences with 
only 10-30% sequence similarity (Goverde et al. 2022 Figure S3). Since these sequences 
exhibited low e-values (e-value < 0.05), i.e. de novo sequences, we did not experiment with 
other initialization methods. 

How "confident" were the designs? A figure demonstrating how the argmax value in the PSSM 
changes overtime would be interesting. 

When we plot the overall loss and RMSD to the template design over design iterations, we 
observe that it converges relatively quickly, around 200 iterations, depending on design fold 
(as observed previously in Goverde et al 2022). Trends in the design of soluble proteins (panel 
a and b) and soluble membrane analogues (panels c and d) are similar. The confidence 
intervals are calculated based on averaged losses/RMSDs of all five AF2 models for all design 
trajectories for the indicated folds. 

https://github.com/dauparas/ProteinMPNN/blob/main/soluble_model_weights/excluded_PDBs.csv
https://github.com/dauparas/ProteinMPNN/blob/main/soluble_model_weights/excluded_PDBs.csv
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What were the weights for the individual loss terms for the final model? This is interesting 
both from a reproducibility perspective, as well as deriving insight into how the frame-based 
loss, distogram loss, and pLDDT / pTM interplay. 

R: The weights used for design of all folds were Wfape = 1.0, WpLDDT = 0.2 and WpTM = 0.2. If the 
trajectories didn’t result in significant convergence, we found that adding a distogram loss 
(Wdist) of 0.5 helped with convergence. The sequences that converged were then used as ‘soft 
starts’ to seed new design trajectories. Here we found that the distogram loss wasn't 
necessary for convergence anymore, and hence it was disabled as FAPE is the higher 
resolution structural loss. 

As a note, if we set the WpLDDT and WpTM loss weights too high we found that there was a 
strong preference to generate helices without matching the target template. This can be 
explained by the helix being the most local secondary structural element which is easiest to 
predict. 

----------- 
References: appropriate credit to previous work? 

These works may be pertinent for the references list: 
- Validation of de novo designed water-soluble and transmembrane proteins by in silico
folding and melting. Hermosilla et al., 2023
(https://www.biorxiv.org/content/10.1101/2023.06.06.543955v2)
- Structure-informed Language Models Are Protein Designers. Zheng et al., 2023
(https://arxiv.org/abs/2302.01649)

R: We thank the reviewer for their suggestions. The first publication is indeed relevant and 
we have included it in our main text, however, we would like to mention that this preprint 
was not published at the time of submission. The second publication provides an interesting 

https://arxiv.org/abs/2302.01649
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alternative to our purely-structure based approach to design, but in our opinion is a more 
distant family of methods that is perhaps more out of the scope of our work.  

----------- 
Clarity and context: lucidity of abstract/summary, appropriateness of abstract, introduction 
and conclusions 

The work introduces the method with AF2seq; while this is great for understanding the 
thought evolution behind the project, the article becomes more difficult to follow without 
referencing that work. It may be better to describe the method as is, and appending notes on 
which components came from AF2-design. 

R: We thank the reviewer for the suggestion. We have now adjusted the text and figures to 
indicate where sequences were generated with only AF2seq and which ones were MPNN 
optimised following AF2seq (AF2seq-MPNN). 

Caption of Fig 3.: The terms "design" and "target" may be confusing for general audiences, 
and it would be clearer to specify which are crystallized structures from the PDB and which 
are AF2 predicted, etc. 

R: We thank the reviewer for the suggestion, the labels were indeed confusing, we have now 
appropriately labelled all structures in the figures to indicate what structure is shown and 
how it was obtained in parentheses, for example TBF_24 (x-ray) or Design (AF2). 

The machine learning methods would greatly benefit from an expanded write-up, such as 
including pseudocode for key algorithms. Previously published ML for protein design 
publications in this journal (e.g. Jumper et al., Watson et al.) includes supplemental material 
at a level of detail that makes it possible to essentially implement the code from scratch; the 
write-up in its current form falls short of this. 

R: We thank the reviewer for this suggestion. As both AF2seq (Goverde et al 2022) and 
ProteinMPNN (Dauparas et al 2022) have been previously described in detail in their 
respective publications, we wanted to dedicate more focus to the applications of these 
pipelines when combined. 

Minor: 
- Caption of Supp. Fig 1 should be "designed", not "desgined"
- Line 192: open bracket

R: Thank you, we corrected these errors. 

----------- 
Overall Recommendation: 
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The work combines progress in fold-specific sequence design with deep learning to open 
problems in understanding transmembrane proteins. This sets a great example of problem-
finding for future ML for protein design works. My background does not allow me to 
meaningfully comment on the impact that this work can have on transmembrane protein 
research; for the ML component alone, I might expect an algorithm in Nature to propose a 
fundamental paradigm shift, which the work falls short of in its current form. The work is 
strong, and would be very interesting to readers in more targeted publications than Nature. I 
would overall recommend Reject or Accept with Major Revisions, depending on the strength 
of the experimental contribution as gauged by other reviewers. 

R: We thank the reviewer for the assessment. As we stated in our response to other reviewers, 
we agree that similar computational approaches have been described previously. However, 
the novelty of our work lies in the refined and generalisable procedure to generate: complex 
natural-like folds with high experimental success, proteins with embedded functional sites 
and conformation-specific states of computationally designed proteins. Additionally, our 
application of this approach to the solubilisation and functionalization of membrane proteins 
is likely to be of general interest to the audience of Nature and will find many interesting 
applications in the screening of drugs and inhibitors of therapeutically relevant targets. 



Reviewer Reports on the First Revision: 

Referees' comments: 

Referee #1: 

The authors revised the paper extensively following reviewers' concerns. The manuscript is 

streamlined and improved in clarity. Overall, the experimental characterization is thorough. 

Referee #2: 

We thank Goverde & Pacesa et al. for their detailed response to our comments and the revised 

manuscript. We find the responses suitably address our concerns. Further, Goverde & Pacesa et al. 

have performed significant additional work to generate and characterize functionally active soluble 

membrane proteins, which addresses our key criticism of the initial work. As such, we believe this 

manuscript will be of high value to Nature readers. 

We identified a small number of minor points: 

• Fig. 1 caption: The “c,” is missing in the caption (“sequence diversity. , Novelty of generated

sequences”)

• Fig. 6d: Kd measurements are provided for ICL3-specific antibody binding to the GLF-Ghrelin

chimeras. For reference, is the Kd for the ICL3-specific antibody and wild-type Ghrelin receptor

known?

• Design of active/inactive A2AR states: The PDB structures are referenced but it might benefit the

reader to explicitly include the PDB codes for the active/inactive templates, as has been done for the

earlier protein design sections.

This review was conducted by Fiona Marshall with input from Callum Dickson (Novartis Biomedical 

Research). 

Referee #2 (Remarks on code availability): 

The AF2seq github appears well documented. However, the paper under review details a pipeline 

combining AF2seq, ProteinMPNN and AF. Is any code made available to run the full pipeline (and 

therefore for others to reproduce this work)? 

We have not installed or run any examples. 

Referee #4: 



Thanks to the authors for providing updated commentary and manuscript. The clarifications in the 

Methods and Materials on loss weighting and initialization were helpful for substantiating the 

methodological thrust of the paper. The table of design fractions that succeed (provided in the 

commentary for the reviewer) was also very useful; it would be nice to see this table in the 

supplemental/methods along with comparisons to other methods. 

As the authors note in their response, the main merits of the paper is not its methodological 

innovation, but its contribution to understanding soluble proteomes. With the updated information 

on the ML methods, I think that the method is sensible on the whole. It remains limited in its 

innovation, and to some extent, scientific rigor, i.e. it fails to rigorously elucidate which parts of the 

pipeline were most important. My concerns with the main ML method has been mentioned in my 

previous review, and since the core method was not updated, I will not repeat them here. 

On the whole, I find the experimental verifications regarding solubility and structural fidelity to 

membrane analogs to be impressive, and agree that many in the Nature viewership may find this 

interesting. However, I think this primary impact can be highlighted more clearly. As the authors 

note in their comments to the reviewer, the approach "will find many interesting applications in the 

screening of drugs and inhibitors of therapeutically relevant targets", but this important justification 

is not highlighted in the text or results. One naive question to ask, for example, is how membrane 

proteins existing in solution can be used for developing therapeutics, since this new placement 

removes its transport capabilities across the cell membrane. Clarifying exactly downstream works 

can build upon the ability to generate soluble membrane protein analogs would justify why this work 

is of Nature-level impact. 

On the whole, I'd be more comfortable recommending a straightforward "Accept" if there were 

experiments (or at least text) that connects soluble membrane protein analogs to therapeutically-

adjacent applications. As it it currently stands, the focus seems to still be on the ML pipeline, and 

that authors could harness it to design proteins that befit their aims. I unfortunately think that this 

contribution is not substantial or novel enough for the Nature publication. I recommend a weak 

accept for this revised version, because results are indeed convincing that authors can generate 

proteins with impressive solubility and fidelity to the target membrane folds, and it is a fascinating 

challenge to how to define and understand the soluble proteome. However, this primary impact of 

the paper is weakly highlighted, and lots of room exist for strengthening how downstream works can 

build upon the findings regarding solubility. My present opinion remains that future works can glean 

little with respect to how this pipeline can be used for non-solubility associated design efforts. 

Referee #4 (Remarks on code availability): 

Yes, I was able to install and run the main script using instructions provided.



Author Rebuttals to First Revision: 

Referees' comments – Goverde & Pacesa & Goldbach, et al. 2024 

Referee #1 : 

The authors revised the paper extensively following reviewers' concerns. The manuscript is 

streamlined and improved in clarity. Overall, the experimental characterization is thorough.  

R: We are very grateful to the reviewer for their kind feedback. 

Referee #2 : 

We thank Goverde & Pacesa et al. for their detailed response to our comments and the revised 

manuscript. We find the responses suitably address our concerns. Further, Goverde & Pacesa et al. 

have performed significant additional work to generate and characterize functionally active soluble 

membrane proteins, which addresses our key criticism of the initial work. As such, we believe this 

manuscript will be of high value to Nature readers. 

R: We thank the reviewers for their positive assessment and are glad we have addressed their 

concerns. 

We identified a small number of minor points: 

• Fig. 1 caption: The “c,” is missing in the caption (“sequence diversity. , Novelty of generated

sequences”)

R: Thank you, we have added the missing caption. 

• Fig. 6d: Kd measurements are provided for ICL3-specific antibody binding to the GLF-Ghrelin

chimeras. For reference, is the Kd for the ICL3-specific antibody and wild-type Ghrelin receptor

known?



R: Unfortunately, no affinity measurement of the antibody binding to the membrane receptor were 

performed in the original publication. 

• Design of active/inactive A2AR states: The PDB structures are referenced but it might benefit the

reader to explicitly include the PDB codes for the active/inactive templates, as has been done for the

earlier protein design sections.

R: We have added the PDB codes to the figure legend in addition to the methods. 

This review was conducted by Fiona Marshall with input from Callum Dickson (Novartis Biomedical 

Research). 

The AF2seq github appears well documented. However, the paper under review details a pipeline 

combining AF2seq, ProteinMPNN and AF. Is any code made available to run the full pipeline (and 

therefore for others to reproduce this work)? 

We have not installed or run any examples. 

R: We usually run each part of the pipeline separately, so we have uploaded the notebooks used to 

run Af2seq, SolubleMPNN and AF2 to the github. 

Referee #4 : 

Thanks to the authors for providing updated commentary and manuscript. The clarifications in the 

Methods and Materials on loss weighting and initialization were helpful for substantiating the 

methodological thrust of the paper. The table of design fractions that succeed (provided in the 

commentary for the reviewer) was also very useful; it would be nice to see this table in the 

supplemental/methods along with comparisons to other methods. 

R: Thank you for your feedback, we have included the table as part of the manuscript. 



As the authors note in their response, the main merits of the paper is not its methodological 

innovation, but its contribution to understanding soluble proteomes. With the updated information 

on the ML methods, I think that the method is sensible on the whole. It remains limited in its 

innovation, and to some extent, scientific rigor, i.e. it fails to rigorously elucidate which parts of the 

pipeline were most important. My concerns with the main ML method has been mentioned in my 

previous review, and since the core method was not updated, I will not repeat them here. 

On the whole, I find the experimental verifications regarding solubility and structural fidelity to 

membrane analogs to be impressive, and agree that many in the Nature viewership may find this 

interesting. However, I think this primary impact can be highlighted more clearly. As the authors note 

in their comments to the reviewer, the approach "will find many interesting applications in the 

screening of drugs and inhibitors of therapeutically relevant targets", but this important justification 

is not highlighted in the text or results. One naive question to ask, for example, is how membrane 

proteins existing in solution can be used for developing therapeutics, since this new placement 

removes its transport capabilities across the cell membrane. Clarifying exactly downstream works can 

build upon the ability to generate soluble membrane protein analogs would justify why this work is of 

Nature-level impact. 

On the whole, I'd be more comfortable recommending a straightforward "Accept" if there were 

experiments (or at least text) that connects soluble membrane protein analogs to therapeutically-

adjacent applications. As it it currently stands, the focus seems to still be on the ML pipeline, and that 

authors could harness it to design proteins that befit their aims. I unfortunately think that this 

contribution is not substantial or novel enough for the Nature publication. I recommend a weak accept 

for this revised version, because results are indeed convincing that authors can generate proteins with 

impressive solubility and fidelity to the target membrane folds, and it is a fascinating challenge to how 

to define and understand the soluble proteome. However, this primary impact of the paper is weakly 

highlighted, and lots of room exist for strengthening how downstream works can build upon the 

findings regarding solubility. My present opinion remains that future works can glean little with 

respect to how this pipeline can be used for non-solubility associated design efforts. 

R: Thank you for the reviewer’s suggestion on providing further context regarding the impact of our 

study. We agree that the applications of soluble membrane analogues are the most exciting aspect of 

this work and we have outlined several of them in the latter part of the discussion. This includes the 

study of certain enzymatic functions present in the membrane or, most commonly, the screening of 

agonists and antagonists of cell surface receptors, such as GPCRs, which have potential to become 

novel therapeutics. However, we have yet to demonstrate small molecule binding activity in the 

soluble space with such fold. 



Referee #4 (Remarks on code availability): 

Yes, I was able to install and run the main script using instructions provided. 
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