
Using deep learning to annotate the protein 
universe

In the format provided by the 
authors and unedited

Supplementary information

https://doi.org/10.1038/s41587-021-01179-w



Using Deep Learning to Annotate the Protein Universe1

Maxwell L. Bileschi
1, *

, David Belanger
1
, Drew H. Bryant

1
, Theo Sanderson

1, 2
,2

Brandon Carter
3
, D. Sculley

1
, Alex Bateman

4
, Mark A. DePristo

1, 5
, and Lucy J.3

Colwell
1, 6, *

4

1
Google Research, Cambridge, MA, USA5

2
The Francis Crick Institute, London UK6

3
MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA7

4
European Molecular Biology Laboratory, European Bioinformatics Institute8

(EMBL-EBI), Hinxton, UK9
5
BigHat Biosciences, San Mateo, CA, USA10

6
Department. of Chemistry, University of Cambridge, Cambridge, UK11
*
Correspondence to mlbileschi@google.com and lcolwell@google.com12

1



Supplementary Information13

Pfam data14

The positive results obtained using the Top Pick strategy with HMMER, i.e. in the absence15

of the rigorous statistical filters implemented in HMMER 3.1b2, likely reflect the fact that16

we are working with sequences that were originally classified by Pfam, and so passed the17

rigorous statistical thresholds for inclusion. Those sequences that did not pass these filters,18

and hence were not included in any Pfam family, may pose a more significant challenge to19

our implementation. For this reason we do not recommend that this HMM implementation20

is used in settings other than working with these benchmark datasets. For Pfam-full, we do21

not use the HMMs as a baseline because these models were used to label the data, so may22

achieve 100% accuracy by default. The Pfam-full dataset has 17772 families overall, and23

our test and dev sets contain sequences from 16755 families.24

Pfam-seed sequences vary between 4 and 2037 amino acids in length, with 27045 seed25

sequences of length > 500. Fig. S1 contains histograms of Pfam-seed family sizes, the26

Pfam-seed sequence length distribution and also the frequency of amino acid usage in the27

Pfam-seed dataset. Family-specific gathering thresholds, shown in Fig. S1C, are used by28

HMMER 3.1b2 to determine whether a sequence belongs to each family [1]. The role29

of gathering thresholds is to increase coverage and decrease false positives. However our30

TPHMM setup simply takes the top match by score, regardless of the assigned gathering31

threshold. This raises the question of whether implementing the family-specific gathering32

thresholds would have improved the accuracy score achieved by TPHMM.33

To address this, Fig. S1D shows the distribution of top scores for HMMER, for both34

correct and incorrect predictions. We note that the majority of incorrect predictions have35

scores below the assigned gathering thresholds. However, there also appear to be at least36

as many correct predictions below these values. This qualitative analysis is backed up by37

experimentation wherein we determined 8.5% of top picks were below their family-specific38

gathering thresholds from Pfam. As such, using the assigned gathering thresholds would39

not have helped performance, and effective use of gathering thresholds would have required40

us to re-tune each of these values for the training dataset used in this benchmark study.41

Pfam allows a domain to belong to multiple families if these families are in the same42

clan [1]. Our top pick formulation of HMMER for sequence classification does not allow for43

multiple membership. However, within the seed sequences, there are only two sequences44

that belong to more than one family. The first sequence has the two distinct names45

ABEC3_MOUSE/245-418 and E9QMH1_MOUSE/234-407, and the second has the two46

distinct names NLP_DROME/6-104 and B4HZJ8_DROSE/6-104. Both of these sequences47

are found in our training dataset.48

S1



Definition of sequence identity49

Because all sequences within a seed alignment are evolutionarily related it might be that
training and test sequences in the random split are very close and thus trivial for the model
to accurately classify. To address this, we stratify our analysis by the maximum percent
identity of each test sequence with sequences in the train set. Inspired by the method of [2],
we use the Pfam-seed family alignments to compute the similarity, measured as percent
sequence identity, between every held-out test sequence and the training sequences within
the same family. For each pair containing a single test and train sequence we do not realign,
but instead use their length L alignment from the seed family multiple sequence alignment.
Following [2], for two sequences of n1 and n2 residues, if the L aligned sequence position
pairs consist in cident matches, cident mismatches and cident cases where either or both
sequence contain a gap character such that L = cident+ cmismat+ cindel, then the pairwise
sequence identity is defined as:

pid =
cident

MIN(n1, n2)
.

For Pfam-seed we use the seed family alignment to compute a pairwise distance between50

every held-out test sequence and sequences from the same family that are contained in51

the training set. Another metric of distance between each held-out test sequence and the52

training set is provided by the percent sequence identity measured by BLASTp. To provide53

an idea of the differences between these metrics, Fig. S1E compares them across all 12617154

sequences contained in the randomly split Pfam-seed held-out test set.55

Details of Neural Network Architectures56

In a residual network (ResNet) [3], the layers are built up additively, with fi = fi�1+gi(fi�1).57

Here, each fi is an L⇥ F array and gi(·) is an additional one-layer convolutional network58

(along with a kernel-size-one bottleneck convolution; see Figure ??) with trained weights59

specific to that layer. In our model, f0 is obtained by a convolutional layer with F channels60

applied to the output of the input network, with no bottleneck convolution applied before61

the residual blocks. Each ResNet layer maintains a L⇥ F representation; no downsampling62

is performed until the final pooling step. We also note that a convolutional layer is used63

before any residual block, so as to convert the per-residue representation into the correct64

shape before consumption by the residual blocks. For residues outside the set of the 2065

natural amino acids, we use a column of zeros for this initial input to the residual blocks.66

We use a convolutional neural network (CNN) to construct this L ⇥ F array, since67

they are fast to train and evaluate on modern hardware, an advantage that is even more68

pronounced when evaluating large sets of sequences in parallel. Convolutional architectures69

are also easily composed into higher-order interactions. The L ⇥ F array is then pooled70

along the length of the sequence, ensuring invariance to padding. Hyperparameters tuned71

for each neural network include the choice of F and max vs mean pooling in addition to72

network depth, which was varied between 1 and 6 layers (plus the initial convolution).73

S2



Dilated Convolutions74

Dilated convolutions are a popular method for enabling CNNs to capture long range75

interactions across the inputs [4]. One way to to model these long-range interactions76

would be to use convolutions with very wide kernels. However, doing so increases the77

computational complexity of prediction and introduces a considerable number of parameters78

to train. Instead, dilated convolutions use convolution kernels with holes in them, so that79

the complexity and number of parameters is the same as small, local convolutions, but the80

overall receptive field of the convolution is wide.81

Consider a convolution with kernel width 5, and let fi,j be the representation in layer i
of the CNN at position j in the sequence. In a traditional 1-dimensional convolution, fi is a
linear function of

{f(j�2), f(i�1),(j�1), f(i�1),j , f(i�1),(j+1), f(i�1),(j+2)}.

In a dilated convolution with dilation rate r, it is a function of

{f(i�1),(j�2r), f(i�1),(j�r), f(i�1),j , f(i�1),(j+r), f(i�1),(j+2r)}.

At each layer of our CNN, r is increased by a factor of k, so the overall receptive field size82

of the CNN is exponential in its depth. Specifically, if the model has n1 non-dilated layers83

followed by n2 dilated layers, k is the kernel width and r the dilation rate, then the receptive84

field size is k + 2(k � 1)(n1 � 1) + 2(k � 1)
Pn2

i=1 r
i. These terms correspond to the first85

layer, the remaining non-dilated layers, and the dilated layers respectively.86

Model Invariance to Padding87

At both train and test time, our model processes sequences in batches. The batches are88

of variable length, so input one-hot sequences are padded with zeros before being stacked89

together in a tensor that can be processed in parallel on a GPU (see Fig. ??C). It is90

imperative that our model’s predictions are insensitive to the padding, as the amount of91

padding depends on the other sequences in the batch (we pad to the longest sequence in92

the batch). For CNNs, our model maintains an L ⇥ F array of features at every layer,93

where each column corresponds to a specific location in the input sequence. Before each94

convolution or batch normalization operation, we zero-out the features in any location that95

corresponds to padding in the input sequence. This ensures that the model’s predictions are96

insensitive to padding at test time. However, the dynamics of training our CNNs are still97

effected by padding, since batch normalization computes feature averages across the length98

of the sequence, and these lengths vary due to padding.99

Model Training100

We use the Adam optimizer [5]. The learning rate is subject to exponential decay following a101

warm-up period, and the length of the period was not treated as a tunable hyperparameter.102

S3



At train time, we present the model with randomly-drawn batches. Consistent with popular103

experience [6], we find that it is useful to clip gradients, and adaptive gradient clipping104

worked significantly better than static gradient clipping [7], so we use adaptive gradient105

clipping for all deep models.106

Neural Network Hyperparameters107

Our embedding network architecture involves a variety of hyperparameters as outlined in108

Tables S13 and S14. The “dev” fold of the data is used to identify the optimal hyperparameter109

settings, while model performance statistics are reported using the completely distinct “test”110

fold. The CNN hyperparameters are tuned using values sampled at random from each111

hyperparameter search range, reported in Table S13. The number of searched values is112

reported in Table S15. We carried out an initial study that identified the most promising113

architecture. As shown in Table S13 we allowed the batch size to vary, and introduced114

additional learning rate decay parameters in this study. Moreover, the number of filters115

was greatly increased, and the number of layers was allowed to vary as a hyperparameter.116

These modifications helped to maximize the performance of ProtCNN in terms of accuracy.117

However, they made the resulting model more difficult to interpret, in the sense that it118

became difficult to attribute increases in performance to specific parameters such as the119

size of the receptive field. Table S16 shows the ProtCNN hyperparameters used for the120

Pfam-full dataset.121

Model Performance122

Neural network training is subject to sources of stochasticity such as variable initializations,123

example ordering, and floating point computations on GPUs. The accuracy of multiple124

ensemble elements (replicates) with identical hyperparameter configurations is shown in125

Fig. S2A, and is very stable. As reported in the main text, which specific sequences get126

misclassified is less stable, leading to the performance improvements reported by the ensemble127

ProtENN. Fig. S2B shows the rapid increase in accuracy at sequence classification for the128

Pfam-seed dataset as a function of the number of ProtENN elements. Moreover, changing129

model hyperparameters did not have a large effect on the accuracy achieved, for example130

Fig. S2C reports performance as a function of the receptive field size.131

Benchmark Performance on Random Split132

Figure S3A shows the performance of ProtCNN, ProtENN and the baseline methods at Pfam133

family prediction as a function of the maximum similarity of each held-out test sequence134

with sequences in the training set, for those test sequences in the random split that are135

most distant from the training data. We find that ProtENN makes significantly fewer errors136

than all other methods in all bins shown in this figure (p < 0.05, McNemar test). Tables S2137

S4



and S3 show the number of sequences per bin for both Figure ?? in the main text, and138

Figure S3A. In Figure S3B we note that both ProtCNN and ProtENN excel at accurately139

classifying short Pfam domain sequences.140

Overall those ProtCNN models that perform best tend to have the largest memory141

footprints, to some extent irrespective of how that memory footprint is achieved. Increasing142

the number of model parameters via the number of filters, the kernel size and/or the number143

of ResNet blocks, and increasing the training batch size can all lead to improved accuracy.144

The memory footprint of the models is limited by the amount of memory available on a single145

GPU, necessitating trade-offs among these factors. Additional computational resources can146

overcome this memory limitation: we didn’t explore TPUs [8], multiple GPUs or CPUs, all147

of which could result in better models, suggesting room for future improvements on this148

task.149

Benchmark Performance on Clustered Split150

For the results presented in this paper, we use the clustered dev data to tune the number151

of training iterations and the number of ensemble elements, while making no changes to152

the model hyperparameters from those identified using the random split. When considering153

aggregate accuracy metrics it is important to consider the test distribution under which154

this metric is computed. The randomly-split test data has a natural distribution over155

families defined by the distribution over families in Pfam. However, in the clustered data156

the distribution over families is a complex consequence of the clustering process. In Fig. S4,157

we find that many families are represented very differently in the random and clustered158

Pfam seed data sets.159

For both the random and clustered split, we stratify model performance by percent160

sequence identity with the training data, which serves to avoid overestimating the gener-161

alization capabilities of the model. For the clustered split, all held-out test sequences are162

guaranteed to be far from the train set. The community has embraced the second evaluation163

approach, but we suggest that the former is at least as important. If future users of such a164

machine learning system will issue prediction requests for sequences that are drawn from165

a distribution similar to the existing data, the random split helps us evaluate how useful166

the system will be to these researchers. Furthermore, performing a stratified analysis of167

the randomly-split data reveals how performance varies with sequence identity without168

introducing systematic skew in the training data due to clustering. On the other hand, if169

users will mostly issue queries for very remote sequences, then evaluating models in terms170

of the clustered split is important.171

Evaluation on Clustered Split using Per-Cluster Averaging172

Overall, our approach follows that of [9] with four main modifications. The first is that173

we place multiple clusters in set1, rather than just the largest. This avoids putting very174

S5



few examples in the training set for families where the clustering produces a large number175

of small clusters, while maintaining the property that the train, dev, and test sets are176

well-separated. Second, our formulation uses some of the non-train sequences for a dev177

set to make sure that the number of training steps and ensemble elements are not chosen178

using the held-out test data. Third, if a family cannot be split at sequence identity ↵, we179

place the entire family in the training set. This differs from [9], which completely discards180

families that can not be split. When clustering non-train data to split into dev and test,181

we similarly place the entire family in the dev set if it can not be split. The fourth is that182

when we re-cluster the non-training data to produce dev and test sets, instead of selecting183

single sequences from each cluster, we include all elements of each cluster. We find that184

though the fourth decision simplifies our setup, following more closely [9] yields qualitatively185

similar results (Table S6). Finally we note that while our clustering protocol follows that186

of [9], we evaluate models in terms of a different prediction task. We consider multi-class187

classification, whereas [9] considers a set of per-family binary detection problems.188

Sequence Annotation for Pfam-full189

The 17929 profile HMMs built from the ⇠1.34 million curated sequences of Pfam-seed are190

used to annotate the ⇠54 million sequences in Pfam-full. Like nearest-neighbour methods191

such as BLASTp, the predictive accuracy of deep learning models typically improves as the192

amount of well-labelled training data increases. To compare these approaches on a larger193

dataset, we randomly split each Pfam-full family, assigning 80% of sequences to the train194

set and 10% each to dev and test sets, and carry out a hyperparameter search to optimize195

ProtCNN accuracy for this new task. Note that 16755 families have sequences in the dev196

and test sets for the Pfam-full data. To provide a highly accurate baseline we impute labels197

via the top BLASTp hit, using the training set as the query database. We do not include198

profile HMM-based methods (Top Pick HMM and phmmer), because the ground truth data199

in Pfam full was generated using HMMs.200

Our resulting ProtCNN model has an error rate of just 1.26% (⇠69k errors), lower than201

the BLASTp error rate of 1.78% (⇠97k errors). ProtENN, ensembled across 13 ProtCNN202

models, reduces the error even further to just 0.5% (⇠25k errors). It is important to stratify203

our analysis by the similarity of each test sequence to the closest sequence in the training set,204

to account for sequence similarity between the train and test data. For the Pfam-full data205

use BLASTp to calculate a measure of sequence identity. We use the Pfam-full training set206

as the query database for BLASTp and report the percent sequence identity of the highest207

scoring pair found by BLASTp for each held-out test sequence. This method measures208

similarity across all Pfam families, in contrast to the method used for Pfam-seed, which209

computes the distance between the train and test sets within each Pfam family. Fig. S1E210

compares these two metrics across the 126171 held-out sequences of the randomly split211

Pfam-seed data.212

Fig. S7 shows that ProtENN is highly accurate across all bins of held-out test sequences213

S6



distance from the training data. To analyze the performance for those held-out test214

sequences that are most distant from the training set, Fig. S7B divides the 90210 held-out215

test sequences that are most distant from the training sequences into 10 bins, and analyzes216

model performance for each bin. Tables S10 and S11 provide the number of sequences217

in each bin of Figs. S7A and B. We find that ProtENN is significantly more accurate for218

sequences with identity >32% to the training set.219

For the split of Pfam-full, we observe an increase in model error rate for BLASTp in the220

last decile of pairwise sequence identity computed using BLASTp (see Fig. S7A). There are221

two potential sources for this reduction in accuracy. The first is sequences that are closer in222

terms of sequence identity to a member of a different family than to their own. The second is223

that some sequences in the dataset are sub-sequences of others. Where the sub-sequence is in224

the test set, BLASTp measures “100%” sequence identity with the super-sequence contained225

in the training set. Discerning the correct classification in these cases can be quite difficult.226

For example, in Pfam-full, one of the test sequences is A0A010NMM2_9MICC/241-409,227

and one of the training sequences is A0A010NMM2_9MICC/4-495. In this case, the former228

sequence has is identical to part of the latter, but it is classified differently by Pfam: the test229

sequence is the NAD binding domain of AdoHcyase, while the latter is the full AdoHcyase230

domain. This may explain some of the difficulty that BLASTp has with sequences that are231

very similar to those in the training set.232

Effect of family size on performance233

An additional potential performance confounder is family size. To address this issue, we234

split the held-out test sequence data for the Pfam-seed random and clustered splits and also235

for the Pfam-full random split by total family size into ten bins. Fig. S5 shows the model236

error rate for held-out sequences from each data split. These results show that ProtENN237

performs well across all family size bins.238

Combining ProtENN and Top pick HMM239

The main text describes how we built a model that combines ProtENN and Top pick HMM240

predictions, to yield a model that reduces the error rate on the clustered split dataset241

by 35%. Fig. S10A shows the accuracy of the ProtENN and Top pick HMM models for242

the held-out test sequences of the clustered split as a function of the HMMER e-value for243

each sequence. We note that the Top pick HMM accuracy is very high for sequences with244

predictions that have HMMER e-value < 10�4. However, for this challenging data split,245

many sequences have HMMER e-values > 10�2, which is a regime in which on average,246

the ProtENN predictions are more accurate than those made by the Top pick HMM. To247

take advantage of this observation, for each held-out test sequence we use the reported248

HMMER e-value to decide whether to trust the Top pick HMM or ProtENN prediction.249

Fig. S10B shows how the overall accuracy of this combined model varies as a function of the250

S7



specific HMMER e-value chosen as the threshold that determines which model prediction is251

reported.252

An alternative measure of model confidence is provided by the ProtENN ensemble253

consensus for each held-out test sequence. Fig. S11A shows the distribution of ProtENN254

ensemble consensus scores for the held-out test sequences from the clustered split dataset,255

note that while many predictions have an ensemble consensus of 100%, there are also a256

number of sequences that have lower ProtENN prediction ensemble consensus. In Fig. S11B257

we stratify the accuracy of Top pick HMM and ProtENN predictions as a function of the258

ProtENN ensemble consensus, for held-out test sequences from the clustered split of Pfam259

seed. Note that for sequences with ProtENN ensemble consensus > 30% the ProtENN260

predictions are, on average, more accurate than those made by the Top pick HMM, while261

for lower ensemble consensus scores, the reverse is true. As shown in Fig. S11C, this results262

in a model combination whose accuracy peaks when a threshold of around 30% ensemble263

consensus is used to determine whether the HMM top pick or ProtENN consensus should264

be reported.265

Finally, in Fig. S12A we report HMM top pick and BLASTp accuracy for held-out266

test sequences from the clustered split as a function of the HMMER e-value for each test267

sequence prediction. Note that for nearly all e-values, the HMM top pick predictions are268

more accurate. As a result, Fig. S12B shows that the model that results from combining269

these two approaches does not exceed the accuracy of Top pick HMM no matter what270

e-value threshold is used to determine whether the BLASTp or HMM top pick predictions271

are trusted.272

Computational Performance273

Protein sequence databases like UniProt contain hundreds of millions of sequences and are274

growing exponentially [10, 11]. This places a premium on the computational performance275

of protein sequence analysis tools, motivating efforts dedicated to optimization over the276

last decades [9, 12–16]. It is therefore critical to evaluate the computational cost of the277

deep models to ensure that they aren’t prohibitively expensive. Evaluating the runtime278

performance of software is delicate. To ensure reproducibility, we use sandboxed instances on279

Google Cloud Platform: a n1-standard-32 (32-core / 120 GB RAM) instance for CPU-only280

and a n1-standard-8 (8-core 32GB RAM) + NVIDIA P100 GPU instance for GPU testing.281

A full set of commands to reproduce our analysis is provided at the end of the supplement.282

The basic numerical operations required for ProtCNN can be parallelized both along the283

length of the sequence and across multiple sequences, and can be accelerated by hardware.284

Table S17 shows the computational performance of ProtCNN, HMMER1, and BLAST on285

our benchmark. ProtCNN on a single CPU processes 9.7 seqs/sec, substantially faster than286

BLASTp (1.2 seqs/sec) and hmmscan (2.2 seqs/sec) but 2.5x slower than hmmsearch (24.4287

1We benchmark two methods of comparing HMMs to sequences, hmmsearch and hmmscan, which are both
provided by the software package HMMER.

S8



seqs/sec). Using the P100 GPU accelerates the inference speed of ProtCNN by a factor of288

38, achieving 376.6 seqs/sec. Since both hmmsearch and BLASTp run efficiently in parallel,289

equivalent throughput would require ⇠15 CPU cores for hmmsearch and ⇠342 cores for290

BLASTp. Our most accurate model (ProtENN) involves an ensemble of 19 distinct ProtCNN291

models, implying a throughput of ⇠20 sequences per second when using a GPU, though292

distillation [17] would presumably significantly improve this throughput. This demonstrates293

that the deep learning models presented here can be used with reasonable turn-around times294

using standard computational resources.295

Table S17 reports the number of sequences processed per core-second, computed using296

the runtime to process 10% of the seed test fasta sequences. We limited each program to a297

single CPU core to focus on computational efficiency rather than the effectiveness of shared298

memory parallelization. To minimize the cost of input/output (IO), all data files were held299

in RAM. We ran inference for ProtCNN both with and without a GPU accelerator. The300

GPU configuration represents a common inference environment for deep learning models,301

while the CPU-only configuration allows direct comparison with BLASTp and HMMER.302

We made a good faith effort to build and run all programs efficiently in this environment;303

additional details, including command lines for benchmarking, are available below. Note304

that GPU-accelerated versions of BLASTp [18] and HMMER [19] were not evaluated and305

may have significantly higher throughput than the CPU-only versions considered here.306

Benchmarking for baselines was performed run on a Google Cloud Platform (GCP)307

n1-standard-32 instance with 32 Intel Broadwell cores, 120G RAM, and solid-state disk308

drive running Ubuntu Linux 16.04. blast and HMMER versions were 2.2.31+ and 3.2.1,309

respectively (note that this is the most recent release of HMMER and blast and they are310

different to the version benchmarked for accuracy). ProtCNN runtimes on CPU and GPUs311

were run on a n1-standard-8 (8 cores, 32 Gb, SSD) Google Cloud Platform instance with an312

attached NVIDIA P100 GPU:313

gcloud beta compute --project "${PROJECT}" instances create \314

"${GPU_INSTANCE}" --zone "us-west1-b" \315

--machine-type "n1-standard-8" \316

--image=ubuntu-1604-lts-drawfork-v20190424 \317

--image-project=eip-images --boot-disk-size "250" \318

--boot-disk-type "pd-ssd" --accelerator type="nvidia-tesla-p100,count=1" \319

--maintenance-policy TERMINATE --min-cpu-platform "Intel Skylake"320

In order to minimize the overhead of input and output (IO), a common bottleneck for321

blast and HMMER, all data files were stored directly in RAM in /dev/shm in order to322

eliminate, as much as possible, IO overhead. Even our largest set of sequences (54M full323

train) is only 9.2Gb uncompressed, less than 10% of the RAM available on the nt-standard-32324

and ⇠30% of the RAM of the nt-standard-8 instance. Both hmmsearch and hmmscan were325

allowed two cores (--cpu 1 argument) as recommended for its master/worker software326

S9



architecture. blast was run with a single core (--num_threads 1). ProtCNN inference was327

run using a custom python script that (a) read in FASTA records and (b) ran inference of328

the ProtCNN as a TensorFlow SavedModel with command line flags to limit access to a329

single CPU core and/or the GPU.330

All timings were run in three replicates and the user time averaged over replicates. A331

completely independent second machine was used by another user, producing similar runtime332

estimates (data not shown). The runtime of blastp against the full train sequences database333

was run with 32 cores, as the blastp built-in parallelism exhibits near linear scaling with334

cores and, even with 32 cores end-to-end runtime is 6 hrs in our timing test. Overall, there335

were 126,171 sequences in seed test sequences, which we downsampled to a 10% fraction336

of 12,617 sequences for runtime estimates. The seed train set has 1,086,741 sequences, full337

test has 5,445,307, and full train has 43,641,836 sequences. Note that hmmsearch runs 11x338

faster than hmmscan for our task, so we discuss the performance of hmmsearch in the main339

text but the runtimes for both programs are provided for completeness.340

The complete list of unix command lines needed to reproduce these times are provided341

below:342

# Create the machine [On the GCP instance, run once]343

PROJECT=YOUR_GCP_PROJECT344

ZONE=YOUR_GCP_ZONE345

346

gcloud beta compute --project "${PROJECT}" instances create \347

"blast-hmmer-timing" --zone "${ZONE}" --machine-type "n1-standard-32" \348

--image=ubuntu-1604-lts-drawfork-v20190424 --image-project=eip-images \349

--boot-disk-size "250" --boot-disk-type "pd-ssd"350

351

gcloud beta compute ssh blast-hmmer-timing352

# make a location in memory so we can run everything in the machine’s memory.353

TIMING_DIR=/dev/shm/timing354

sudo mkdir ${TIMING_DIR}355

sudo chown ${USER} ${TIMING_DIR}356

357

# install required software358

sudo apt-get --yes install make gcc359

360

# Install blast361

sudo apt-get --yes install ncbi-blast+362

363

# install hmmer version 3.2.1364

cd ~365

S10



wget http://eddylab.org/software/hmmer/hmmer-3.2.1.tar.gz366

tar zxf hmmer-3.2.1.tar.gz367

pushd hmmer-3.2.1368

./configure --enable-threads369

make370

make check371

popd372

HMMSEARCH=~/hmmer-3.2.1/src/hmmsearch373

HMMSCAN=~/hmmer-3.2.1/src/hmmscan374

HMMPRESS=~/hmmer-3.2.1/src/hmmpress375

376

# Get the Pfam 32.0 hmm profiles.377

cd ${TIMING_DIR}378

wget ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam32.0/Pfam-A.hmm.gz379

gunzip Pfam-A.hmm380

381

# Create the compressed hmm db for hmmscan382

${HMMPRESS} Pfam-A.hmm383

384

PROTEINS_BUCKET=gs://brain-genomics-public/research/proteins/timing385

386

# Grab seed_train.fasta, full_train.fasta and seed_test.fasta387

for f in full_train.fasta seed_train.fasta seed_test.fasta; do388

echo "Downloading file $f"389

curl -o ${TIMING_DIR}/${f} \390

https://storage.googleapis.com/brain-genomics-public/research/proteins/timing/${f};391

done392

393

394

wc -l *.fasta395

# Expect to see 252342 lines for seed_test.fasta,396

# 2173482 for seed_train.fasta397

# and 87283672 for full_train.fasta.398

399

# Create a 10% subset of the seed_test.fasta400

head -n 25234 seed_test.fasta > seed_test.10_percent.fasta401

402

# Create blast databases for seed and full train403

makeblastdb -in seed_train.fasta -dbtype prot404

makeblastdb -in full_train.fasta -dbtype prot405

406

S11



407

# Use the 10% sample of seed_test so the programs finish in a shorter timespan.408

timing_fasta=seed_test.10_percent.fasta409

410

# Use the full seed_test.fasta for a more complete runtime estimate.411

# timing_fasta=seed_test.fasta412

413

# We are using three replicates.414

N_REPLICATES=3415

HMMER_NCORES=1416

417

# Time hmmscan and hmmsearch of seed_test.fasta against Pfam-A.hmm.418

for replicate in $(seq $N_REPLICATES); do419

for binary in ${HMMSCAN} ${HMMSEARCH}; do420

echo "Profiling hmmer ${binary} [replicate ${replicate}]"421

name="hmmer.${timing_fasta}.${binary##*/}.cores_${HMMER_NCORES}.rep_${replicate}"422

(time ${binary} \423

--cpu ${HMMER_NCORES} \424

--tblout ${name}.txt \425

-o ${name}.log \426

Pfam-A.hmm ${timing_fasta}) &> ${name}.time.log427

cat ${name}.time.log428

done429

done430

431

# We want to use a different number of cores for each blast calculation.432

# For seed, we want to use a single core so it’s more directly comparable433

# to hmmer. But blastp running on the 10% subset against the full434

# training database takes a really long time. So we’ll use all cores for that.435

declare -A blast_database_ncores436

blast_database_ncores[seed_train.fasta]=1437

blast_database_ncores[full_train.fasta]=32438

439

# Time blast against seed_train440

for replicate in $(seq $N_REPLICATES); do441

for blast_database in seed_train.fasta full_train.fasta; do442

ncores=${blast_database_ncores[${blast_database}]}443

echo "Profiling blastp against database \444

${blast_database} with ${ncores} cores [replicate ${replicate}]"445

name="blast.${timing_fasta}.${blast_database}.cores_${ncores}.rep_${replicate}"446

(time blastp \447

S12



-query ${timing_fasta} \448

-db ${blast_database} \449

-outfmt 10 -max_hsps 1 -num_alignments 1 \450

-num_threads ${ncores} \451

-out ${name}.out ) &> ${name}.time.log452

cat ${name}.time.log453

done454

done455

456

# grep out all of the results:457

fgrep real *.time.log458

459

References460

[1] Robert D Finn, Alex Bateman, Jody Clements, Penelope Coggill, Ruth Y Eberhardt,461

Sean R Eddy, Andreas Heger, Kirstie Hetherington, Liisa Holm, Jaina Mistry, et al.462

Pfam: the protein families database. Nucleic acids research, 42(D1):D222–D230, 2013.463

[2] Sean Eddy and Nick Carter. easel/esl-distance, 2017. URL https://github.com/464

EddyRivasLab/easel/blob/master/esl_distance.tex.465

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning466

for image recognition. In Proceedings of the IEEE conference on computer vision and467

pattern recognition, pages 770–778, 2016.468

[4] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions.469

arXiv preprint arXiv:1511.07122, 2015.470

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.471

International Conference on Learning Representations, 2014.472

[6] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training473

recurrent neural networks. In International Conference on Machine Learning, pages474

1310–1318, 2013.475

[7] Jan Chorowski, Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. End-to-end476

continuous speech recognition using attention-based recurrent nn: first results. arXiv477

preprint arXiv:1412.1602, 2014.478

[8] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,479

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-480

datacenter performance analysis of a tensor processing unit. In 2017 ACM/IEEE 44th481

S13

https://github.com/EddyRivasLab/easel/blob/master/esl_distance.tex
https://github.com/EddyRivasLab/easel/blob/master/esl_distance.tex
https://github.com/EddyRivasLab/easel/blob/master/esl_distance.tex


Annual International Symposium on Computer Architecture (ISCA), pages 1–12. IEEE,482

2017.483

[9] Sean R Eddy. Accelerated profile hmm searches. PLoS computational biology, 7(10):484

e1002195, 2011.485

[10] UniProt Consortium. Uniprot: the universal protein knowledgebase. Nucleic acids486

research, 45(D1):D158–D169, 2016.487

[11] Sara El-Gebali, Jaina Mistry, Alex Bateman, Sean R Eddy, Aurélien Luciani, Simon C488

Potter, Matloob Qureshi, Lorna J Richardson, Gustavo A Salazar, Alfredo Smart, et al.489

The pfam protein families database in 2019. Nucleic acids research, 47(D1):D427–D432,490

2018.491

[12] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman.492

Basic local alignment search tool. Journal of molecular biology, 215(3):403–410, 1990.493

[13] Stephen F Altschul, Thomas L Madden, Alejandro A Schäffer, Jinghui Zhang, Zheng494

Zhang, Webb Miller, and David J Lipman. Gapped blast and psi-blast: a new generation495

of protein database search programs. Nucleic acids research, 25(17):3389–3402, 1997.496

[14] Yongan Zhao, Haixu Tang, and Yuzhen Ye. Rapsearch2: a fast and memory-efficient497

protein similarity search tool for next-generation sequencing data. Bioinformatics, 28498

(1):125–126, 2011.499

[15] Noah M Daniels, Andrew Gallant, Jian Peng, Lenore J Cowen, Michael Baym, and500

Bonnie Berger. Compressive genomics for protein databases. Bioinformatics, 29(13):501

i283–i290, 2013.502

[16] Benjamin Buchfink, Chao Xie, and Daniel H Huson. Fast and sensitive protein alignment503

using diamond. Nature methods, 12(1):59, 2015.504

[17] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural505

network. arXiv preprint arXiv:1503.02531, 2015.506

[18] Panagiotis D Vouzis and Nikolaos V Sahinidis. Gpu-blast: using graphics processors to507

accelerate protein sequence alignment. Bioinformatics, 27(2):182–188, 2010.508

[19] Samuel Ferraz and Nahri Moreano. Evaluating optimization strategies for hmmer509

acceleration on gpu. In 2013 International Conference on Parallel and Distributed510

Systems, pages 59–68. IEEE, 2013.511

[20] Andrew Campen, Ryan M Williams, Celeste J Brown, Jingwei Meng, Vladimir N512

Uversky, and A Keith Dunker. Top-idp-scale: a new amino acid scale measuring513

propensity for intrinsic disorder. Protein and peptide letters, 15(9):956–963, 2008.514

S14



[21] S El-Gebali, L Richardson, and R Finn. Repeats in pfam, 2018. URL https://doi.515

org/10.6019/TOL.Pfam_repeats-t.2018.00001.1.516

S15

https://doi.org/10.6019/TOL.Pfam_repeats-t.2018.00001.1
https://doi.org/10.6019/TOL.Pfam_repeats-t.2018.00001.1
https://doi.org/10.6019/TOL.Pfam_repeats-t.2018.00001.1


a b

c d

e

Figure S1: Benchmark Pfam-seed dataset statistics calculated across the entire Pfam-seed
dataset. (A) Number of sequences per family. Values larger than 1000 are clipped to the
last histogram bucket. (B) Sequence length distribution of unaligned sequences. Pfam-seed
sequences vary between 4 and 2037 amino acids in length, with 27045 seed sequences of
length > 500. (C) Histogram of gathering thresholds used in Pfam 32.0. (D) Scores achieved
by the top hits for the Top pick HMM model, x axis is truncated. (E) Comparison of the
within Pfam family distance calculated using the formula given above with the BLASTp
percent sequence identity for each of the 126171 held-out test sequences of the Pfam-seed
dataset.



a b

c

Figure S2: (A) Accuracy of training many replicates as ensemble elements on the Pfam-seed
training dataset. A value at 100K on the x-axis indicates model accuracy on the test set after
seeing 100,000 training minibatches. (B) Predictive accuracy on the held out Pfam-seed test
data as a function of the number of ensemble elements. (C) Larger receptive fields generally
produce more accurate networks. A hyperparameter sweep, producing different receptive
field sizes gives different benchmark accuracies on the Pfam-seed random dataset split.



a

b

Figure S3: Model performance on the random split of Pfam-seed. (A) Zoomed
plot of model performance for sequence identities below 40% (13457 sequences) on the
randomly split data. Note that ProtENN is significantly better for all bins, including the
12-16% bin (2-sided McNemar test for ProtENN compared to Top Pick HMM, 12-16%:
33 sequences p = 0.031250, 16-20% 259 sequences p = 0.001319, 20-24%: 849 sequences
p < 10e�6, 24-28%: 1614 sequences p < 10e�6, 28-32%: 2499 sequences p < 10e�6, 32-36%:
3569 sequences p < 10e�6, 36-40%: 4634 sequences p < 10e�6). The number of sequences
per bin is available in Table S3. (B) Held-out test error rate as a function of sequence length
in the Pfam-seed test set, for sequences less than 80 amino acids long. Differences between
baselines and ProtENN are statistically significant in all bins ( 2-sided McNemar test, 10-20
amino acids: 366 sequences p < 10e�6, 20-30 amino acids: 2215 sequences p < 10e�6, 30-40
amino acids: 3419 sequences p < 10e�6, 40-50 amino acids: 4813 sequences p < 10e�6,
50-60 amino acids: 6625 sequences p < 10e�6, 60-70 amino acids: 8495 sequences p < 10e�6,
70-80 amino acids: 8600 sequences p < 10e�6).



Figure S4: Number of test-set sequences for each family in the random and clustered splits.
While the clustering process is desirable because it ensures separation between train and test
data, it introduces a distribution over families in the test data that is significantly different
than the overall distribution in Pfam.



a

b

Figure S5: Model performance stratified by family size. Held-out test error rate

as a function of training family size for (A) Random split of Pfam-seed, and (B)
Clustered split of Pfam-seed. In each case, data is binned into deciles of equal numbers of
sequences, and the x-label ticks are the upper bound of each decile.



a

b

Figure S6: Performance when classifying using nearest neighbors in embedding

space. (A) Performance vs. family size on the random split. (B) Performance vs. maximum
seq identity with the train set on the random split.



c

d

Figure S6: (C) Performance vs. maximum seq identity with the train set on the clustered
split. Here, we observe that embedding-based classification can outperform ProtCNN, despite
having the same computational efficiency. (D) Model performance on the clustered split of
methods that perform pairwise sequence comparisons. Sequence similarity using the neural
network embeddings enables remote homolog annotation with significantly better accuracy
than the pairwise sequence alignment used by BLASTp and phmmer on all bins > 10
(2-sided McNemar Test, per-instance ProtREP compared to phmmer, 10-12%: 62 sequences
p= 0.015625, 12-14%: 426 sequences p < 10e�6, 14-16%: 1058 sequences p < 10e�6, 16-18%:
2516 sequences p < 10e�6, 18-20%: 4419 sequences p < 10e�6, 20-22%: 6013 sequences
p < 10e�6, 22-24%: 4892 sequences p = 0.000307, 24-25%: 1902 sequences p = 0.010523).
The number of sequences per bin is available in Table S5. compare with Fig. ?? in the main
text, which shows the performance of family based methods on this task.



a

b

c

Figure S7: Model performance on the random split of Pfam-full.



Figure S7: Model performance on the random split of Pfam-full. (A) Held-out test
error rate as a function of the percent sequence identity from sequences in the Pfam-full
training set. Data binned by percent sequence identity with the training set; x-labels describe
bin ranges. Differences between model performance in all bins are statistically significant
(2-sided McNemar Test for ProtENN compared to BLASTp, 20-30%: 12135 sequences
p < 10e�6, 30-40%: 78075 sequences p < 10e�6, 40-50%: 182431 sequences p < 10e�6,
50-60%: 331440 sequences p < 10e�6, 60-70%: 506826 sequences p < 10e�6, 70-80%:
720693 sequences p < 10e�6, 80-90%: 1068624 sequences p < 10e�6, 90-100%: 1656757
sequences p < 10e�6). (B) Data for the 90210 sequences with 20-40% sequence identity to
the training set, subdivided into 10 bins; all differences are statistically significant (2-sided
McNemar test for ProtENN compared to BLASTp, 20-22%: 137 sequences p = 0.019157,
22-24% 629 sequences p = 0.000004, 24-26%: 1792 sequences p = 0.000031, 26-28%: 3600
sequences p = 0.000016, 28-30%: 5977 sequences p = 0.004361, 30-32%: 8967 sequences
p = 0.010569, 32-24%: 12090 sequences p = 0.008748, 34-36%: 15311 sequences p = 0.000001,
36-38%: 19530 sequences p < 10e�6, 38-40%: 22177 sequences p < 10e�6). The number
of sequences per bin are available in Tables S10 and S11. (C) Data is binned into deciles
of equal numbers of sequences, and the x-label ticks are the upper bound of each decile.
Differences between model performance in all bins are statistically significant (2-sided
McNemar Test for ProtENN compared to BLASTp, 10-1652 training sequences: 545094
sequences p < 10e�6, 1652-4076 training sequences: 544363 sequences p < 10e�6, 4076-7436
training sequences: 544447 sequences p < 10e�6, 7436-10823 training sequences: 544838
sequences p < 10e�6, 10823-16870 training sequences: 545399 sequences p < 10e�6, 16870-
25248 training sequences: 545041 sequences p < 10e�6, 25248-40361 training sequences:
543537 sequences p < 10e�6, 40361-67645 training sequences: 546104 sequences p < 10e�6,
67645-138948 training sequences: 548817 sequences p < 10e�6, 138948-681506 training
sequences: 537667 sequences p < 10e�6.



a

b

Figure S8: ProtCNN predicted impact of single amino acid mutations (A) Predicted
change in function for each missense mutation in ATPase domain AT1A1_PIG/161-352
from family PF00122.20. The ProtCNN model (trained using Pfam-full) appropriately
predicts that most substitutions in the disordered region are unlikely to change the protein’s
function. Substitutions to phenylalanine (P), tyrosine (T) and tryptophan (W) are predicted
to have the largest effect on function within the disordered region, in agreement with their
known order-promoting properties [20]. (B) Predicted change in function for each missense
mutation in vasopressin domain V2R_HUMAN/54-325 from family PF00001.21. The x-axis
is residue indices in the protein P30518 (the domain starts at index 54), the y axis is
the substitution of a particular amino acid, and a dark color saturation describes a large
predicted change in function.
The model (trained on Pfam-full) appropriately predicts that substituting proline, glycine,
or charged amino acids in the transmembrane helix regions is very likely to change the
function of the protein substantially. Note that we clip large values to show fine-grained
color differentials.



a

b

Figure S9: Pfam Clan level analysis. To account for evolutionary relationships between
families within the same clan, we report the corresponding clan labels for the existing
predictions (without retraining any models). If a family is not in a clan, we continue to
report the family label. Note that the deep learning models were not retrained, and were
not given any information about the existence of Pfam clans. The panels show the held-out
test error rate measured at the clan level as a function of the maximum sequence similarity
of each held-out test sequence to data in the Pfam-seed training set. (A) Random seed split,
data has been binned into 10 bins (note some bins have more sequences than others). (B)
Clustered seed split, data has been binned into 8 bins.



a

b

Figure S10: We use Top pick HMM e-value to combine ProtENN and HMMER predictions
on the clustered split. (A) Distribution of HMMER confidence scores (e-values) for the
clustered held-out test set, alongside the performance of each approach on the clustered
seed dataset. At low e-value, Top pick HMM outperforms ProtENN, while at high e-values
the inverse is true. (B) Performance of the method that combines HMMER predictions and
ProtENN predictions. The combination is controlled by the e-value of the top HMM match
for each held-out test sequence. Performance is shown in dark blue dots, as a function of
the threshold used to dictate which prediction is taken.



a

b

c

Figure S11: We use ProtENN ensemble consensus to combine ProtENN and HMMER
predictions on the clustered split. (A) Distribution of ensemble consensus scores. (B)
Performance of each approach on the clustered seed dataset. At low ensemble consensuses,
HMMER outperforms ProtENN, while at around 60% ensemble consensus the performance
of ProtENN starts to plateau. (C) Performance of the method that combines HMMER
predictions (when ensemble consensus is low) and ProtENN predictions (when ensemble
consensus is high) is shown in dark blue dots, as a function of the ensemble consensus
threshold used to dictate which prediction is taken.



a

b

Figure S12: We use the HMMER e-value to combine BLASTp and HMMER predictions
on the clustered split. (A) Performance of BLASTp and Top pick HMM on the clustered
seed dataset, stratified by the HMMER e-value for each held-out test sequence. (B) Model
performance for a combined approach that uses HMM predictions for low HMMER e-values,
and BLASTp predictions for high HMMER e-values. We note that combining these two
models based on e-value does not create a model that is better than the Top pick HMM
model alone.



Number of examples Number of families
Train 1086741 17929
Dev 126171 13071
Test 126171 13071

Table S1: Number of examples for the randomly split Pfam-seed data.

Sequence Identity Interval Number of Sequences
10-20 292
20-30 3628
30-40 9537
40-50 16798
50-60 22662
60-70 28277
70-80 40221
80-90 4429
90-100 256

Table S2: Number of sequences per sequence identity bucket for the random Pfam-seed split.

Sequence Identity Interval Number of Sequences
12-16 33
16-20 259
20-24 849
24-28 1614
28-32 2499
32-36 3569
36-40 4634

Table S3: Number of sequences per sequence identity bucket for more remote sequences of
random Pfam-seed split in Figure S3A.



Number of examples Number of families
Train 1296280 17929
Dev 21510 4323
Test 21293 3097

Table S4: Number of examples for the clustered split of the Pfam-seed data.

Sequence Identity Interval Number of Sequences
10-12 62
12-14 426
14-16 1058
16-18 2516
18-20 4419
20-22 6013
22-24 4892
24-25 1902

Table S5: Number of sequences per sequence identity bucket for clustered Pfam-seed split.

Model Error rate Number of errors

Top Pick HMM 15% 3552

phmmer 31% 6453

BLASTp 34% 7090

ProtCNN 25% 5117

ProtENN 10% 2174

Table S6: Alternative approach to calculating performance on the clustered split

data. In both [9] and our work, clustering is used to split the data into train and test sets,
however, our construction of a test set is slightly different than that of [9]. We first choose
which clusters will be in the test set, and then include all sequences belonging to these
clusters in the set. In [9], a single sequence is used for each cluster, since this helps ensure
that clusters with many elements do not dominate the accuracy calculation. We instead
report the expected value of this randomized procedure by first computing per-cluster
average performance and then averaging these to obtain dataset-level performance. In
practice, the difference between the evaluation approach in this table and in the main paper
is minor because many clusters in our test set are singletons.



Prediction Method
Overall

Error Rate
Small Family
Error Rate

Large Family
Error Rate

ProtCNN 0.495% 3.380% 0.479%

ProtREP (Per-Family) 0.653% 0.651% 0.986%

ProtREP (Per-Instance) 0.510% 0.502% 1.972%

Table S7: Performance when classifying using nearest neighbors in embedding space on the
random split.

Prediction Method
Overall

Error Rate
Small Family
Error Rate

Large Family
Error Rate

ProtCNN 27.624 % 82.126 % 25.987%

ProtREP (Per-Family) 18.574 % 17.957 % 39.130%

ProtREP (Per-Instance) 24.560 % 23.704 % 54.428%

Table S8: Performance when classifying using nearest neighbors in embedding space on the
clustered split.

Prediction Method
# Founder Sequences

per Small Family
Overall

Error Rate
Small Family
Error Rate

ProtCNN 0 0.427% 100.0%

ProtREP 1 0.790% 14.9%

ProtREP 2 0.764% 9.0%

ProtREP all available 0.741% 0.7%

Top Pick HMM 1 1.432% 9.3%

Top Pick HMM all available 1.414% 1.1%

Table S9: Random split performance at annotating unseen small families of

ProtCNN, TPHMM and ProtREP, which uses the learned representation of

sequence space. Small families are defined as those 5568 families that each have <10
train sequences in the random split. The held-out test set contains 710 sequences from these
families (see methods), which are used to compute the error rate. ProtREP accuracy at
classifying test sequences from unseen small families imrpoves rapidly as founder sequences
are provided.



Sequence Identity Interval Number of Sequences
20-30 12135
30-40 78075
40-50 182431
50-60 331440
60-70 506826
70-80 720693
80-90 1068624
90-100 1656757

Table S10: Number of sequences per sequence identity bucket for random Pfam-full split.

Sequence Identity Interval Number of Sequences
20-22 137
22-24 629
24-26 1792
26-28 3600
28-30 5977
30-32 8967
32-34 12090
34-36 15311
36-38 19530
38-40 22177

Table S11: Number of sequences per sequence identity bucket for more remote sequences of
random Pfam-full split.



Table S12
Sequence ProtENN_call_range Accession Description Comment
P69905 human hemoglobin (6, 106) PF00042.22 Globin

(6, 107) PF00042.22 Globin
(7, 105) PF00042.22 Globin
(7, 106) PF00042.22 Globin

(7, 107) PF00042.22 Globin
This is exactly the HMMER 
call

(7, 108) PF00042.22 Globin
(7, 109) PF00042.22 Globin
(7, 110) PF00042.22 Globin
(7, 111) PF00042.22 Globin
(7, 112) PF00042.22 Globin
(7, 113) PF00042.22 Globin
(8, 106) PF00042.22 Globin
(8, 107) PF00042.22 Globin
(8, 108) PF00042.22 Globin
(8, 109) PF00042.22 Globin
(8, 110) PF00042.22 Globin
(9, 107) PF00042.22 Globin
(10, 107) PF00042.22 Globin

Q8X7B7 E. Coli TrpCF (2, 253) PF00218.21 Indole-3-glycerol phosphate synthase
(3, 253) PF00218.21 Indole-3-glycerol phosphate synthase
(5, 253) PF00218.21 Indole-3-glycerol phosphate synthase

(6, 253) PF00218.21 Indole-3-glycerol phosphate synthase
This is exactly the HMMER 
call

(6, 254) PF00218.21 Indole-3-glycerol phosphate synthase
(6, 255) PF00218.21 Indole-3-glycerol phosphate synthase
(7, 253) PF00218.21 Indole-3-glycerol phosphate synthase

(258, 449) PF00697.22 N-(5'phosphoribosyl)anthranilate (PRA) isomerase
This is exactly the HMMER 
call

P01308 human insulin (28, 108) PF00049.18 Insulin/IGF/Relaxin family

(28, 109) PF00049.18 Insulin/IGF/Relaxin family
This is exactly the HMMER 
call

(29, 109) PF00049.18 Insulin/IGF/Relaxin family
O00180 human potassium channel (76, 158) PF07885.16 Ion channel

(76, 159) PF07885.16 Ion channel
(77, 157) PF07885.16 Ion channel
(77, 158) PF07885.16 Ion channel
(77, 159) PF07885.16 Ion channel
(78, 156) PF07885.16 Ion channel
(78, 157) PF07885.16 Ion channel
(78, 158) PF07885.16 Ion channel
(78, 159) PF07885.16 Ion channel
(79, 155) PF07885.16 Ion channel
(79, 156) PF07885.16 Ion channel
(79, 157) PF07885.16 Ion channel
(79, 158) PF07885.16 Ion channel
(79, 159) PF07885.16 Ion channel
(80, 156) PF07885.16 Ion channel
(80, 157) PF07885.16 Ion channel
(80, 158) PF07885.16 Ion channel
(80, 159) PF07885.16 Ion channel
(81, 155) PF07885.16 Ion channel
(81, 156) PF07885.16 Ion channel
(81, 157) PF07885.16 Ion channel
(81, 158) PF07885.16 Ion channel
(81, 159) PF07885.16 Ion channel
(82, 155) PF07885.16 Ion channel
(82, 156) PF07885.16 Ion channel
(82, 157) PF07885.16 Ion channel

517



Table S12
Sequence ProtENN_call_range Accession Description Comment

(82, 158) PF07885.16 Ion channel
This is exactly the HMMER 
call

(82, 159) PF07885.16 Ion channel
(83, 157) PF07885.16 Ion channel
(83, 158) PF07885.16 Ion channel
(83, 159) PF07885.16 Ion channel
(85, 158) PF07885.16 Ion channel
(87, 157) PF07885.16 Ion channel
(87, 158) PF07885.16 Ion channel
(87, 159) PF07885.16 Ion channel
(88, 157) PF07885.16 Ion channel
(88, 158) PF07885.16 Ion channel
(189, 265) PF07885.16 Ion channel
(189, 266) PF07885.16 Ion channel
(189, 267) PF07885.16 Ion channel
(189, 268) PF07885.16 Ion channel
(189, 269) PF07885.16 Ion channel
(189, 270) PF07885.16 Ion channel
(189, 271) PF07885.16 Ion channel
(189, 272) PF07885.16 Ion channel
(189, 273) PF07885.16 Ion channel
(190, 263) PF07885.16 Ion channel
(190, 264) PF07885.16 Ion channel
(190, 265) PF07885.16 Ion channel
(190, 266) PF07885.16 Ion channel
(190, 267) PF07885.16 Ion channel
(190, 268) PF07885.16 Ion channel
(190, 269) PF07885.16 Ion channel
(190, 270) PF07885.16 Ion channel
(190, 271) PF07885.16 Ion channel
(190, 272) PF07885.16 Ion channel
(190, 273) PF07885.16 Ion channel
(190, 274) PF07885.16 Ion channel
(191, 265) PF07885.16 Ion channel
(191, 266) PF07885.16 Ion channel
(191, 267) PF07885.16 Ion channel
(191, 268) PF07885.16 Ion channel
(191, 269) PF07885.16 Ion channel
(191, 270) PF07885.16 Ion channel

(191, 271) PF07885.16 Ion channel
This is exactly the HMMER 
call

(191, 272) PF07885.16 Ion channel
(191, 273) PF07885.16 Ion channel
(191, 274) PF07885.16 Ion channel
(192, 265) PF07885.16 Ion channel
(192, 266) PF07885.16 Ion channel
(192, 267) PF07885.16 Ion channel
(192, 268) PF07885.16 Ion channel
(192, 269) PF07885.16 Ion channel
(192, 270) PF07885.16 Ion channel
(192, 271) PF07885.16 Ion channel
(192, 272) PF07885.16 Ion channel
(192, 273) PF07885.16 Ion channel
(192, 274) PF07885.16 Ion channel
(193, 265) PF07885.16 Ion channel
(193, 266) PF07885.16 Ion channel
(193, 267) PF07885.16 Ion channel
(193, 269) PF07885.16 Ion channel

518



Table S12
Sequence ProtENN_call_range Accession Description Comment

(193, 270) PF07885.16 Ion channel
(193, 271) PF07885.16 Ion channel
(193, 272) PF07885.16 Ion channel
(193, 273) PF07885.16 Ion channel
(194, 270) PF07885.16 Ion channel
(196, 270) PF07885.16 Ion channel
(197, 269) PF07885.16 Ion channel
(197, 270) PF07885.16 Ion channel
(197, 272) PF07885.16 Ion channel
(197, 273) PF07885.16 Ion channel
(198, 270) PF07885.16 Ion channel

Q46899 E. Coli CRISPR cascade (5, 346) PF09344.10 CT1975-like protein
(5, 347) PF09344.10 CT1975-like protein
(5, 352) PF09344.10 CT1975-like protein
(5, 353) PF09344.10 CT1975-like protein
(5, 354) PF09344.10 CT1975-like protein
(5, 355) PF09344.10 CT1975-like protein
(5, 356) PF09344.10 CT1975-like protein
(5, 357) PF09344.10 CT1975-like protein

(5, 358) PF09344.10 CT1975-like protein
This is exactly the HMMER 
call

(5, 359) PF09344.10 CT1975-like protein
(5, 360) PF09344.10 CT1975-like protein

Q5BJI7 Zebrafish methyltransferase(18, 241) PF00856.28 SET domain

This is exactly the HMMER 
call. There is a missing call 
for a zinc finger, but the 
true call for this domain has 
length < 50, which is by 
design excluded from these 
calls.

Q8R5M8 Mouse Ig (216, 318) PF13205.6 Bacterial Ig-like domain

This is a false positive, and 
is a match to E-set, not Ig 
clan. E-set is an 
immunoglobulin-like fold, 
so it's not a particularly 
terrible false positive. 
Notably, there are also two 
false negatives on this 
protein, beacuse there are 
a missing Ig call for the 
ranges 52-146 and 151-
233

(237, 320) PF13927.6 Immunoglobulin domain
(239, 320) PF13927.6 Immunoglobulin domain
(241, 320) PF13927.6 Immunoglobulin domain
(243, 320) PF13927.6 Immunoglobulin domain
(244, 320) PF13927.6 Immunoglobulin domain
(245, 319) PF13927.6 Immunoglobulin domain

(245, 320) PF13927.6 Immunoglobulin domain
This is exactly a HMMER 
call

(245, 321) PF13927.6 Immunoglobulin domain
(246, 320) PF13927.6 Immunoglobulin domain
(247, 320) PF13927.6 Immunoglobulin domain
(248, 320) PF13927.6 Immunoglobulin domain
(249, 320) PF13927.6 Immunoglobulin domain
(250, 320) PF13927.6 Immunoglobulin domain
(251, 320) PF13927.6 Immunoglobulin domain
(252, 320) PF13927.6 Immunoglobulin domain
(254, 320) PF13927.6 Immunoglobulin domain
(255, 320) PF13927.6 Immunoglobulin domain
(256, 320) PF13927.6 Immunoglobulin domain
(257, 320) PF13927.6 Immunoglobulin domain

519



Table S12
Sequence ProtENN_call_range Accession Description Comment

(309, 373) PF13290.6 Chitobiase/beta-hexosaminidase C-terminal domain

This is a false positive for 
an E-set, which again is not 
too bad of a false positive 
since E-set is an Ig-like fold

S5S176 yeast dehydrogenase (29, 140) PF08240.12 Alcohol dehydrogenase GroES-like domain
(30, 138) PF08240.12 Alcohol dehydrogenase GroES-like domain
(30, 139) PF08240.12 Alcohol dehydrogenase GroES-like domain
(30, 140) PF08240.12 Alcohol dehydrogenase GroES-like domain
(30, 141) PF08240.12 Alcohol dehydrogenase GroES-like domain
(30, 142) PF08240.12 Alcohol dehydrogenase GroES-like domain
(31, 136) PF08240.12 Alcohol dehydrogenase GroES-like domain
(31, 137) PF08240.12 Alcohol dehydrogenase GroES-like domain
(31, 138) PF08240.12 Alcohol dehydrogenase GroES-like domain
(31, 139) PF08240.12 Alcohol dehydrogenase GroES-like domain

(31, 140) PF08240.12 Alcohol dehydrogenase GroES-like domain
This is exactly the HMMER 
call

(31, 141) PF08240.12 Alcohol dehydrogenase GroES-like domain
(31, 142) PF08240.12 Alcohol dehydrogenase GroES-like domain
(31, 143) PF08240.12 Alcohol dehydrogenase GroES-like domain
(31, 144) PF08240.12 Alcohol dehydrogenase GroES-like domain
(31, 145) PF08240.12 Alcohol dehydrogenase GroES-like domain
(31, 146) PF08240.12 Alcohol dehydrogenase GroES-like domain
(32, 136) PF08240.12 Alcohol dehydrogenase GroES-like domain
(32, 137) PF08240.12 Alcohol dehydrogenase GroES-like domain
(32, 138) PF08240.12 Alcohol dehydrogenase GroES-like domain
(32, 139) PF08240.12 Alcohol dehydrogenase GroES-like domain
(32, 140) PF08240.12 Alcohol dehydrogenase GroES-like domain
(32, 141) PF08240.12 Alcohol dehydrogenase GroES-like domain
(32, 142) PF08240.12 Alcohol dehydrogenase GroES-like domain
(32, 143) PF08240.12 Alcohol dehydrogenase GroES-like domain
(32, 144) PF08240.12 Alcohol dehydrogenase GroES-like domain
(32, 145) PF08240.12 Alcohol dehydrogenase GroES-like domain
(32, 146) PF08240.12 Alcohol dehydrogenase GroES-like domain
(32, 149) PF08240.12 Alcohol dehydrogenase GroES-like domain
(33, 138) PF08240.12 Alcohol dehydrogenase GroES-like domain
(33, 139) PF08240.12 Alcohol dehydrogenase GroES-like domain
(33, 140) PF08240.12 Alcohol dehydrogenase GroES-like domain
(33, 141) PF08240.12 Alcohol dehydrogenase GroES-like domain
(33, 142) PF08240.12 Alcohol dehydrogenase GroES-like domain
(33, 143) PF08240.12 Alcohol dehydrogenase GroES-like domain
(33, 144) PF08240.12 Alcohol dehydrogenase GroES-like domain
(33, 149) PF08240.12 Alcohol dehydrogenase GroES-like domain
(34, 140) PF08240.12 Alcohol dehydrogenase GroES-like domain
(34, 141) PF08240.12 Alcohol dehydrogenase GroES-like domain
(34, 142) PF08240.12 Alcohol dehydrogenase GroES-like domain
(34, 143) PF08240.12 Alcohol dehydrogenase GroES-like domain
(181, 311) PF00107.26 Zinc-binding dehydrogenase
(182, 307) PF00107.26 Zinc-binding dehydrogenase
(182, 308) PF00107.26 Zinc-binding dehydrogenase
(182, 309) PF00107.26 Zinc-binding dehydrogenase
(182, 310) PF00107.26 Zinc-binding dehydrogenase

(182, 311) PF00107.26 Zinc-binding dehydrogenase
This is exactly the HMMER 
call

(182, 312) PF00107.26 Zinc-binding dehydrogenase
(182, 314) PF00107.26 Zinc-binding dehydrogenase
(182, 315) PF00107.26 Zinc-binding dehydrogenase
(183, 311) PF00107.26 Zinc-binding dehydrogenase

Q505I0 frog kinase (126, 423) PF00454.27 Phosphatidylinositol 3- and 4-kinase
This is exactly the HMMER 
call

520



Table S12
Sequence ProtENN_call_range Accession Description Comment

Q17766 nematode MFS (28, 89) PF04117.12 Mpv17 / PMP22 family

This call is a false positive. 
There is also a false 
negative (missing call) to 
Folate Carrier from 1-403.

521

Table S12: ProtENN predicted domain boundaries sequence closely match HM-

MER output for a diverse set of 10 proteins. Predicted domain boundaries are
computed by sliding the ProtENN classifier over all start � end ranges, to identify the
set of ranges where the confidence is highest (equal to 1). We find that confident ranges
very closely match the domain boundaries computed by HMMER for most proteins. We
only include predicted domains longer than 50 residues for ProtENN calls, because shorter
ranges lead to spurious calls, as is seen often with HMMER, especially with regions that
include repeats [21].522

Model Type Hyperparameter Search Range
ProtCNN batch size 32, 64, 128, 256

dilation rate 1, 2, 3, 5
filters 300 thru 3000, increments of 100

ResNet block of first dilated layer 2, 3
kernel size 3, 7, 9, 11, 21, 31

ResNet layers 1 thru 6
learning rate 1e-05, 5e-05, 1e-4, 5e-4, 1e-3

learning rate decay steps 1e3,1e4,1e6, decay off
pooling max, mean

kmer embedding rank 100, 1000, 10000
learning rate 1e-4, 5e-4, 1e-3
ngram order 1 thru 5

Table S13: Search ranges for hyperparameter values for ProtCNN.



Parameter Value
batch size 32

dilation rate 3*
filters 1100*

first dilated layer 2*
gradient clip 1
kernel size 9*

learning rate .0001*
learning rate decay rate 0.997
learning rate decay steps 1000*

learning rate warmup steps 3000
number of ResNet layers 5*

pooling max*
ResNet bottleneck factor 0.5

train steps 500000**

Table S14: Hyperparameters used in ProtCNN with the Pfam-seed dataset. An asterisk
denotes a tuned value. Two asterisks denote that the model was overfit, and the number of
tuning steps was chosen post-hoc so as to maximize dev-set performance.

Model Type Search Algorithm Approx. number of samples
CNN (all depths) random sampling 17000 *

kmer random sampling 50

Table S15: Search algorithms and number of samples for hyperparameter tuning, by model.
The asterisk denotes that many of these configurations were not feasible, as they did not fit
in GPU memory.



Parameter Value
batch size 64

filters 2000*
first dilated layer NA

gradient clip 1
kernel size 21*

learning rate .001*
learning rate decay rate 0.997
learning rate decay steps 1000*

learning rate warmup steps 3000
pooling max*

ResNet bottleneck factor 0.5
train steps 1100000**

Table S16: Hyperparameters used in ProtCNN with the Pfam-full dataset. An asterisk
denotes a tuned value. Two asterisks denote that the model didn’t necessarily converge, but
was ended after a reasonable time training (17 days).

Program
Average inference speed

(sequences per core-second)
Estimated runtime on
Pfam-seed test (hrs)

hmmsearch 24.4 1.4
hmmscan 2.2 16.2
BLASTp 1.1 30.5

ProtCNN (CPU only) 9.7 3.6
ProtCNN (GPU) 376.6 0.1

Table S17: Inference speed of hmmscan, hmmsearch, and blastp run on sandboxed n1-
standard-32 (32-core, 120 GB RAM) Google Cloud Platform instances with all data in main
memory and using a single core. The ProtCNN model was run in a similar configuration on
a n1-standard-8 instance (8-core, 32 Gb RAM) using a single CPU thread for ProtCNN
(CPU only), and additionally, one NVIDIA P100 GPU accelerator for ProtCNN (GPU).
Additional details, including commands used, are available in the supplement.



kmer
batch size 64

gradient clip 1
learning rate .0005*

learning rate decay rate 0.997
learning rate decay step 1000

learning rate warmup steps 3000
kmer order 2*

number of hash buckets 10000*
train steps 300000

Table S18: Hyperparameters used in kmer benchmark models. An asterisk denotes a tuned
value.

Sequence Name Residues Sequence

AT1A1_PIG 161-352

NMVPQQALVIRNGEKMSINAEEVVVG
DLVEVKGGDRIPADLRIISANGCKVD
NSSLTGESEPQTRSPDFTNENPLETR
NIAFFSTNCVEGTARGIVVYTGDRTV
MGRIATLASGLEGGQTPIAAEIEHFI
HIITGVAVFLGVSFFILSLILEYTWL
EAVIFLIGIIVANVPEGLLATVTVCL

TLTAKRMARK

V2R_HUMAN 54-325

SNGLVLAALARRGRRGHWAPIHVFIG
HLCLADLAVALFQVLPQLAWKATDRF
RGPDALCRAVKYLQMVGMYASSYMIL
AMTLDRHRAICRPMLAYRHGSGAHWN
RPVLVAWAFSLLLSLPQLFIFAQRNV
EGGSGVTDCWACFAEPWGRRTYVTWI
ALMVFVAPTLGIAACQVLIFREIHAS
LVPGPSERPGGRRRGRRTGSPGEGAH
VSAAVAKTVRMTLVIVVVYVLCWAPF
FLVQLWAAWDPEAPLEGAPFVLLMLL

ASLNSCTNPWIY

Table S19: Wildtype sequences, keyed by Uniprot ID, that were used for saturation mutage-
nesis predictions.




