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Supplementary figures 

 



 

Supp. Fig. 1: Palantir algorithm outline 

Illustration of steps in the Palantir algorithm, using the same data as Fig 1b. 

(a) High dimensional representation of the data, each dot represents a cell plotted based on  

expression of CD34 (x-axis), MPO (y-axis) and GATA1 (z-axis) (left panel). Right panel: Same 

tSNE plot as Fig. 1b generated using the diffusion components of the cells in the left panel. 

Plots show the projection of 463 cells. 

(b) Illustration of shortest path from blue cell to the orange cell.  

(c) Cells colored by Palantir pseudo-time.  

(d-e) Illustration of Markov chain construction.  

(d) Edges in the undirected graph can take cells both forward and back along pseudo-time. (e) 

The scaling factor associated with each cell (Equation 2) can be used as measure of uncertainty 

in the pseudo-time estimate (left panel).  Edges that go backward beyond the pseudo-time 

uncertainty are pruned and the retained edges are converted to directed edges (right panel).  

(f) Heatmaps showing the evolution of absorbing Markov chain and branch probabilities for 

random walks of different lengths. (Left panel: 1 step, middle panel: 1...500 steps and right 

panel: 1. . . ∞	steps). For each panel, rows and columns in the Markov chain heatmap represent 

all non-terminal cells ordered by Palantir pseudo-time. The value (𝑖, 𝑗)	 represents the probability 

of cell 𝑖 reaching cell 𝑗	in the specified number of steps. Rows in the branch probabilities 

heatmap represent non-terminal cells and the columns represent the terminal states.  The value 

(𝑖, 𝑗)	 represents the probability of cell in non-terminal state  𝑖 reaching terminal state 𝑗 in the 

specified number of steps. The position of the individual cells highlighted in 1a are shown on the 

left. 

(g - h) Cells colored by Palantir branch probabilities and differentiation potential.  



 

 

 

Supp. Fig. 2: Diffusion components are not sufficient to represent pseudo-time for all 

lineages 

(a) tSNE plots of the subsampled dataset used in Fig. 1 and Supp.Fig. 1, colored by diffusion 

components. Plots show the projection of 463 cells. 

(b) tSNE plots for CD34+ cells presented in figure 2, colored by diffusion components.  

Green arrows indicate the lineages for which ordering can be determined using a single 

component, whereas the ordering of the remaining lineages requires two or more components. 

Plots show the projection of 5780 cells. 



 

 

 

Supp. Fig. 3: Characterizing gene expression dynamics. The characterization of gene 

expression dynamics is illustrated with two examples: HBB, a gene expressed specifically in the 

erythroid lineage (left panels) and SPI1, a gene with higher expression in the monocytic lineage 

(right panels) 



 

(a) Plots showing the MAGIC 1 imputed expression (y-axis) of HBB and SPI1 respectively along 

Palantir pseudo-time (x-axis). Cells are colored by the erythroid and monocyte branch 

probabilities respectively.  Expression patterns are shown for 5780 cells. 

(b) Same as (a) with the trend fit computed using Generalized Additive Models (GAMs) 2 shown 

in black. 

Each cell is weighted by the branch probability and thus no pre-selection of cells is necessary 

for computing trends along a particular lineage.  

(c) Same as (b) with standard deviations of the fit shown in dotted lines.  

(d) The expression trends are represented as a smooth fit with the standard deviation of the fit 

shown in a lighter shade. 

(e) Gene expression trends for HBB and SPI1 for the erythroid and myeloid lineages. For any 

gene, trends can be computed across all lineages since Palantir determines a single pseudo-

time across lineages. Solid line represents the fitted trend estimate and shaded region 

represents standard deviation. 

 

 

 

 

 

 

 

  



 

 

 

Supp. Fig. 4: Cell lineages identified in CD34+ human bone marrow cells 

(a) Replicate 1 CD34+ cells from human bone marrow colored by Phenograph clusters using 

the scheme presented in Fig. 2b. 5780 cells are shown on the tSNE map. 

(b) Replicate 2 and 3 cells, colored by expression of lineage characteristic genes (Fig. 2f) 

demonstrating that the spectrum of lineages identified from CD34+ bone marrow cells is 

consistent across three independent human donors. 6501 and 12046 cells are shown on the 

tSNE map for replicates 2 and 3 respectively. 

(c) Heatmap of the correlation between bulk sorted expression profiles generated using 

microarrays and scRNA-seq profiles (Replicate 1). Rows represents single cell and columns 

represent bulk samples. Cells are ordered as in Fig. 2a. Median expression profiles from cell 

clusters (a) were correlated with bulk expression profiles to annotate clusters with cell types 

using Pearson correlation. Heatmap shows the correlation of 5780 cells with 10 averaged bulk 

expression profiles.  



 

 

 

Supp. Fig. 5: Palantir results are robust to different waypoint samplings 

Palantir robustness was measured by testing a range of different parameters using replicate 1 

as the test set. The results between two different runs were compared by determining the 

Pearson correlation between pseudo-time, differentiation potential and branch probabilities. 

Each heatmap represents the correlation of either pseudo-time, DP or BP between a pair of 

Palantir runs. 



 

(a) Pearson correlations of pseudo-time orderings and differentiation potentials for different 

waypoint samplings for all cells. (b) Correlations for branch probabilities for all cells. Correlations 

were computed using 5780 cells. (c) Left: a subsample of cells from the middle of the 

differentiation trajectory. (c-d) Same as (a-b), for the subset of cells showing (c). Correlations 

were computed using the 100 subsampled cells. 

 

  



 

 

Supp. Fig. 6: Palantir results are robust to k, the number of neighbors for kNN graph 

construction 

(a-d) Same as Supp. Fig. 5 

  



 

 

Supp. Fig. 7: Palantir results are robust to number of diffusion components 

(a-d) Same as Supp. Fig. 5 



 

 

Supp. Fig. 8: Palantir results are robust to subsampling of cells in different lineages 

Pearson correlation of pseudo-time, DP (a) and branch probabilities (b) by sub-sampling the 

specified proportion of cells from the respective lineage. Correlations were computed using 

1445, 2890 and 4335 cells representing 25%, 50% and 75% of the total cells. 

 

  



 

 

 



 

Supp. Fig. 9: Palantir is reproducible across human bone marrow replicates 

(a) Cells plotted on tSNE based on diffusion components and colored by Palantir branch 

probabilities for Replicate 1. 5780 cells are shown on the tSNE map. 

(b-c) Cells plotted on tSNE based on diffusion components and colored by Palantir results: 

pseudo-time, differentiation potential and branch probabilities for replicates 2 and 3. 6501 and 

12046 cells are shown on the tSNE maps for replicates 2 and 3 respectively. 

 

  



 

 

 



 

 

Supp. Fig. 10: Reproducibility of Palantir pseudo-time and differentiation potential across 

replicates 

(a) tSNE plots highlighting the different cell populations in replicate 2 (left) and replicate 3 (right). 

Cells are colored by Phenograph clusters and colors were chosen to maintain consistency with 

replicate 1 (Fig. 2b). Replicates 2 and 3 contain 6501 and 12046 cells respectively. 

(b) De-novo Palantir results for replicates 2 and 3 generated using one of the HSCs as the start 

cell. 

 

The reproducibility of Palantir results was further tested by projecting Palantir results of one 

replicate to a second replicate and comparing the projected results with those generated de-

novo using the second replicate.  

(c) Replicate 1 Palantir results projected onto the replicates 2 and 3. The projections were 

determined mutually nearest neighbors between replicate 1 and replicate 2 (or 3), see methods. 

The pseudo-time and differentiation potential of cells in replicate 2 (or 3) were computed as 

weighted average of the pseudo-time and differentiation potential respectively of replicate 1 

mutually nearest neighbors.  

(d) Plots showing the Pearson correlation between de-novo and projected Palantir results. The 

cells are colored by clusters as in (a). 

(e) Same as d, with cells colored by density. 

  



 

 

Supp. Fig. 11: Reproducibility of gene expression dynamics across replicates 

Plots showing reproducibility of expression trends of key lineage marker genes across the three 

replicates. The relevant lineages for each gene are bounded by dotted rectangles. Solid line 

represents the fitted trend estimate and shaded region represents standard deviation 

 

  



 

 

 

 

 

 



 

Supp. Fig. 12: Illustration of Differentiation potential.  

(a) tSNE plots highlight the cells of the erythroid lineage (left) and monocyte lineage (right). 

Cells are colored by Phenograph clusters as in Fig. 2b. 2125 and 3921 cells belong to the 

erythroid monocyte lineage respectively.  

(b) Plots of DP (y-axis) along pseudo-time (x-axis). Each dot is a cell, color coded by the cluster. 

Representative cells are highlighted and numbered for each lineage.  

(c) Histogram representation of the branch probabilities of the cells highlighted in (b), bars are 

colored coded by clusters in Fig. 2b.  As cells commit towards a particular lineage, they also 

lose the ability to differentiate to other lineages. This is reflected in the gradual increase in 

probability of reaching the corresponding terminal state accompanied by a decrease in 

probability of reaching all other lineages.  

(d) Same as (b), with trend plot of the DP along the corresponding lineages shown in black. The 

position along the ordering with the first substantial drop in DP corresponds to lineage 

specification and this downward trend continues until the cells are committed to the lineage and 

have completely lost the ability to differentiate to any other lineages.  

(e) Plots showing the DP along pseudo-time for all the lineages, for the three replicates.  The 

positions of significant DP changes are staggered along the pseudo-time indicating a 

hierarchical commitment of HSCs to different lineages. Cells first commit towards CLP (beige), 

followed by erythroid and megakaryocytic lineages (green, orange) and finally the myeloid 

lineages: monocyte (red) and DCs (blues).  

  



 

 



 

Supp. Fig. 13: Clustering of gene expression trends in early and erythroid cells 

(a) Plot showing the comparison of pseudo-time ordering and differentiation potential with cells 

colored by the number of molecules (left) and number of genes (right) detected in each cell.  

(b) Plots showing cluster results of expression trends of genes that are significantly high or low 

in early hematopoietic clusters (0 and 1 in Supp. Fig. 4a). Each grey line represents the 

expression trend of a particular gene. Solid blue line represents the mean expression trend of 

the cluster and dotted blues lines represent the standard deviation.  Each panel is labeled with 

enriched gene ontology terms.  

(c) Similar to Fig. 3b with the bar plot representing the mean expression of Thy1 in the bins. 

(d) Same as a - for genes significantly high or low in the clusters that correspond to the erythroid 

lineage (clusters 0, 1, 2 and 8 in Supp. Fig. 4a).  

(e) Average gene expression trends of heme metabolism clusters (0, 6 and 8 in b). Erythroid 

branch probability shown in black. Cluster 0 genes correlates the most with erythroid branch 

probability and are enriched with key erythroid TFs. Cluster 6 genes include KLF3. Cluster 8 

contains genes such as HBB, that confer functional identity to erythroid cells. Solid line 

represents the fitted trend estimate and shaded region represents standard deviation 

 

 



 

 

Supp. Fig. 14: Palantir differentiation potential identifies landmarks of hematopoietic 

differentiation (Replication of results in Fig. 3) 

Plots showing the reproducibility of results in Fig. 3 in replicates 2 and 3. Genes identified using 

replicate 1 were used for this analysis.  Boxplots represent the mean and 1.5 s.t.ds. 

 



 

 

 

Supp. Fig. 15: Identification of GATA2 as an agonist of PU.1 in driving erythroid 

specification 

(a) tSNE plots showing the expression of PU.1, GATA1 and GATA2 in the three replicates. 5780 

cells are shown in the tSNE map. 

(b) Top left: Second derivative of erythroid branch probability trend. Dotted black represents the 

inflection point, i.e., the point of maximum change. Bottom left: Erythroid branch probability 

trend along Palantir pseudo-time.  



 

Right panel: Scatter-plot of TF expression trends with erythroid branch trends during the lineage 

specification phase (x-axis) and average TF expression in the early cells (y-axis). Each dot 

represents a TF. GATA2 (labeled) is a clear outlier. 

(c) Gene expression trends of PU.1 and GATA2 in early cells. Black line represents 

differentiation potential. 

(d) Top panel: Plot showing the second derivatives and the inflection points of the PU.1/GATA2 

expression ratio (in blue) and the differentiation potential (in black). The change in expression 

ratio (blue arrow) precedes the change in differentiation potential (black arrow) indicating that 

PU.1/GATA2 ratio is predictive of lineage commitment. Bottom panel: Same as the top panel 

but showing the TF activity differences between PU.1 and GATA2. 

(e) PU.1 and GATA1 activity trends along erythroid and myeloid lineages. PU.1 activities were  

determined using bulk GMP cells and GATA activities using bulk erythroid cells. PU.1 activity, is 

similar to its expression, showing an increasing trend in the myeloid lineages and GATA activity 

shows an upregulation specifically in the erythroid lineage. Solid line represents the fitted trend 

estimate and shaded region represents standard deviation 

(f) Same as Fig. 4a, for replicates 2 and 3 

(g) Same as Fig. 4c, for replicates 2 and 3 

(h) Plots showing the Runx activity trends determined using Runx targets in different sorted 

populations. The activity is high specifically in the cell type from which the targets were derived 

highlighting the cell - type specificity of TF targets and the inferred TF activity. 

  



 

 



 

Supp. Fig. 16: Palantir generalizes to mouse hematopoiesis and colon differentiation 

(a-b) tSNE plots, with cells colored by Palantir branch probabilities for mouse hematopoiesis 3 

and colon differentiation datasets 4 respectively. tSNE maps show 2700 and 1811 cells 

respectively for the two datasets. 

(c) Gene expression trends for the mouse colon data: Palantir results recapitulate the known 

behavior of key genes along different lineages. Solid line represents the fitted trend estimate 

and shaded region represents standard deviation 

(d) Plots showing the correlation between Palantir results when Tuft cells (orange) were 

included (x-axis) or excluded as a terminal state (y-axis). Cells are color coded based on 

clusters in Fig. 5a. Correlation was computed using Pearson correlation 

 

  



 

 

 



 

Supp. Fig. 17: Metrics for evaluating trajectory detection algorithms	

(a) Metrics used to evaluate the degree of a priori biological information required by the 

algorithm and the nature of outputs generated by the algorithm. 	

(b) Performance of the different algorithms to recover key lineages and gene expression 

dynamics of key lineage markers in human hematopoiesis. 	



 

 

Supp. Fig. 18: Monocle 2 applied to human hematopoiesis 	

(a) Monocle2 generated low dimensional embedding of the data with cells colored by one of 6 

Monocle 2 identified states. 5780 cells are shown in the tSNE map. 

(b) Gene expression patterns of key lineage markers. MAGIC imputed data was used for 

plotting	

(c) Same as (a) with cells colored by Phenograph clusters (Supp. Fig. 4a).	

 

 

 

 

  



 

 



 

Supp. Fig. 19: PAGA and DPT applied to human hematopoiesis	

(a) PAGA representation of the data highlighting key marker genes. 5780 cells are shown in 

PAGA generated projection. 

(b) Left: Connectivity among the hematopoietic cells as inferred by PAGA. Each dot is a cell 

color coded to represent lineages in Fig. 2b. Grey lines represent edges between two cells.	

Right: PAGA abstract clusters color coded to resemble Phenograph clusters in Fig. 2b. 

Thickness of the connection between clusters represents the strength of connectivity. PAGA 

lacks distinction between the two DC lineages and embeds megakaryocyte lineage to be part of 

erythroid lineage.	

(c) Gene expression trends of key lineage markers as determined by PAGA. The trends are 

computed using a sliding window, making the estimates highly sensitive to noise in the data.	

(d) Comparison of Palantir and DPT pseudo-time ordering of cells. Cells are colored by clusters 

(Supp. Fig. 4a). 5780 cells are shown in the tSNE map. 

(e) Plots highlighting the different branches identified by DPT. The start and end cells of each 

branch are colored by blue and red respectively. 	

(f)  Same as (c) - gene expression trends determined by DPT	

(g) Palantir gene expression trends for the same genes for reference. Solid line represents the 

fitted trend estimate and shaded region represents standard deviation. 

	

 

 



 

 

Supp. Fig. 20: Slingshot applied to human hematopoiesis	

(a) Cells colored by Slingshot pseudo-time for the four different lineages Slingshot identified. 

Slingshot results lacks distinction between the two DC lineages and embeds megakaryocyte 

lineage to be part of erythroid lineage. 5780 cells are shown in the tSNE map. 

(b) Palantir branch probabilities for reference	

(c) Gene expression trends determined by Slingshot (blue) and Palantir (red) with Slingshot 

trends showing (1) unexpected marginal downregulation of CD79B at the beginning of CLP 

lineage. (2) unexpectedly high upregulation of CD41 along the erythroid lineage since the 

megakaryocytes are included as part of the erythroid lineage and (3) lack of distinction between 

CSF1R dynamics in the two DC lineages since they were embedded as part of the same 

lineage. Solid line represents the fitted trend estimate and shaded region represents standard 

deviation.	



 

 



 

 

Supp. Fig. 21: FateID applied to human hematopoiesis 	

(a) FateID recommends using RaceID for clustering of the data. RaceID results in over 

clustering of data and does not represent coherent cell types or states. 5780 cells are shown in 

the tSNE map. 

(b-c) FateID results generated using Palantir recommended preprocessing. FateID includes all 

the early cells exclusively as part of the CLP lineage, is largely incorrect for most cell lineage 

probabilities and is moreover unable to identify the low frequency lineages. 	

(d) FateID fate biases for cells along the myeloid and erythroid lineages (Supp. Fig. 9), which 

fails to get correct erythroid probabilities and smooth transition into myeloid lineages, 

highlighting the loss in resolution to identify continuities in fate choice commitment	

(e) Palantir probabilities for the same cells for reference	

(f) Gene expression dynamics of key lineage genes as determined by FateID (blue), in 

comparison to Palantir (red). The gene expression dynamics are heavily influenced by exclusive 

inclusion of early cells in the CLP lineage: (i) GATA1 does not show the expected upregulation 

in the erythroid lineage, (ii) MPO, CEBPG show a high basal level of expression at the earliest 

stages of ordering. Solid line represents the fitted trend estimate and shaded region represents 

standard deviation.	

	

 

 



 

 

Supp. Fig. 22: Diffusion components for charting lineage dynamics	

(a) (left) tSNE plots highlight the cells along lymphoid lineage and the pseudo-time of these cells 

as determined by projection along the 2nddiffusion component (Supp. Fig. 2b). 1606 cells are part 

of the lymphoid lineage.	

(b) Histograms showing the density of distribution of cells along diffusion component (blue) or 

Palantir pseudo-time (red). 	

(c) Gene expression trends determined by sliding windows (blue) and Palantir (red). Solid line 

represents the fitted trend estimate and shaded region represents standard deviation.	

	

 

 

 



 

 

 

Supp. Fig. 23: Palantir features key to identifying accurate identification of pseudo-time 

ordering and branch probabilities 

(a) Projection of the mouse colon data (Fig. 5) along the first two diffusion components. Each 

dot it a cell and is color coded by clusters in Fig. 5a (left panel) and density (right panel). The 

projection of 1811 cells are shown.  

(b) (i) tSNE map highlighting cells of the goblet lineage. Cells are color coded by clusters in Fig. 

5a. 350 cells belong to the goblet lineage.  

(ii) Histograms showing the distribution of goblet cells along the pseudo-time derived using 

shortest path distances (top panel) and multi scale distances (bottom panel).  Distribution of 

cells using multiscale distance leads to loss in resolution with increased local concentration of 

goblet cells at the end of the pseudo-time. 



 

(c) (i) tSNE plot showing the expression of MATK along the cells that contribute to the goblet 

cell lineage (left panel).  

(ii) Plots showing MATK expression along pseudo-time where each dot is a cell. 

Top: Cells colored by goblet cell probability. Black line represents the MATK trend obtained by 

GAM fit using goblet cell probabilities as weights for cells. 

Bottom: MATK trend with GAMs fitted on cells ordered by pseudo-time generated using multi 

scale distances. The loss of resolution in pseudo-time results in even GAMs miss trends such 

as MATK downregulation towards the end of goblet lineage. 

(d) (i) tSNE plot highlighting the cells along the lymphoid lineage (clusters 0 and 5 in Supp. Fig, 

4a) colored by lymphoid branch probability from the human hematopoiesis dataset.  

(ii) Top: Plot showing expression of CD79B along Palantir pseudo-time. Each dot is a cell and is 

colored by lymphoid branch probability. Cells that are committing towards other lineages are 

highlighted.  

Bottom: Gene expression trends computed using sliding windows (green), GAMs fit without 

using Palantir probabilities (orange) and GAMs fit using Palantir probabilities (blue). Sliding 

window and GAMs fit without using branch probabilities are heavily influenced by cells 

committing to other lineages leading to incorrect trend estimates.  

 

 



 

 

Supp. Fig. 24: QC metrics of cells post filtering 

(a-b) Histograms of the number of molecules and cells detected per cell (in log10). 

(c) Plots comparing the number of molecules and cells detected per cell. 

 



 

 

Supp. Fig. 25: Comparison of data visualizations 

tSNE maps generated using (a) scaled diffusion components and (b) principal components. (c) 

Force directed graphs for the same cells. Cells are color coded by clusters in Fig. 2b. Replicates 

1-3 contain 5780, 6501 and 12046 cells respectively. 

 

  



 

 

Supp. Fig. 26: Multi-scale distances, waypoint sampling and perspectives 

(a) Plots comparing the diffusion distances from an early HSC cell when different number of 

components are used.  

(b) Same as (a), with distances computed using multi-scale distance. 

(c) Plot showing the variable density of cells along a particular diffusion component. Random 

sampling of waypoints samples cells from high density regions while ignoring of low density and 

high variability (green dots). Max-min sampling however samples cells along the entire 

spectrum of the diffusion component and generates a more representative sample of cells (blue 

dots). 

(d) Shortest path distances from a subset of waypoints.  

(d-e) Cells from subsampled dataset (Fig. 1b) colored by shortest path distances and 

perspectives from the highlighted waypoints. 

 



 

 

Supp. Fig. 27: Identification of terminal states 

(a-b) Diffusion map boundaries (11 cells) and the identified terminal states (6 cells) for replicate 

1 of the human hematopoiesis data.  

  



 

Supplementary Notes 

Supplementary Note 1: The Palantir algorithm  

 
Constructing a nearest neighbor graph representing the phenotypic manifold 

Palantir first constructs a nearest-neighbor graph representing the phenotypic manifold, where 

each cell is connected to its most similar cells.  Key to the success of this approach is that the 

resulting graph neighbors consist of cells in similar developmental states and that longer paths 

correspond to developmental trajectories.  Given the extensive degree of sparsity and noise in 

scRNA-seq, finding nearest neighbors in the raw data using a simple similarity metric is likely to 

accumulate spurious connections and obscure the structure we are seeking. 

  

To construct the neighbor graph based on robust trends in the data, Palantir uses diffusion 

maps 5, which project the data onto a low dimensional manifold that approximates the 

differentiation landscape. Diffusion maps have been previously used to study differentiation in 

single cell data 6, 7 and are particularly adept at capturing differentiation.  Diffusion maps 

generate a low-dimensional embedding by approximating all possible paths via random walks 

through the graph, which effectively capture the major axes of variation in the data (Supp. Fig. 

1). 

 

The first step in constructing diffusion maps is to define a measure of similarity between cells. 

Following 1, we use an adaptive (width) Gaussian kernel to convert distances into affinities, so 

that similarity between two cells decreases exponentially with their distance. Typically, an 

isotropic or non-adaptive Gaussian kernel is used to measure the similarity with an inherent 

assumption the density of the data is uniform along the trajectory. However previous single cell 

studies have shown that while differentiation trajectories are continuous, they are punctuated by 



 

large changes in densities 6, 8 possibly representing meta-stable states.  A non-adaptive kernel 

would be strongly biased by the densest regions.  The adaptive kernel 1corrects for the densities 

by using the distance to the 𝑙+, nearest neighbor as a scaling factor, thus equalizing the 

effective number of neighbors for each cell. 

 

Formally, given a dataset, 𝑿 ∈ 𝑹0×2, with N cells and M genes, a k-nearest neighbor graph, 

G4 	∈ 	ℝ0×0 is constructed using the Euclidean distance. The distances are converted to 

affinities using the adaptive kernel as defined below. 

 

The scaling factor of cell 𝑖 is determined by 

 𝜎7 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑡𝑜	𝑙+,	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟	(𝑙 < 𝑘) 

 

(1) 
 

Given this, the similarity measure between two cells 𝑖 and 𝑗 is given by  

 
𝐾H𝒙𝒊, 𝒙𝒋L =

1

M2𝜋H𝜎7 + 𝜎QLM
R
S
exp W−

1
2
H𝒙𝒊 − 𝒙𝒋LH𝒙𝒊 − 𝒙𝒋L

Y

𝜎7 + 𝜎Q
Z 

 

(2) 
 

 

Where 𝒙𝒊	 is the vector of gene expression for cell 𝑖. Thus, the above adaptive anisotropic kernel 

is used to define an affinity matrix, 𝐊 ∈ 	ℝ0×0 from the data. We then compute the Laplacian of 

the affinity matrix 𝐊 to derive the diffusion operator 𝐓 ∈ ℝ0×0, where 𝑇7Q represents the 

probability of reaching cell j from cell 𝑖 in one step.  The Eigenvectors of the diffusion operator 𝐓 

are termed diffusion components and these represent major axes of variation in the underlying 

manifold from which the data was sampled.  The top diffusion components (Eigenvectors of 𝐓) 



 

define a non-linear low dimensional embedding that approximates the phenotypic manifold of 

the data (Supp.  Fig. 2) 5. 

Pseudo-time ordering of cells 

Once the manifold is constructed, the next step is to infer a pseudo-time for all cells in the data.   

The computed pseudo-time does not represent a single trajectory, but rather assigns each cell 

their relative distance from a starting cell, regardless of their lineage or terminal fates.  Typically, 

diffusion maps have been used to characterize pseudo-time ordering of cells, constructing 

separate trajectories for each major axes of variation, based on individual diffusion components 

(DCs) 7, 9, 10.  While a single DC can sometimes offer a reasonable approximation of an ordering 

towards a specific fate, we often observe many to many relationships between DCs and 

ordering leading to each terminal fate (Supp. Fig. 2).  Therefore, Palantir takes multiple DCs into 

account when computing the pseudo-time of cells.  

  

The embedded space (diffusion map) is used as an approximation of the differentiation 

landscape. Palantir uses Euclidean distance at multiple scales or multi-scale distance 

(elaborated below) in this embedded space to construct a more reliable nearest-neighbor graph, 

G^ ∈ 	ℝ0×0 that filters out much of the noise in the original neighbor graph G4 (Supp. Fig 1a).  

Then  pseudo-time is determined using shortest path distances in the graph	G^ (Supp. Fig. 1b), 

since shortest path lengths better approximate the geodesic distances in the manifold 11.  

 

The extremes of the diffusion components determine the boundaries of the phenotypic space 

and the start cell is defined as the boundary cell closest to the user defined starting point. Then, 

pseudo-time is initialized as the shortest path distances from this start cell.   A shortcoming of 

shortest path distance is that it tends to accumulate noise with increasing distances 6, 8, thus, 



 

similarly to 6, 8, waypoints are used to refine the pseudo-time, defining the ordering based on a 

weighted vote of waypoints.  Waypoints act as guides: the waypoint closest to the cell gets the 

highest vote in determining the position of the cell along pseudo-time.   Thus, the success of 

Palantir requires that all regions of the manifold are well covered by waypoints that can guide 

the positioning of cells in their respective regions.  

 

Our previous pseudo-time algorithms 6, 8 used a random sample of cells as waypoints. However, 

random sampling does not successfully cover the landscape in complex datasets, with multiple 

branches and the variable densities of cells along different lineages. Therefore, Palantir uses 

max-min sampling 12, an iterative procedure to choose waypoints that spread over and 

represent the entire manifold, rather than representing only the regions of high density. 

 

In summary, the positioning is initialized based on shortest path distances from the start cell and 

is iteratively refined using the waypoints to fine tune the distances of the cells within the region 

of each waypoint.  A weighted average across all waypoints is used to ensure the computation 

of a consistent global structure.  Convergence of this procedure defines a final pseudo-time 

ordering of cells (Supp. Fig. 1c).  Below we provide more detail:  

 

Measuring distances between cells using multi-scale distance 

Let the manifold be represented by 𝐄 ∈ 	ℝ0×` where L is the dimension of the embedding with 

𝐿	 < 𝑀. The dimension L of the embedding is chosen using an Eigen gap among the top 



 

Eigenvectors. Let 𝜆R, 𝜆S, . . . 𝜆` be the corresponding Eigenvalues associated with diffusion 

components that define the manifold.  

 

Given this, the distance between cells 𝑖 and, 𝑗 known as the diffusion distance, is defined by 

 
𝐷𝐷+H𝑒7, 𝑒QL

S = 	d𝜆eS+H𝑒𝑖(𝑙) − 𝑒𝑗(𝑙)L
S

`

efR

 
 

(3) 
 

where t is the number of steps through the graph and 𝑒𝑖(𝑙) is the embedding of cell 𝑖 along 

diffusion component l.   Different stages of differentiation happen at different rates and occur at 

different densities in the population, thus a single t is unsuitable across the entire population.  

To avoid setting a particular t, in a similar manner to 7, we use multi-scale distance that 

accounts for all scales: 

 
𝑀𝑆H𝑒7, 𝑒QL

S =dd𝜆eS+H𝑒7(e) − 𝑒Q(e)L
S

`

efR

h

+fR

 

 

 
(4) 

 

By definition, 1	 > 	𝜆R > 	𝜆S >. . . > 	 𝜆` > 0, thus Equation (4) can be rewritten as 

 
𝑀𝑆H𝑒7, 𝑒QL

S =dk
𝜆e

1 − 𝜆e
l
S

H𝑒7(e) − 𝑒Q(e)L
S

`

efR

 

 

 
(5) 

 

The use of multi-scale distance avoids the selection of an additional parameter (t) and also 

renders the distance robust to different choices of L (Supp. Fig. 26a-b), robust to outlier cells 

and density differences. 



 

 

Max-min Waypoint sampling 

Max-min sampling is an iterative procedure, where at each iteration, the chosen waypoint 

maximizes the minimum distance to the set of current waypoints 12, thus covering a new region 

of the manifold. Palantir uses max-min sampling along each diffusion component to sample 

waypoints.  

 

Let 𝐄(e)	be the 𝑙+, diffusion component. Max-min sampling is initialized with a randomly sampled 

cell from the diffusion component: 𝑊𝑆	(e) 	= 	𝑅𝑎𝑛𝑑𝑜𝑚(𝑁, 1). Distances along the component to 

the current waypoint set are computed for all the cells 

 𝑤𝑑7Q = s𝑒7
(e) − 𝑒Q

(e)t
S
∀	𝑗 ∈ 𝑊𝑆	(e) 

 

(6) 
 

For each cell 𝑖, minimum of the current waypoint distances is computed 

 𝑚𝑑7 = 𝑚𝑖𝑛H𝑤𝑑7QL|	𝑗 ∈ 𝑊𝑆	(e) 

 

(7) 
 

The cell with the maximum of these minimum distances is added to the waypoint set 

 𝑊𝑆	(e) = 	ws𝑊𝑆	(e),			argmin(𝐦𝐝)t 

 

(8) 
 

This procedure is repeated until the desired number of waypoints is sampled along the 

component and then repeated for all components. Union of the waypoints sampled along all 

diffusion components represents the final waypoint set, 𝑊𝑆. An example of waypoint sampling 

along a component is shown in Supp. Fig. 26c. 



 

 

Iterative pseudo-time computation  

Palantir begins with designating a start cell based on a user defined starting point.   It is 

assumed that the starting cell would reside at the boundary of the manifold, that is a cell that 

projects onto an extreme endpoint along of one of the diffusion components. First, the set of 

boundary cells is determined using 

 
𝐶 =wHargmin	𝐄(e), argmax	𝐄(e)L

�

efR

 

 

(9) 
 

The extreme cell closest to the user input early cell 𝑠 is then used as the start of the pseudo-

time, 𝑠′. 

 𝑠� = argmin
7∈�

𝑀𝑆(𝑒�, 𝑒7) 

 

(10) 
 

The pseudo-time, 𝜏7
(�), is initialized as the shortest path distances from the start cell 𝑠′.  Shortest 

path distances are computed from each of the waypoints to all cells (Supp. Fig. 26d). These 

distances are then aligned to the start cell distances to compute waypoint perspectives (Supp. 

Fig. 26e). The pseudo-time is then updated as the weighted average of the different waypoint 

perspectives, ensuring that the pseudo-time of a cell is most strongly influenced by the 

waypoints closest to it, while maintaining a consistent global structure. 

 

Formally, let 𝐷�7	be the shortest path distance of cell 𝑖 from to waypoint 𝑤. The perspective of a 

cell 𝑖 relative to waypoint 𝑤 is the distance of from early cell 𝑠′. is computed as 



 

 
𝑉�7 ∶= �

𝜏�
(�) + 𝐷�7			if	𝜏7

(�) > 𝜏�
(�)

𝜏�
(�) − 𝐷�7								otherwise

 

 

 
(11) 

 

Note that the perspective of the early cell  𝑠′ is the initial ordering 𝛕(𝟎)	itself. 

 

The weighted average of waypoint perspectives is used to refine the pseudo-time, using an 

exponential weighting scheme where the weight is inversely proportional to the distance 

between the waypoint and the cell. The weights are determined as follows 

 
𝑊�7 = 𝑒𝑥𝑝 �

−𝐷�7S

𝜎
� d 𝑒𝑥𝑝�

−𝐷��S

𝜎
�

�fR:0

�  

 

 
(12) 

 

where 𝜎 is the standard deviation of distance matrix 𝐃. This defines the weight matrix 𝐖 ∈

𝑅��×0.  The weighted average is then calculated by 

 𝜏7
(R) = d 𝑉�7 ∗ 𝑊�7

�∈� 

 

 

(13) 
 

 

Note that the waypoints themselves are also cells and thus their relative distance to the start cell 

is modified and updated by this procedure. The updated ordering is then iteratively refined until 

convergence to obtain a final pseudo-time, 𝛕 (Supp. Fig. 1c). 

 

Inferring the Terminal Fates and differentiation potential 

Modeling Differentiation as an Absorbing Markov Chain  



 

Consider the neighbor-graph spanning the waypoints, G′^ ∈ G^. Differentiation is modeled as a 

stochastic process, implemented as a Markov chain, where a cell reaches one or more terminal 

states through a series of steps in the manifold (Fig. 1b), based on the assumption that paths in 

the neighbor-graph G^ correspond to possible differentiation paths.  However, differentiation is a 

directed process, from a less differentiated to a more differentiated state, whereas G′^ is an 

undirected graph.  

 
The inferred pseudo-time 𝛕 provides directionality that can be used to orient neighboring edges 

in G′^, thus allowing construction of a directed graph for the Markov chain. A naïve approach 

would prune all edges that violate the pseudo-time order to prevent de-differentiation paths.  

However, there is uncertainty in the pseudo-time estimate of the cells and therefore we use the 

estimated scaling factor for each cell in Equation 1 as a measure of the uncertainty in the 

pseudo-time estimate. Specifically, an undirected edge between cell 𝑖 and its neighbor cell 𝑗 is 

converted to a directed edge from cell 𝑖 to cell 𝑗 if 𝜏7 < 𝜏Q. The edge between cell 𝑖 to cell 𝑗 is 

pruned if 𝜏7 > 𝜏Q and the distance between the two cells exceeds the scaling factor of cell 𝑖 

determined using Equation 1 (Supp. Fig. 1d-h).  

 
Formally, undirected graph in the manifold, G^ is converted to directed graph, G¡ ∈ 	ℝ0×0using 

 

                         	𝐺𝐷𝑖𝑗 = £
𝐺′𝐸𝑖𝑗	𝑖𝑓	𝜏𝑖 < 	 𝜏𝑗

𝐺′𝐸𝑖𝑗𝑖𝑓	𝜏𝑖 > 	 𝜏𝑗𝑎𝑛𝑑	𝜏𝑖 − 𝜏𝑗 < 	 𝜎𝑖
0	𝑖𝑓	𝜏𝑖 > 	 𝜏𝑗𝑎𝑛𝑑	𝜏𝑖 − 𝜏𝑗 > 𝜎𝑖

 

 

 
(14) 

 

These distances are then converted to transition probabilities to construct the Markov chain. 

First, distances are transformed to an affinity matrix 𝐙 ∈ 	ℝ��×�� using the kernel defined in 



 

Equation (2) where 𝑛𝑊 is the number of waypoints. These affinities can be converted to 

probability matrix by dividing each affinity by the degree of the node in 𝐙 representing that cell. 

 
𝑃7Q =

𝑍7Q
∑ 𝑍7��

 

 

 
(15) 

 

The transition probability matrix P represents the Markov chain of the manifold, where 

𝑃7Q	represents the probability of reaching a cell in state 𝑗 from a cell in state 𝑖 in one step.  As a 

first degree of approximation, our approach assumes that this probability of transition 

corresponds to the degree of cell state similarity between 𝑖 and 𝑗. While development is a 

closely regulated process, at these very close distances, stochastic molecular processes of 

degradation and transcription likely play a significant role in. At longer distances, the regulatory 

processes driving development are implicitly encoded in the defined structure of the manifold 

graph G¡.  That is, the probability of reaching a cell in state 𝑗 from a more distinct cell in state 𝑖 

is computed over the course of many steps and will be high if many paths connect them, i.e., 

there is high density of observed intermediary cell states between them.    

 

By definition terminal states are not expected to differentiate further, thus to ensure that the 

random walks terminate when a terminal state is reached, all outgoing edges are removed from 

terminal states.  Terminal states can be externally defined based on prior knowledge or can be 

computationally derived directly from the Markov chain using no additional knowledge, as we 

describe below.   Given a set of terminal states 𝑇𝑆, we convert the Markov chain 𝐏 into an 



 

absorbing Markov chain 𝐀 by setting the terminal states as absorbing states i.e., a state with no 

outgoing edges. 

 𝐴7Q = 0|	𝑖 ∈ 𝑇𝑆; 𝑗 = 1. . 𝑛𝑊 

 

(16) 
 

Identifying Terminal States  

The graph structure and its associated Markov chain can be used to infer the terminal states 

directly from the data, using only the initial starting point as prior information.  In the Markov 

chain 𝐏, random walks tend to move in the direction of the terminal states.  Since a pseudo-time 

underlies the Markov chain, we expect random walks to converge into the terminal states at the 

boundaries of the manifold.  If the graph construction were perfect, we expect that these 

terminal states have no outgoing edges and thus be absorbing states.   However, the chain was 

constructed with implicit uncertainty (e.g. the backward edges within the range of the scaling 

factor) and is therefore imperfect.   Nevertheless, as the random walks are directed towards the 

terminal states, the steady state distribution of the Markov chain is expected to impart high 

probabilities to terminal states and states proximal to them as opposed to the intermediate 

states.  Thus, Palantir identifies terminal states as extrema of diffusion components (boundary 

cells, 𝐶), that are also outliers in the steady state distribution of the Markov chain (Supp. Fig. 

27).  

 

The stationary distribution is the probability distribution over the states of the Markov chain that 

remains invariant as time progresses, i.e. the steady state distribution. Formally, if 𝛑	represents 

the stationary distribution, then 𝛑 = 𝐏 ∗ 	𝛑. The first left Eigen vector of the Markov chain 𝐏 



 

represents the stationary distribution and is thus easy to compute. The outliers in this 

distribution can be identified using the Gaussian percent point function (i.e., inverse of the 

cumulative distribution function) using the median absolute deviation of the stationary 

distribution as the scale. Median absolute deviation is a robust measure of variance in univariate 

data 13. Let 𝛑	represent the stationary distribution. The median absolute deviation is computed 

as  

 𝑠𝑐 = MedianH𝜋7 − Median(𝛑	)L 

 

(17) 
 

The outliers are identified as  

 𝑇𝑆±²�³� = {𝑖|𝜋7 > gaussian_ppf(0.9999,Median(𝛑	), 𝑠𝑐)} 

 

(18) 
 

 

This threshold robustly identifies the different terminal states across the different data sets. The 

set of states in 𝑇𝑆±²�³� that are also diffusion component extremes are chosen as the terminal 

states of the system (Supp. Fig. 27, Fig 1c). 

 𝑇𝑆 =¹H𝑇𝑆±²�³�, 𝐶L 

 

(19) 
 

Cell fate/differentiation potential characterization 

Random walks through the Markov chain between intermediate and terminal states can be used 

to compute the probability of a cell starting at an intermediate state reaching the corresponding 

terminal state.   For each cell, we wish to calculate its branch probability vector 𝐁𝒊, denoting the 

probabilities it might reach each of 𝑏 absorbing terminal states.  An advantage in modeling 



 

differentiation as an absorbing Markov chain is that the branch probabilities can be computed as 

follows:  

 

The absorbing Markov chain 𝐀 can be represented as  

 𝐀 = »𝐐 𝐑
0 𝐈 ¿ 

(20) 
 

Where 𝐐 is a (𝑛𝑊 − 𝑏) × (𝑛𝑊 − 𝑏) matrix of transition probabilities between intermediate 

states, 𝐑 is a (𝑛𝑊 − 𝑏) × 𝑏 matrix of probabilities between intermediate states and terminal 

states and 𝐈 is a 𝑏 × 𝑏 identity matrix. 

Next the fundamental matrix 𝐅  is computed using 

 𝐅 = 	 (𝐈 − 𝐐)Á𝟏 

 

(21) 
 

𝐹7Q represents the probability of reaching intermediate state 𝑗 from another intermediate state 𝑖 

in 1, 2, . . . ∞ steps 

 

The fundamental matrix is then used to compute the differentiation probabilities 

 𝐁 = 	𝐅 ∗ 𝐑 

 

(22) 
 

where 𝐵7Q	represents the probability of cell in intermediate state 𝑖 reaching the terminal state 𝑗 in 

1, 2, . . . ∞ steps. 𝐁𝒊	is a multinomial probability distribution such that ∑ 𝐵7Q = 1Q . The branch 

probabilities of terminal states are set as follows. 

 𝐵7Q = Å1	𝑖𝑓	𝑖 == 𝑗
0	𝑖𝑓	𝑖 <> 𝑗					 

(23) 
 



 

 

The waypoint branch probabilities are projected onto all the cells using weighting scheme 

defined in Equation (13) 

 𝐵7Q = d 𝐵�Q ∗ 𝑊�7
�∈� 

 

 

(24) 
 

 

Finally, we define the differentiation potential of each state to be the entropy of the branch 

probability vector 𝐁𝒊	and this captures the degree of uncertainty in final terminal state (Fig. 1d). 

 

Differentiation potential is a quantitative measure of the cell fate plasticity and represents the 

potential set of terminal states that a cell in an intermediate state can reach. Greater the 

entropy, higher is the number of terminal states the can potentially be reached by the cell in a 

particular state. As a result, the cells at the beginning of the pseudo-time are associated with the 

highest differentiation potential (entropy) (Fig. d(1)) whereas cells close to terminal states have 

the lowest differentiation potential (Fig. d(3, 7)). Crucially, differentiation potential captures the 

continuity in cell fate determination (Fig. 1d(2, 4-6)) and is a better representation of the 

differentiation processes as opposed to well-defined branch points. In summary, Palantir 

characterizes the continuity in both cell state and cell fate by modeling differentiation as a 

stochastic process.  

 



 

Supplementary Note 2: Gene expression trends along lineages 

Palantir’s pseudo-time represents an ordering over all cells across all lineages and provides the  

position of all the cells relative to the start cell. In addition, Palantir branch probabilities 

represent the probability of a cell, in any state, to reaching each of the terminal states. 

Therefore, Palantir’s ordering and branch probabilities represent a unified framework that 

enables computation and comparison of gene expression trends across the different lineages. 

This framework is used to compute gene expression trends for each lineage as follows: rather 

than segmenting the cells that belong to each lineage, the trend is computed using all the cells, 

each weighted by its probability to belong to that particular lineage. Cells that are not committed 

to a particular lineage can provide input to multiple lineages, whereas low probabilities naturally 

exclude cells that belong to unrelated lineages.   

 

We take two approaches to improve the robustness and resolution of the computed trends: 

MAGIC 1 to impute missing values and generalized additive models 2 to determine robust 

trends.  Gene expression trends are computed using MAGIC imputed 1 data to prevent dropouts 

from adversely affecting the trends. MAGIC imputes missing values for each cell based on cells 

that are most similar to it by using the covariate relationships between genes. Sliding window 

approaches on the other hand, average expression over many cells in a univariate manner, 

regardless of other genes. MAGIC, like Palantir is also based on diffusion maps and we use the 

same diffusion operator for both MAGIC and Palantir.  We note that  imputed data is only used 



 

to compute the expression trends after Palantir pseudo-time and branch probabilities  have 

been computed using the non-imputed data.  

 

Sliding window approaches are sensitive to density differences even with imputed data (Supp. 

Fig. 23d). We therefore used generalized additive models (GAMs) to determine gene 

expression trends along each lineage (Supp. Fig. 3), increasing robustness and rendering 

trends less sensitive to changes in cell density along the lineage. The gene expression trend for 

gene g and branch b is fit using 

 𝑦Ç7 = 𝛽É + 𝑓(𝜏7)	𝑓𝑜𝑟	𝑖	 ∈ 𝐵7Ê > 0	 (25) 

 

where 𝑦Ç7	is the expression of gene g in cell i and 𝜏7 is the pseudotime ordering of cell i. Cubic 

splines are used as the smoothing functions since they are effective in capturing non-linear 

relationships 2.  

 

The pseudo-time is then divided into 500 equally sized bins and the smooth trend is derived by 

using the fit from Equation (24) to predict the expression of the gene at each bin (Supp. Fig. 3). 

The standard deviations of expression along each bin is determined by the standard deviation of 

the residuals of the fit and is computed as follows 

 

𝑆𝐸H𝑦ËÌL = Í1 +
1
𝑛
+

H𝜏Ë − 𝜏̅L
S

∑ H𝜏Q − 𝜏̅L
S�

QfR

 

(26) 

 

where 𝑦ËÌ is the predicted expression at bin p and 𝜏̅ is the average pseudo-time across all cells. 

The computation and plotting of gene expression trends are demonstrated here: 



 

http://nbviewer.jupyter.org/github/dpeerlab/Palantir/blob/master/notebooks/Palantir_sample_not

ebook.ipynb. Gene expression trends were computed using the R gam2 package with default 

parameters.  

  



 

Supplementary Note 3: Clustering of gene expression trends 

Genes were selected based on significant differential expression as determined by MAST (FDR 

corrected p-value < 1e-2 and absolute log fold change > 1.25). Genes that were significantly 

high or low in stem and precursor cell clusters (0 or 1: 2176 genes) (Supp. Fig. 4a) were used 

for analysis in Fig. 3b and genes that were significantly high or low in early cell and erythroid cell 

clusters (0, 1, 2 or 8: 3322 genes) (Supp. Fig. 4a) were used analysis in Fig. 3c-d. Gene 

expression trends were z-transformed to put them on the same scale and clustered using 

Phenograph 14 (Supp. Fig. 13). A high-value of 𝑘 (150) was used to avoid over-fragmentation of 

the gene trend clusters. The within cluster sum-of-squares each trend cluster was significantly 

lower for clusters derived from Phenograph when compared to trend matching techniques such 

as dynamic time warping. Gene ontology analysis was performed to annotate each cluster, 

measuring enrichment using the hypergeometric test. The following gene sets from Molecular 

Signature Database (MSigDB) (http://software.broadinstitute.org/gsea/msigdb/index.jsp) were 

tested: (a) c5 GO biological process gene set, (b) H hallmark gene sets and (c) c2 canonical 

pathway gene sets. 

 

In order to compare the change of differentiation potential relative to gene expression changes, 

cells were divided into equal sized bins along the Palantir pseudo-time ordering. Mean 

expression of genes from the relevant clusters were determined to generate the histograms in 

Fig 3. The point of maximal differentiation potential change was determined using the second 

derivative. Stem and precursor cells (clusters 0 and 1) were used for analysis in Fig. 3b 

whereas these cells along the erythroid lineage (clusters 0, 2 and 8) were used for analysis in 

Fig. 3c-e. Similar analysis was performed for replicates 2 and 3 using the genes that were 

differential in replicate 1 (Supp. Fig. 14).  

 



 

The computation and plotting of gene expression trend clustering for a particular lineage is 

shown here : 

http://nbviewer.jupyter.org/github/dpeerlab/Palantir/blob/master/notebooks/Palantir_sample_not

ebook.ipynb 

 

  



 

Supplementary Note 4: GATA2 identification 

We downloaded the list of human TFs from AnimalTFDb 15. TFs that were significantly high in 

one of the erythroid clusters (clusters 2 or 8 - Supp. Fig. 4a) were annotated as erythroid TFs. 

We reason that a TF that potentially plays a role in lineage specification should correlate with 

the branch probability during the specification phase i.e., when the branch probability begins to 

increase along pseudo-time. We used the second derivative of the erythroid probability trend to 

approximate the point along the pseudo-time where there is a switch from lineage specification 

to functional commitment, since the second derivative indicates the point of maximal change in 

the trend (Supp. Fig. 15b).  

 

We computed the correlation between TF expression trend and the erythroid probability trend 

for each erythroid TF defined  above (Supp. Fig. 15b). To avoid down-weighting TFs that are 

potentially downregulated following commitment, during the functional specification phase, we 

computed the correlation until the point of maximal differentiation potential change (and not 

along the entire pseudo-time). Only TFs with both a high correlation and with sufficiently high 

expression levels in early cells were considered candidate erythroid specifiers. The comparison 

of branch probability correlation and mean expression in stem cell cluster (cluster 0 - Supp. Fig. 

4a) shows that GATA2 is a clear outlier (Supp. Fig. 15b). GATA2 is also the only factor with high 

correlation and high progenitor  cell expression for which a motif was identified in bulk ATAC-

seq data. 

 

  



 

Supplementary Note 5: Single cell transcription factor activities 

Bulk ATAC-seq data processing 

Bulk ATAC-seq data was downloaded from GEO (GSE75384) Reads were aligned to hg38 

genome using bowtie2. PCR duplicates were removed using samtools, rmdup. Reads with 

fragment size < 150 bp, representing TF binding events 16 were retained for downstream 

analysis. After size selection, reads were pooled from all cell types and replicates. Only the first 

read from the pair was used for peak calling since a single transposase nick is sufficient proof 

for exposed chromatin 16.  Peak calling was performed using macs2 with a permissive p-value 

threshold of 1e-5 and with the parameter “nomodel” turned on to prevent shifting of positive and 

negative reads towards each other  17. IDR 18 was then used to identify reproducible peaks for 

each cell type: IDR was performed on each pair of available replicates and a peak was assigned 

to a cell type if the peak passed IDR < 0.1 in at least 50% of the replicate comparisons. 

Motif discovery 

SeqGL 17 was run separately for each cell type  with default parameters using  the reproducible 

peaks for the respective cell type. SeqGL outputs a predicted sequence affinity for each TF, 

peak pair. The sequence affinity represents a quantitative measure of the k-mer sequence 

preferences: a higher value represents a greater chance that the TF binds at the genomic 

location spanned by the ATAC-seq peak. 

 

Single cell TF activity 

ATAC-seq peaks were assigned to the gene with the nearest transcription start site, which is a 

reasonable approximation of enhancer target assignment in the absence of chromosome 

interaction data 19.  Sequence affinities for all TF-gene pairs were determined by aggregating 



 

the affinities across all peaks assigned to gene. Recent studies have shown that these affinities 

correlate strongly with expression change of the targets indicating that the sequence affinities 

approximate the regulatory effect of a TF on its target 19. Therefore, correlation between target 

expression and predicted TF sequence affinity  was used as the TF activity for each cell (Fig. 

4b). The activities were determined separately for promoter peaks (peaks within 2kb of the 

transcription start site) and enhancer peaks (peaks at distance > 2kb of the transcription start 

site). As a demonstration of the importance of cell type context for determining TF targets, 

Supp. Fig. 15h shows TF activity trends for Runx in different cell types. The targets of Runx, a 

transcriptional activator, show higher expression in the corresponding cell type, demonstrating 

the accuracy of computing TF activities using correlation between target expression and 

predicted sequence affinities  

  



 

Supplementary Note 6: Performance of competing methods on the 

CD34+ marrow data 

Palantir summary 

Palantir was run using one of the CD34+ cells as the start. Palantir automatically determined all 

the different lineages and assigned for each cell, a probability of reaching the different terminal 

states. Palantir also provides a unified pseudo-time ordering to enable comparison of gene 

expression trends across lineages. The trends were as expected, based on ground truth derived 

from prior publications.  

 

Monocle 2 

Monocle 2 uses a reverse graph embedding which simultaneously learns a principal graph that 

approximates the low dimensional manifold and projection of cells onto this graph to reconstruct 

single cell trajectories. 

 

Monocle 2 was run with default parameters for UMI counts specified in the Monocle 2 vignette 

to embed data into two dimensions. Monocle2 identified six distinct states in the data, but we 

could not attribute specific cell types to any of these states based on expression of marker 

genes (Supp. Fig. 18). Moreover, key canonical markers for progenitors (CD34), myeloid (MPO, 

IRF8) and B-cell lineages (CD79B) are spread across all projections with no trend or coherence 

(Supp. Fig. 18).  Thus, Monocole2 failed to correctly compute pseudo-time, identify terminal 

fates and generate expression trends on this data.  We note that in the original publication, 

Monocle2 was demonstrated on a small dataset, with well-distinguished, sorted populations, 

rather than a complex differentiating system.  



 

 

Partition based Graph Abstraction (PAGA) 

PAGA aims to reconcile clustering and trajectory inference and is particularly adept to scaling to 

large number of cells. PAGA generates an abstracted graph representing the differentiation 

structure underlying the data. The gene expression trends are fit by computing a pseudo time 

ordering for each lineage separately using diffusion pseudo time (DPT) and then a moving 

average along the resulting pseudo-time of cells. PAGA was run using default preprocessing 

steps outlined in https://github.com/theislab/paga/blob/master/blood/paul15/paul15.ipynb with 

log transformation of the normalized data. 

 

PAGA succeeds in recovering the different hematopoietic lineages and their relationships 

(Supp. Fig. 19a-b) for the larger populations. However, PAGA embeds the megakaryocyte 

lineage cells into the erythroid cell lineage and is unable to distinguish between the two DC 

lineages (Supp. Fig. 19b). The abstracted graph constructed by PAGA represents the 

topological structure of the lineage decision process and the strong interconnectivity among 

clusters representing the intermediate states provides further evidence for lack of well-defined 

bifurcations in human hematopoiesis (Supp. Fig. 19b).  

 

PAGA generates a unified pseudo-time ordering of cells and enables comparison of gene 

expression trends across lineages. PAGA uses a sliding window to infer gene expression trends 

and requires a manual specification of clusters that contribute to each particular lineage. 

PAGA’s gene expression trends for the key markers are shown in Supp. Fig. 19c).   While the 

patterns of CD34, MPO, CD79B and GATA1 are qualitatively consistent with their known 

behavior, the sliding window approach leads to a loss in resolution and makes the trend 

estimates very noisy (Supp. Fig. 19c). The trends for CSF1R and CD41 do not reflect known 



 

biology, since DC lineages are not distinguished and megakaryocyte cells are included as part 

of the erythroid lineage (Supp. Fig. 19c).  

 

Diffusion Pseudotime (DPT) 

Diffusion pseudotime (DPT) was primarily designed for estimating pseudo-time ordering of cells 

using diffusion maps. DPT also uses a heuristic based on Kendall Tau’s correlation to identify 

the branches in the data by using the start cell and the number of branchings as input. DPT 

imposes tree-like structure to model the differentiation process, representing each bifurcation as 

a discrete point.  We applied DPT using the scanpy implementation, following similar 

preprocessing steps to Palantir. We used the same start cell as Palantir and used 3 as the 

number of branchings, since this value gave us the best results (additional branches created 

splits that do not correspond to known lineages).  

 

Since both Palantir and DPT are based on diffusion maps, the pseudo-time ordering of the cells 

are correlated (Supp. Fig. 19d). DPT was able to identify most of the lineages except for the 

distinction between DC lineages (Supp. Fig. 19e). DPT also suffers from a loss of resolution in 

characterizing gene expression trends, although the qualitative patterns for gene expression 

changes are correctly identified for all markers except for the CSF1R gene, since the two DC 

populations are not separated (Supp. Fig. 19f). 

 

Slingshot 

Slingshot takes as input a clustering and low dimensional embedding of the data. Slingshot first 

determines a minimum spanning tree through the clusters to identify the overall branch structure 

of the data. Slingshot then fits principle curves for each branch/ lineage and uses orthogonal 

projections against these principle curves to determine the pseudo-time ordering. The curves 



 

are fit separately for each lineage and hence Slingshot does not provide for comparison of gene 

expression dynamics across lineages. Finally, Slingshot uses GAMs with loess fits to determine 

gene expression trends. Slingshot does not make explicit recommendations for dimensionality 

reduction and clustering algorithms, both required as input. Therefore, to maximize similarity to 

Palantir, we applied Slingshot to the hematopoiesis data using diffusion maps and Phenograph 

clusters as input. 

 

Slingshot identifies four lineages from the data: (monocyte, lymphoid, erythroid and DC) (Supp. 

Fig. 20a). Similar to PAGA, Slingshot fails to distinguish between the two DC clusters (since 

they are clustered together) and embeds the megakaryocyte population to be a stage along 

erythroid lineage, even though these are clustered separately (Supp. Fig. 20a, Supp. Fig 4a). 

Slingshot accurately recovers the gene expression trends of MPO and GATA1 in myeloid and 

erythroid lineages respectively (Supp. Fig. 20c). While the CD79B upregulation in CLP is also 

identified, there is an unexpected downregulation at the beginning of the CLP ordering since the 

cells committing towards the myeloid lineages are included as part of the lymphoid lineage 

(Supp. Fig. 20c). Since the gene expression trends for the two DC lineages are identical, we 

cannot distinguish between expression dynamics of key DC TFs such as CSF1R (Supp. Fig. 

20c) and CD41 dynamics in erythroid and megakaryocyte lineages cannot be characterized 

since megakaryocytes are absorbed into the erythroid lineage (Supp. Fig. 20c). 

 

FateID 

FateID aims to compute fate biases of each cell, towards each of the pre-specified terminal 

states. FateID determines these probabilities by using a random forest classifier applied 

successively for cells from the terminals to the start of the trajectories.  The cells that belong to 

a particular lineage are determined based on the identified fate biases. Pseudo-time ordering is 

determined separately for each lineage by fitting principal curves through low dimensional 



 

embedding such as tSNE. As such, FateID does not allow for a comparison of gene expression 

trends across different lineages. FateID requires pre-specification of clustering and pre-

specification of the terminal states.  

 

FateID recommends using RaceID to cluster the data. However, RaceID led to over clustering 

of the data and did not yield coherent clusters representing the different lineages (17 clusters, 

none matching known lineages or cell types, Supp. Fig. 21a) and thus running FateID as 

recommended by its authors, fails to generate a coherent map of hematopoiesis. Therefore, to 

maximize similarity, we used Palantir’s preprocessing, clusters and terminal fates as inputs to 

FateID to maximize similarity to Palantir and this indeed resulted in better representative results 

of human hematopoiesis (Supp. Fig. 21).  However, there were a number of serious issues with 

the derived fate biases: (i) all of the early cells (20% of the cells) are included exclusively as part 

of the lymphoid lineage which renders cell fate probabilities for these cells incorrect and affects 

the computation of gene expression trends of different lineages, We note that FateID was 

originally developed to study the lymphoid lineages and hence the design and modeling choices 

might over-fit towards this lineage, (ii) all later precursors included exclusively as part of the 

myeloid lineages (17% of cells), providing no real precursors for erythroid and megakaryocytic 

lineages, which are earliest to branch off, (iii) lack of distinction between the DC lineages since 

they are not separate clusters, and (iii) erythroid precursors included exclusively as part of the 

megakaryocytic lineage (Supp. Fig. 21b-c). Since FateID also generates probabilities or fate 

biases, we next compared the changing probabilities in cells committing towards the erythroid 

and monocyte lineage (Supp. Fig. 12). We do not observe any consistent change in probabilities 

in the erythroid lineage (Supp. Fig. 21d - left panel) whereas the commitment towards the 

monocytic lineage is rather abrupt (Supp. Fig. 21d - right panel).  Thus, the cell fate probabilities 

are largely incorrect for a large fraction of the cells and do not follow the correct hierarchy for 

hematopoiesis.  



 

 

We next compared the gene expression trends along individual lineages since FateID does not 

generate a unified ordering for comparison of trends across lineages (Supp. Fig. 21f). The 

inclusion of all the early cells specifically in the lymphoid lineage results in correct identification 

of CD79B trend in the lymphoid lineage but leads to a number of issues in the gene expression 

trends: (i) GATA1 does not show the expected upregulation in the erythroid lineage, (ii) MPO 

shows a high basal level of expression at the earliest stages of ordering, (iii) CD41 does not 

show the expected upregulation in megakaryocyte lineage since cells of the erythroid lineage 

are included as part of this lineage (Supp. Fig. 21f).  In summary, FateID performs poorly on this 

data.  

 

Diffusion maps 

Diffusion maps are widely applied for pseudo-time ordering of cells by projecting cells along 

individual components to determine pseudo-time for a lineage. Gene expression trends are then 

estimated by using a sliding window approach along these projections 9, 10.  There are three key 

limitations to this approach: First, projection of cells onto a single diffusion component does not 

always generate an accurate ordering of cells along a lineage. Second, diffusion maps generate 

a projection of all cells along each component and therefore segmentation of the data (e.g. 

based on clustering) is necessary to determine gene expression dynamics. Finally, projection of 

cells along different components does not allow for a direct comparison of dynamics between 

two different lineages.  

 

In particular, our data demonstrate that only the monocytic and lymphoid lineages can be 

unambiguously explained by a single diffusion component; all other lineages require multiple 

components to accurately determine pseudo-time (Supp. Fig. 2b). Bearing these limits in mind, 

we used projection of lymphoid lineage cells to characterize the effect of using individual 



 

diffusion components for determining pseudo-time and gene expression trends (Supp. Fig. 22a). 

Projections along this component amplify the already-significant density differences in the data 

(Supp. Fig. 22b). Sliding window approaches are particularly sensitive to density differences and 

as a result, the expression trend estimates are not reliable. In this particular case, loss of 

resolution in the sliding window approach prevents an accurate characterization of key TFs such 

as PU.1 (Supp. Fig. 22b), which has been shown to play a key role in lymphoid specification20.  

 

Population Balance Analysis (PBA) 

A recently published approach, population balance analysis (PBA) 21, 22 presents a framework to 

characterize differentiation using spectral graph theory to solve a system of differential 

equations representing the dynamics of maturation along a lineage. In practice, this translates to 

using Markov chains for characterizing differentiation, providing further support for this approach 

to model differentiation. We note that PBA requires extensive use of prior knowledge to infer the 

proliferation and loss rates for each state (cell) in the system, which form the fundamental basis 

for the Markov chain construction. In the particular case of mouse hematopoiesis, the rates for 

the different lineages were estimated separately using data from multiple fate mapping studies 

21. In addition, PBA requires explicit specification of the terminal states in the system a priori. 

We could not apply PBA to human hematopoiesis owing to paucity of such fate mapping studies 

in human.  In contrast, Palantir requires only specification of an early cell and can automatically 

construct the Markov chain and determine the set of terminal states based on single cell RNA-

seq measurements alone. This data-driven approach to characterizing differentiating systems is 

a key strength of Palantir’s utility and applicability to model tissue systems without established 

lineages.  
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