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Supplementary figures and legends 
 
Supplementary figure 1. Clinical outcomes across meningioma DNA methylation discovery and 
validation cohorts. 
a, Kaplan-Meier curves for meningioma local freedom from recurrence (n=565) across clinical contexts (Log-
rank tests). b, Kaplan-Meier curves for meningioma overall survival (n=565) across clinical contexts (Log-rank 
tests). 
 

 



Supplementary figure 2. Clinical correlations across meningioma DNA methylation groups. 
a, Kaplan-Meier curve for overall survival (n=565) across meningioma DNA methylation groups (Log-rank test). 
b, Meningioma clinical features (n=565) across DNA methylation groups (Chi-squared tests, two-sided). GTR, 
gross total resection. STR, subtotal resection. c, d, Kaplan-Meier curves for meningioma local freedom from 
recurrence (n=565) across WHO grades and DNA methylation groups (Log-rank tests). e, Multivariable 
regression hazard ratio (HR) forest plots for overall survival using meningioma clinical variables and DNA 
methylation groups (n=565, Cox proportional hazards model, Wald test, two-sided, no adjustment for multiple 
comparisons). Age per year older than the median. Boxes represent means, and error bars represent 95% 
confidence intervals (CI).   
 



Supplementary figure 3. CNVs across meningioma DNA methylation groups. 
a, Frequency of copy number losses (blue) and gains (red) across meningioma DNA methylation groups. b, 
Meningioma genomes (n=565) with copy number variations (CNVs) across DNA methylation groups (ANOVA, 
one-sided). Lines represent means, and error bars represent standard error of the means. c, Analysis of 
meningioma pairs with overlapping CNVs reveals 37% of meningiomas with identical CNVs are assigned to 
different DNA methylation groups. 
 



Supplementary figure 4. Genomic and cellular characteristics of Immune-enriched meningiomas. 
a, Meningioma RNA sequencing xCell immune score (n=200) across DNA methylation groups (ANOVA, one-
sided). b, Meningioma RNA sequencing xCell scores (n=200) across DNA methylation groups for 
microenvironment and stroma (left), and individual immune cell types (right). c, Correlation of DNA methylation 
leukocyte fraction (SeSAMe) and RNA sequencing immune score (xCell) (n=200) across DNA methylation 
groups. d, Meningioma DNA methylation tumor purity (n=565) across DNA methylation groups (ANOVA, one-
sided). e, Volcano plots of meningioma differential gene expression (n=200) across SeSAMe DNA methylation 
groups iteratively comparing one group versus the others, with gene ontology transcription factor (TF) 
perturbation analysis of differentially enriched (red) or suppressed (blue) genes (Wald test, two-sided, Benjamin-
Hochberg adjustment for multiple comparisons). f, Volcano plots of meningioma differential gene expression 
(n=200) across 4 minfi DNA methylation groups iteratively comparing one group versus the others, with gene 
ontology TF perturbation analysis (combined scores) of differentially enriched (red) or suppressed (blue) genes. 
Lines represent means, and error bars represent standard error of the means. 
 



Supplementary figure 5. Meningioma single-cell RNA sequencing. 
a, Cells in reduced dimensionality clusters from each sample analyzed using single-cell RNA sequencing. DNA 
methylation groups and chromosome 22q status of meningioma samples are annotated. b, UMAP of single-cell 
RNA sequencing transcriptomes of 57,114 cells from 8 human meningioma samples and 2 human dura samples, 
colored by sample of origin. c, UMAP of single-cell RNA sequencing transcriptomes from b, colored by cell cycle 
phase, as assigned by the ‘CellCycleScoring’ function in the Seurat R package. 
 



Supplementary figure 6. Meningioma single-cell transcriptome cell types. 
a, Percentage of cells with loss of chromosome 22q (whole arm) in reduced dimensionality clusters identified 
using CONICSmat. Cells from meningioma samples with loss of chromosome 22q and from dura samples with 
intact chromosome 22q were used for this analysis. The pericyte cluster contained approximately equivalent 
proportions of cells with or without loss of chromosome 22q, suggesting this cluster may represent both normal 
and tumor cells in the perivascular space. b, Heatmap of differentially expressed genes across reduced 
dimensionality clusters, downsampled to 100 cells per cluster. c, Violin plots of marker gene expression across 
reduced dimensionality clusters. Lines represent means, and dotted lines represent quartiles. 
 



Supplementary figure 7. HLA expression underlies meningioma immune infiltration. 
a, Meningioma DNA methylation tumor purity of 86 spatially-distinct samples from 13 meningiomas, 
nonoverlapping with the meningiomas from the discovery or validation cohorts, colored by DNA methylation 
group. b, Percentage of meningiomas with HLA loss of heterozygosity from whole-exome sequencing of non-
Immune-enriched (n=11) and Immune-enriched (n=5) meningiomas (and paired normal samples) overlapping 
with the discovery cohort. c, Meningioma transcripts per million (TPM) expression of HLA genes encompassed 
by the polymorphic locus on chromosome 6p stratified by copy number status (entire locus of each gene 
amplified or deleted) across DNA methylation groups (n=200). Aggregating expression data by DNA methylation 
group (across all CNV contexts for each DNA methylation group) validated enrichment of HLA-DRB5 (p<0.0001), 
HLA-DRB1 (p<0.0001), HLA-DQA1 (p<0.0001), and HLA-DQB1 (p<0.0001) in Immune-enriched meningiomas 
compared to other groups (Student’s t test, one-sided). d, Meningioma DNA methylation (n=565) of HLA-DMA 
(cg03531211) or HLA-DPB1 (cg02286081) across DNA methylation groups (ANOVA, one-sided). e, Meningioma 
TPM expression (n=200) of HLA-DMA or HLA-DPB1 across DNA methylation groups (ANOVA, one-sided). f, 
Correlated quantification of meningioma HLA-DMA (R2=0.44, cg03531211) or HLA-DPB1 (R2=0.12, 
cg02286081) DNA methylation and TPM expression (n=200) across Merlin-intact (blue), Immune-enriched 
(purple), and Hypermitotic (red) DNA methylation groups. Lines represent means, and error bars represent 
standard error of the means. *p≤0.05, **p≤0.01, ***p≤0.0001. 
 



Supplementary figure 8. Hypermitotic meningiomas are distinguished by FOXM1 and FOXM1 target gene 
expression. 
a, Gene ontology analysis of differentially expressed genes in Hypermitotic meningiomas compared to tumors 
from other DNA methylation groups. ChEA, ChIP-X Enrichment Analysis. b, Correlated quantification of 
meningioma Ki-67 and FOXM1 immunohistochemistry (n=92) across meningioma DNA methylation groups. c, 
Representative image of meningioma Ki-67 and FOXM1 confocal immunofluorescence microscopy. DNA is 
marked with DAPI. Scale bar 10 µM. d, Differential expression and gene ontology (ChEA 2016) analyses of 
Hypermitotic meningiomas with elevated Ki-67 labeling indexes (n=8, left/red), or of non-Hypermitotic 
meningiomas with elevated Ki-67 labeling indexes (n=9, right/grey), compared to non-Hypermitotic meningiomas 
with low Ki-67 labeling indexes (n=53). e, Heatmap of relative expression of FOXM1 target genes, 
nonoverlapping with E2F1 target genes, across meningioma DNA methylation groups (n=200). FOXM1 and 
E2F1 transcription factor targets were identified from the ChIP-X Enrichment Analysis (CHEA) dataset within the 
Harmonizome. SeSAMe meningioma DNA methylation groups are shown beneath the vertical dendrogram. 
 



Supplementary figure 9. Meningioma DNA methylation groups are not distinguished by E2F1 target gene 
expression. 
Heatmap of relative expression of E2F1 target genes, nonoverlapping with FOXM1 target genes, across 
meningioma DNA methylation groups (n=200). FOXM1 and E2F1 transcription factor targets were identified from 
the ChIP-X Enrichment Analysis (CHEA) dataset within the Harmonizome. SeSAMe meningioma DNA 
methylation groups are shown beneath the vertical dendrogram. 
 



Supplementary figure 10. The enhancer landscape across meningioma DNA methylation groups. 
a, Volcano plots of relative meningioma enhancer availability (n=25) across DNA methylation groups (top) from 
H3K27ac ChIP sequencing, and gene ontology analyses (bottom), of differentially enriched (red) or suppressed 
(blue) enhancers (Wald test, two-sided, Benjamin-Hochberg adjustment for multiple comparisons). ChEA, ChIP-
X Enrichment Analysis. b, Volcano plots of meningioma relative super-enhancer availability (n=25) across DNA 
methylation groups (top), and gene ontology analyses (bottom), of differentially enriched (red) or suppressed 
(blue) super-enhancers (Wald test, two-sided, Benjamin-Hochberg adjustment for multiple comparisons). c, 
Meningioma transcripts per million (TPM) expression (n=200) of representative genes driving enhancer and 
super-enhancer ontologies from a and b across DNA methylation groups. Lines represent means, and error bars 
represent standard error of the means (ANOVA, one-sided). 
 



Supplementary figure 11. Loss of CDKN2A/B drives meningioma recurrence and meningioma cell 
proliferation. 
a, Kaplan-Meier curve for meningioma local freedom from recurrence across DNA methylation groups stratified 
by CDKN2A/B copy number status derived from meningioma DNA methylation analysis of chromosome segment 
copy number deletions containing the entire CDKN2A/B locus (Log-rank test). The scarcity of CDKN2A/B losses 
in Merlin-intact or Immune-enriched meningiomas precluded robust survival analysis in these DNA methylation 
groups. Percentages refer to the proportion of meningiomas in each DNA methylation group with neutral or 
deleted chromosome segments containing the entire CDKN2A/B locus. b, QPCR for CDKN2A or CDKN2B in 
M10GdCas9-KRAB cells expressing a non-targeting control single-guide RNA (sgNTC), a single-guide RNA 
suppressing the p16INK4A isoform of CDKN2A (sgCDKN2A), or a single-guide RNA suppressing CDKN2B 
(sgCDKN2B). 3 biological replicates per condition. **p=0.0002, ***p≤0.0001. (Student’s t test, one-sided). c, 
Relative colony area of M10GdCas9-KRAB cells expressing sgNTC, sgCDKN2A, or sgCDKN2B after 10 days of 
clonogenic growth. 3 biological replicates per condition. *p=0.04, **p=0.02 (Student’s t test, one-sided). Lines 
represent means, and error bars represent standard error of the means.  
 



Supplementary figure 12. The transcriptomic landscape across meningioma DNA methylation groups. 
Unsupervised hierarchical clustering of meningiomas (n=200) using 2,000 differentially expressed genes. 
SeSAMe meningioma DNA methylation groups are shown between the RNA sequencing vertical dendrogram 
and relative RNA sequencing gene expression in the heatmap. 
 



Supplementary figure 13. USF1 binds and activates the CDK6 promoter to drive meningioma recurrence 
and meningioma cell proliferation. 
a, H3K27ac ChIP sequencing tracks of the CDK6 locus in meningiomas (n=25) compared to normal neural cell 
and tissue samples (ChIP Atlas). b, Kaplan-Meier curve for meningioma local freedom from recurrence across 
DNA methylation groups stratified by chromosome 1q segment amplifications containing the entire USF1 locus 
(Log-rank test). The absence of chromosome 1q segment amplifications in Merlin-intact meningiomas, and the 
scarcity of chromosome 1q segment amplifications in Immune-enriched meningiomas, precluded robust survival 
analysis in these DNA methylation groups. Percentages refer to the proportion of meningiomas in each DNA 
methylation group with neutral or amplified chromosome 1q segments containing the entire USF1 locus. c, ChIP-
QPCR after USF1 pulldown in DI134 meningioma cells for the CDK6 promoter compared to negative control 
primers targeting a gene desert (NC1) or a gene not predicted to be bound by USF1 (NC2) from ChIP sequencing 
(Supplementary Table 11). From left to right, 2, 3, 3, 2, 3, or 3 biological replicates are shown. **p=0.002 
(Student’s t test, one-sided). d, QPCR for USF1 in M10GdCas9-KRAB cells expressing sgNTC or a single-guide RNA 
suppressing USF1 (sgUSF1), or M10G cells over-expressing USF1 or empty vector (EV). 3 biological replicates 
per condition. **p=0.0002, ***p≤0.0001 (Student’s t tests, one-sided). e, QPCR for USF1 in CH-157MN cells 
stably over-expressing USF1 or EV. 3 biological replicates per condition. ***p≤0.0001 (Student’s t test, one-
sided). Lines represent means, and error bars represent standard error of the means. 
 



Supplementary figure 14. Cell cycle inhibition blocks meningioma growth in patients. 
a, b, Magnetic resonance imaging and molecular features of meningiomas (left) that were resistant to cytotoxic 
therapies but responded to cytostatic cell cycle inhibition (right). 
 



Supplementary figure 15. Prognostic models based on meningioma CNVs.  
a, Comparison of observed and predicted 5-year local freedom from recurrence (LFFR, n=201) from a model 
incorporating clinical features and DNA methylation groups (Figure 5d). Blue asterisks on the calibration curve 
denote the bootstrap optimism-corrected estimated probabilities. Lines represent means, and error bars 
represent standard error of the means. b, Recursive partitioning analysis of meningiomas (n=565) by CNVs 
reveals 3 CNV groups. c, Comparison of observed and predicted 5-year LFFR from a model incorporating clinical 
features and CNV groups (left, n=201), used to generate a nomogram for meningioma LFFR (right, 
https://william-c-chen.shinyapps.io/RaleighLab_CNVSubgroupNomogram/). Variables contribute points (top 
row), which estimate the probably of 5-year LFFR (bottom rows). d, Meningioma DNA methylation groups and 
WHO grades (n=565) across CNV groups (Chi-squared tests, two-sided). e, Kaplan-Meier curves for 
meningioma local freedom from recurrence and overall survival (n=565) comparing DNA methylation and CNV 
groups. Lines represent means, and error bars represent standard error of the means.  
 

https://william-c-chen.shinyapps.io/RaleighLab_CNVSubgroupNomogram/


Supplementary figure 16. Prognostic models based on meningioma clinical features.  
Comparison of observed and predicted 5-year LFFR from a model incorporating clinical features (left, n=201), 
used to generate a nomogram for meningioma LFFR (right, https://william-c-
chen.shinyapps.io/RaleighLab_ClinicalVariablesNomogram/). Lines represent means, and error bars represent 
standard error of the means. 
 

https://william-c-chen.shinyapps.io/RaleighLab_ClinicalVariablesNomogram/
https://william-c-chen.shinyapps.io/RaleighLab_ClinicalVariablesNomogram/


Supplementary note 
 
Methods 
Meningioma nucleic acid extraction 

Frozen meningiomas were mechanically lysed using a TissueLyser II (QIAGEN) according to the 
manufacturer’s instructions. DNA and RNA were extracted from lysed tissue using the AllPrep DNA/RNA/miRNA 
Universal Kit (#80224, QIAGEN). DNA and RNA quality were initially assessed using a NanoDrop One (Thermo 
Fisher Scientific). DNA samples with 260/280 values less than 1.8 or 260/230 values less than 1.6 were cleaned 
using ethanol precipitation and re-assessed. RNA samples with 260/280 values less than 1.8 or 260/230 values 
less than 1.6 were cleaned using the RNA Cleanup protocol from the RNeasy Mini Kit (#74106, QIAGEN). RNA 
samples were analyzed on a Bioanalyzer 2100 using the RNA 6000 Nano Kit (#5067-1511, Agilent 
Technologies). Only meningioma samples with high-quality DNA (260/280 greater than 1.8 and 260/230 greater 
than 1.6) and high-quality RNA (RIN greater than 8) were used for DNA methylation profiling and RNA 
sequencing. After quality control, the discovery cohort was comprised of 200 meningiomas from patients who 
were treated at UCSF from 1991 to 2016 (median clinical follow-up 6.3 years), and the validation cohort was 
comprised of 365 consecutive meningiomas from patients who were treated at HKU from 2000 to 2019 (median 
clinical follow-up 5.3 years). 
 
DNA methylation profiling and analysis 

Sampling distributions of DNA methylation group proportions were generated via bootstrapping. In brief, the 
population size of the discovery cohort was sampled with replacement 100 times, and the proportion of 
meningiomas in each DNA methylation group was calculated for each sampling iteration. K-means consensus 
clustering was performed to determine the optimal number of clusters using the ConsensusClusterPlus R 
package (Bioconductor v3.10)1, subsampling 1000 times per cluster number using all 2,000 probes and 80% of 
samples per subsample, and validated using continuous distribution functions. To quantify differences in 
SeSAMe and mini preprocessing pipelines, a signal-to-noise ratio (SNR) was calculated using NF2 copy number 
status across meningioma DNA methylation groups, where signal = (NF2 intact in Merlin-intact meningiomas) + 
(NF2 loss in non-Merlin-intact meningiomas) and noise = (NF2 loss in Merlin-intact meningiomas) + (NF2 intact 
in non-Merlin-intact meningiomas). A SNR was calculated 3 times across 3 minfi meningioma DNA methylation 
groups, assuming each group was Merlin-intact in turn, and the most favorable minifi SNR was reported, which 
remained worse than the SNR for 3 SeSAMe meningioma DNA methylation groups. The same approach was 
used for 4 minfi meningioma DNA methylation groups. In sum, the SNR for NF2 copy number status was 2.25 
for 3 minfi groups, 5.35 for 4 minfi groups, and 5.57 for 3 SeSAMe groups. 

DNA methylation profiles from representative meningiomas and meningioma cell lines were compared in 
reduced dimensionality space using the Rtsne R package (v0.15). A matrix of the samples and their β methylation 
values for the 2,000 variable probes were used as input and the ‘Rtsne’ command was run with the parameters 
‘pca=F, normalize=F, perplexity=3.’  

Leukocyte percentage within the tumor samples was calculated from DNA methylation using the 
‘estimateLeukocyte’ command within the SeSAMe R package2. In brief, the intensity of DNA methylation probes 
uniquely hyper- or hypo-methylated in leukocytes were used to estimate the leukocyte percentage. Tumor purity 
was estimated from DNA methylation profiles using the PAMES R package (v2.6.2)3. To generate cross-platform 
comparable DNA methylation profiles on meningiomas and normal tissue samples from meningioma patients 
(muscle or fat), β methylation values of adjacent CpG sites were combined and the sites were reduced to 
genomic regions, with a minimum of 3 CpG sites per region. Methylation status of genomic regions was used to 
compute the Area Under the Curve (AUC) to define the segregation between tumor and normal samples. 
Hypermethylated and hypomethylated genomic regions with the top 10 AUCs (20 regions in total) were selected 
for tumor purity estimation. These regions were completely methylated or unmethylated in normal tissue 
samples, but were partially methylated in meningiomas. The median of partial methylation across these regions 
in meningiomas was used to estimate tumor purity. 
 
Copy number variant analysis 

To validate CNVs derived from DNA methylation profiles, chromosomal losses and gains from DNA 
methylation profiles were compared to those from whole-exome sequencing of 25 previously described 
meningiomas overlapping with the discovery cohort4, and to CNVs from de novo Clinical Laboratory Improvement 
Amendments (CLIA)-certified exome sequencing of 10 spatially distinct meningioma samples5,6 (3 Merlin-intact, 
15 Immune-enriched, and 17 Hypermitotic meningiomas). To define CNVs from previously described 



meningioma whole exome sequences and from de novo CLIA-certified exome sequences, reads were aligned 
with the Burrows-Wheeler Aligner (BWA)7, deduplicated using the Genome Analysis Toolkit (GATK)8,9, and large-
scale copy number alterations were called using CNVkit10. CNVs were 99.12% concordant across research and 
clinical bioinformatic platforms using DNA methylation and exome sequences approaches. 

The interdependence of CNVs and meningioma DNA methylation groups was analyzed by identifying pairs 
of meningiomas with identical CNV profiles, and subsequently comparing the DNA methylation profile between 
meningioma pairs. This approach revealed 37% of meningioma pairs with identical CNVs were assigned to 
different DNA methylation groups. 

CNVs of biologic interest across meningioma DNA methylation groups (NF2, HLA, CDKN2A/B, or USF1) 
were focal (<5 Mb) or non-focal for HLA or CDKN2A/B, or predominantly non-focal for NF2 (n=350 of 351 
meningiomas) or USF1 (n=40 of 42 meningiomas). Definitions of CNV focality lack consensus, specifically 
regarding how to define focal CNVs containing single genes of different sizes (CDKN2A, CDKN2B, NF2, USF1), 
and how to define focal CNVs containing polymorphic loci comprised of multiple genes of different sizes (HLA-
DRB5, HLA-DRB1, HLA-DQA1, HLA-DQB1). For meningiomas, non-focal CNVs deleting chromosome 22q 
segments containing NF2 are widely recognized as having biologic significance due (at least in part) to deletion 
of NF2 despite the fact that these deletions are often broad. Thus, we decided it would be appropriate to combine 
and quantify focal plus non-focal CNVs containing other loci of biologic interest across meningioma DNA 
methylation groups, provided we could orthogonally corroborate the biologic significance of genes of interest 
encompassed by these loci. Considering the resolution of CNVs derived from Illumina 850k DNA methylation 
arrays (which are based on probe locations, rather than sequencing reads), we decided the most parsimonious 
and transparent approach would be to quantify and report only CNVs containing entire loci of interest. Thus, 
whether focal or non-focal, CNVs were included for analysis across meningioma DNA methylation groups only 
when the entire gene or locus of interest was gained or lost, but to ensure our analyses were robust and 
legitimate, secondary analyses including CNVs partially overlapping with loci of interest were performed and are 
described below. The same approach was used to analyze of the polymorphic HLA locus on chromosome 6p, 
which encompassed the HLA-DRB5, HLA-DRB1, HLA-DQA1, and HLA-DQB1 genes. The polymorphic HLA 
locus was defined as Chr6:32475000-32725000 (hg19) via manual inspection of the combined distribution of 
losses and gains containing the HLA locus, and identification of recurrent breakpoints surrounding the region of 
increased polymorphism.  

As an additional test of CNV specificity across meningioma DNA methylation groups, focal deletions <5 Mb 
of the entire CDKN2A/B locus were more common in Hypermitotic meningiomas compared to other DNA 
methylation groups (5 CDKN2A/B deletions in 157 Hypermitotic meningiomas compared to 3 deletions in 408 
non-Hypermitotic meningiomas, p=0.0413, Fisher’s exact test). Focal amplifications <5 Mb of the entire 
polymorphic HLA locus were more common in Immune-enriched meningiomas compared to other DNA 
methylation groups (n=37 of 216 Immune-enriched meningiomas, n=20 of 192 Merlin-intact meningiomas, n=8 
of 157 Hypermitotic meningiomas, p=0.0013, Chi-squared test). There were 5 meningiomas with partial deletions 
of the CDKN2A/B locus, which, when combined with CNVs deleting the entire CDKN2A/B locus, preserved the 
trends and statistical significance across DNA methylation groups presented in the main text (n=28 of 157 
Hypermitotic meningiomas, n=8 of 192 Merlin-intact meningiomas, n=6 of 216 Immune-enriched meningiomas, 
p<0.0001, Chi-squared test). There were 55 meningiomas with partial amplifications of the polymorphic HLA 
locus, which, when combined with CNVs amplifying the entire polymorphic HLA locus, preserved the trends and 
statistical significance across DNA methylation groups presented in the main text (n=64 of 216 Immune-enriched 
meningiomas, n=33 of 192 Merlin-intact meningiomas, n=28 of 157 Hypermitotic meningiomas, p=0.0033, Chi-
squared test). There were 8 meningiomas with partial deletions of the polymorphic HLA locus, which, when 
combined with CNVs deleting the entire polymorphic HLA locus, preserved the trends and statistical significance 
across DNA methylation groups presented in the main text (n=25 of 216 Immune-enriched meningiomas, n=28 
of 192 Merlin-intact meningiomas, n=33 of 157 Hypermitotic meningiomas, p=0.0412, Chi-squared test). 

 
RNA sequencing and analysis 

Differential expression analysis was performed in R with DESeq2 (Bioconductor v3.10)11, using the ‘apeglm’ 
parameter12 to calculate log fold changes and setting a false discovery rate of 0.05. Differentially expressed 
genes were identified as those with log fold changes greater than 1 and an adjusted p-value less than 0.05. 
Gene ontology analysis of differentially expressed genes was performed using Enrichr, and combined scores 
displayed represent z-score weighted p-values, which lack error bars13,14.  



Cell types within samples were deconvoluted using xCell with transcripts per million values15. In brief, the 
strength of gene expression patterns unique to different cell types were used to estimate the proportion of cell 
types within each meningioma. 

The variance stabilizing transformation of the RNA sequencing counts were used to calculate variances for 
each gene across the 200 meningioma samples. The 2,000 most variable genes were used for unsupervised 
hierarchical clustering (Pearson correlation distance, Ward’s method), which did not reveal any clear clusters of 
genes or meningiomas. Moreover, transcriptome clustering failed to recapitulate DNA methylation groups.  

The specificity of FOXM1 signaling in Hypermitotic meningiomas was assessed by differential expression 
and gene ontology analysis between (i) Hypermitotic meningiomas with Ki-67 labeling indexes greater than 13% 
(n=8) and non-Hypermitotic meningiomas with Ki-67 labeling indexes less than 5% (n=53), or between (ii) non-
Hypermitotic meningiomas with Ki-67 labeling indexes greater than 13% (n=9) and non-Hypermitotic 
meningiomas with Ki-67 labeling indexes less than 5% (n=53). Ki-67 labeling index upper and lower thresholders 
were defined by the third quartile in Hypermitotic meningiomas (13%), and the average in non-Hypermitotic 
meningiomas (5%), respectively. FOXM1 and E2F1 transcription factor targets were identified from the ChIP-X 
Enrichment Analysis (CHEA) dataset within the Harmonizome16, and compared across meningioma DNA 
methylation groups.  
 
Somatic short variant sequencing and analysis 

Genomic DNA was processed using this panel and the CleanPlex Target Enrichment and Library Preparation 
kit following manufacturer’s instructions (#PGD364, Paragon Genomics) for NF2 sequencing. Library quality was 
assessed on a TapeStation 4200 using the High Sensitivity D1000 Kit (#5067-5584, Agilent Technologies). 150 
bp paired-end reads were sequenced on an Illumina MiSeq v2 Micro at the UCSF Center for Advanced 
Technology. Quality control of FASTQ files was performed with FASTQC17. Reads were mapped to the NF2 
locus using Bowtie218. Somatic short variants (point mutations and small indels) were identified using the 
Genome Analysis Toolkit (GATK)19. The mapped Bowtie2 output was processed with recalibration of base 
confidence scores, and processed reads were used as input for HaplotypeCaller8 with the parameters ‘-ERC 
none’ and  ‘--max-reads-per-alignment-start 0’ to identify somatic variants. Somatic short variants were filtered 
for a minimum total depth of 100 reads. Filtered variants were annotated using SnpEff20,21, and all but one NF2 
somatic short variant identified across DNA methylation groups were predicted to have ‘HIGH’ variant impact. 

Somatic short variants in TRAF7 were identified from the RNA sequencing data by following the Genome 
Analysis Toolkit’s (GATK)19 “RNAseq short variant discovery” Best Practices Workflow. In brief, the mapped 
HISAT output was processed by de-duplication and recalibration of base confidence scores. Processed reads 
were used as input for HaplotypeCaller8 with the parameters ‘--dont-use-soft-clipped-bases true’ and  ‘-stand-
call-conf 20’ to identify somatic short variants. The ‘VariantFiltration’ command within GATK was used to further 
filter the identified variants with the parameters ‘-window 35 -cluster 3 --filter-name “FS” -filter “FS > 30.0” --filter-
name “QD” -filter “QD < 2.0”.’ Filtered variants were annotated using SnpEff20,21. The same pipeline was 
attempted to identify somatic short variants in PIK3CA, SMARCB1, SMO, KLF4, POLR2A, NF2, and AKT1.  Low 
coverage (average FPKM<10 across samples) excluded PIK3CA, AKT1, and NF2 from further analysis. The 
small number of mutations (<10) detected in SMARCB1, KLF4, and POLR2A could not be distinguished from 
background error rates in RNA sequencing. Finally, mutations identified in SMO were unlikely to be activating 
mutations22, and were discordant from prior studies23, likely to be spurious findings. Thus, only somatic short 
variants in TRAF7 were reported. 

To generalize our analysis of meningioma short somatic variants across DNA methylation groups, 53 
meningiomas with matched exome sequencing and DNA methylation profiling were analyzed for recurrent 
variants enriched in meningiomas24–26. Samples included 43 previously described meningioma whole exomes4,27, 
25 of which overlapped with the discovery cohort, and 10 spatially distinct meningioma samples analyzed de 
novo using CLIA-certified exome sequencing of 500 genes, including all recurrently mutated genes reported in 
meningiomas, such as TRAF7, AKT1, SMO, KLF4, CDKN2A/B, TERT, SMARCB1, BAP1, SUFU, TP53, PTEN, 
MYC, PBRM1, and PIK3CA5,6 (6 Merlin-intact, 21 Immune-enriched, and 26 Hypermitotic meningiomas). Short 
somatic variants were defined as previously described4,5,27. In brief, whole exome sequences were aligned with 
the Burrows-Wheeler Aligner (BWA)7 and analyzed using Picard tools and the Genome Analysis Toolkit (GATK), 
following GATK Best Practices19. 

Polysolver28 and SOAP-HLA29 were used to infer MHC class I genotypes (HLA-A, HLA-B, and HLA-C) from 
filtered whole exome sequencing data on 15 meningiomas with matched normal tissue whole exome sequencing 
data and DNA methylation profiling (5 Immune-enriched, 10 Hypermitotic). Mutant neoepitope peptide 
candidates between 8 to 11 amino acids in length were derived from missense mutations using ANNOVAR30. 



The half maximal inhibitory concentration (IC50) for binding between each mutant peptide and the 6 patient-
specific, inferred MHC class I alleles were predicted using netMHCpan-4.01031, and mutant peptide sequences 
deemed to be neoantigens met a standard cutoff of less than 500 nM for predicted IC5032. 

For HLA loss of heterozygosity analysis, whole exome capture and read sequencing were performed as 
previously described on 25 meningiomas overlapping with the discovery cohort (9 Immune-enriched, 16 non-
Immune-enriched) with matched normal tissue controls4. Paired-end sequence data were aligned using the 
Burrows-Wheeler Aligner to the reference human genome build hg197. Duplicate removal, base quality 
recalibration, and multiple-sequence realignment were performed using Picard suite and Genome Analysis 
Toolkit8,9. Exome HLA Class I genotyping was performed using Polysolver and SOAP-HLA28,29. 
 
Subcellular fractionation and immunoprecipitation 

Subcellular fractionation kits were purchased from Thermo Fischer Scientific (#78833) and used according 
to manufacturer’s instructions. In brief, M10G cells were seeded into 10cm plates, and trypsinised and lysed in 
Cytoplasmic Extraction Reagent I containing protease and phosphatase inhibitors after 2 days of growth. Lysis 
solution was incubated on ice for 10 minutes before addition of Cytoplasmic Extraction Reagent II and incubation 
for 1 minute. Cytoplasmic fractions were isolated via centrifugation for 5 minutes, 21,000x g, 4°C. The Nuclear 
pellet was resuspended in Nuclear Extraction Reagent containing protease and phosphatase inhibitors followed 
by incubation on ice for 40 minutes with intermittent vortexing. Finally, the nuclear fraction was isolated by 
centrifugation for 5 minutes, 21,000 x g, 4°C. Protein concentration was measured using Bradford Reagent 
(#5000205, Biorad), samples were normalized, and processed for immunoblotting or immunoprecipitation. 

For whole cell lysate immunoprecipitation, samples were lysed in ice-cold Jies buffer (100mM NaCl2, 20mM 
Tris HCl (pH7.5), 5mM MgCl2, 0.5% NP40, protease and phosphatase inhibitors) before centrifugation at 4°C for 
5 minutes, 21,000 x g. Protein concentration was measured using Bradford reagent and equal protein from each 
sample was loaded onto pre-washed FLAG M2 beads (#M8823, Sigma-Aldrich) before incubation at 4°C, 
overnight with gentle rotation. The following day, proteins were eluted from the beads with Laemmli buffer and 
boiled. Immunoblotting revealed IRF8 in cytoplasmic and nuclear fractions, and ARHGAP35 in cytoplasmic 
fractions.   
 
Cell proliferation and apoptosis assays 

Colorimetric proliferation assays were performed using the CellTiter 96 Non-Radioactive Cell Proliferation 
Assay (#G4100, Promega), according to manufacturer’s instructions. For clonogenic assays, 150 cells were 
seeded in triplicate in 6 well plates. Cells were treated with either vehicle or drug both 1 and 6 days after seeding. 
After 10 total days of growth, cells were fixed in methanol for 30 minutes and stained with 0.01% crystal violet 
(C6158, Sigma-Aldrich) for 1 hour. Plates were rinsed with water three times, allowed to air dry, and imaged on 
a Zeiss Stemi 508 stereo microscope. Colony area was quantified by measuring total image intensity using 
ImageJ, with normalization to background intensity. Apoptosis assays were performed by treating cells with 
actinomycin D (#11421, Caymen Chemicals) 0.5 μg/ml for 24 hours.  
 
Proteomic proximity-labeling mass spectrometry 

To prepare cell pellets for biotin/streptavidin precipitation, samples were lysed in Urea buffer (8M urea, 0.1M 
Ammonium Bicarbonate pH8, 150mM NaCl, protease inhibitors and phosphatase inhibitors), sonicated for 1 
minute followed by alkylation of free cysteines (10mM iodoacetamide). Trypsin digest (#V5073, Promega) was 
performed at 37°C for 20 hours with gentle rotation. Digested proteins were desalted through a 100mg Sep-Pak 
C18 vacuum cartridge (#WAT023590, Waters) and lyophilized in a speed vac. Lyophilised proteins were dissolved 
in IAP buffer (50 mM MOPS, 10 mM HNa2PO4, 50 mM NaCl, pH 7.5), sonicated for 30 minutes in a 4°C water 
bath and centrifuged to clear insoluble material. For biotin/streptavidin precipitation, 20 µl of washed anti-biotin 
beads (#ICP0615, Immunechem Pharmaceuticals) were incubated with each protein sample (2 hours, 4°C, gentle 
rotation), beads were washed and eluted in 0.15% trifluoroacetic acid, desalted on nest tips, and lyophilized prior 
to mass spectrometry.  

Samples were resuspended in 4% formic acid, 4% acetonitrile solution, and separated by a reversed-phase 
gradient over a nanoflow column (360 µm O.D. x 75 µm I.D.) packed with 15 cm of 1.7 µm BEH C18 particles 
(#186002350, Waters). The HPLC buffers were 0.1% formic acid and 100% acetonitrile on 0.1% formic acid for 
buffer A and B respectively. The gradient was operated at 300 nL/min from 5 to 25% buffer B over 36 min, 
followed by a 25%-36%B over 42 min, a column wash at 95% B, with a total acquisition time of 90 min. Eluting 
peptides were analyzed in on a Orbitrap Fusion Lumos Tribrid Mass Spectrometer system (Thermo Fischer 
Scientific) equipped with a n1200 Easy-nLC 1200 high-pressure liquid chromatography system (Thermo Fischer 



Scientific). A data-dependent acquisition method was used with following parameters: 1 second cycle time, MS1 
acquisition in the orbitrap with 350-1350 m/z range at 240K resolution and a 50 milisecond maximum injection 
time, MS2 analysis was performed with HCD fragmentation in the ion trap with 32% normalized collision energy, 
200-1200 m/z scan range, 18 milisecond maximum injection time, centroid format, and a rapid scan rate. Data 
was search against the human proteome database (canonical sequences downloaded from Uniprot 10/22/2020) 
using the default parameters in MaxQuant33,34 (version 1.6.12.0), with the exception that match-between-runs 
was enabled (0.7 min time window) and a variable modification (361.14601 Da) representing the addition of 
biotin phenol to tyrosine residues was included.  
 
Single cell RNA sequencing analysis 

The presence or absence of CNVs in individual cells was assessed using CONICSmat (v1.0)35. Briefly, a 
two-component Gaussian mixture model was fit to the average expression values of genes on chromosome 22q 
across all cells assessed. CNVs were assessed in cells from tumor samples with copy-number loss of 
chromosome 22q at a bulk level as determined by DNA methylation, and for cells from copy-neutral normal dura 
samples. The command ‘plotAll’ from the CONICSmat R package was run with the parameters ‘repetitions=100, 
postProb=0.75’. Cells with a posterior probability less than 0.15 were identified as tumor, while cells with a 
posterior probability greater than 0.85 were identified as normal. Clusters with greater than 80% of cells with 
intact chromosome 22q were determined to be non-meningioma cell clusters. The pericyte cluster contained an 
intermediate proportion of cells with or without loss of chromosome 22q, suggesting this cluster may represent 
both normal and tumor cells in the perivascular space. Standard immune, neural, and vascular markers in the 
top 50 differentially expressed genes of the non-meningioma cell clusters were used to classify non-tumor 
clusters. Cell cycle phases of individual cells were assigned with the standard ‘CellCycleScoring’ function in 
Seurat. Using single-cell cell cycle marker genes36, average expression levels were calculated for each cell using 
G2M and S phase marker genes, respectively. If both average expression levels were less than 0, cells were 
classified as G1 phase. Otherwise, they were classified as either G2M or S phase, depending on which average 
expression was greater. Meningioma cell clusters were labeled based on cell cycle phases of cells and gene 
programs were identified by inspection of the top 50 differentially expressed genes. Gene ontology and pathway 
analyses with Enrichr and literature searches via Pubmed of differentially expressed genes helped identify 
upregulated pathways in meningioma cell clusters. 

Reference transcriptomic signatures of single-cell clusters were generated using CIBERSORTx37. 
CIBERSORTx was run on a counts per million (CPM) matrix of all genes and 300 randomly sampled cells per 
cluster with a minimum expression fraction of 0.1 and default settings for all other parameters. Bulk RNA 
sequencing expression of meningiomas was deconvolved with CIBERSORTx using CPM expression of genes 
across bulk samples and with the generated single-cell transcriptomic signatures. 

 
Magnetic resonance imaging analysis 

All patients in the discovery cohort underwent preoperative magnetic resonance imaging (MRI) on clinical 
scanners at either 1.5 or 3.0 Tesla field strength. MRI protocols varied across the study period, but all patients 
included for image analysis (n=169) had T1 pre- and post-intravenous gadolinium contrast agent administration 
sequences, T2-weighted spin echo sequences, and T2-weighted fluid attenuated inversion recovery (FLAIR) 
sequences. Post-contrast T1 images evaluated in this study were high-resolution 3D, allowing for multiplanar 
reconstruction. Evaluation of meningioma proximity to dural venous sinuses was performed qualitatively by a 
board-certified radiologist with a Certificate of Added Qualification in Neuroradiology (J.E.V-M.) on post-contrast 
T1 images. Meningiomas were classified as involving a dural venous sinus if they abutted a dural reflection or 
invaded the sinus. 
 
ChIP sequencing and enhancer/super-enhancer analysis 

FASTQ reads were trimmed to remove low quality reads and adaptors with TrimGalore and uniquely mapped 
reads were aligned to the human reference genome hg19/GRCh37 with the Burrows-Wheeler Aligner7. SAMtools 
was used to sort and index BAMs, and PCR duplicates were removed with PicardTools. Peaks were called using 
MACS2 with the default log2 fold change enrichment of 2 compared to input and a p-value cutoff of 10-5. 
Consensus peaksets and normalized H3K27ac densities were generating using the DiffBinds R package 
(Bioconductor v3.10). Peaks present in at least 2 tumor samples were used to generate a consensus peakset 
and overlapping peaks were merged. Peaks on chromosomes X or Y and peaks intersecting ENCODE 
blacklisted regions v1 on haplotype chromosomes were excluded from analysis. Bigwig tracks were generated 
using DeepTools (v3.1.2) with RPKM normalization and were visualized using Integrative Genomics Viewer 



software. Super-enhancers were called using ROSE with default parameters38,39. Gene set enrichment networks 
were generated using ClueGO and visualized in Cytoscape40,41. Prediction of FOXM1-regulated genes was 
performed by first identifying FOXM1 binding motif sites using Homer to scan across the genome for the known 
FOXM1 motif. These sites were intersected with H3K27ac peaks in the consensus meningioma peakset, 
annotated to the nearest gene using Homer, and intersected with genes positively and significantly (FDR<0.05) 
correlated with FOXM1 expression as well as genes upregulated in the Hypermitotic meningiomas compared to 
tumors from other DNA methylation groups (FDR<0.05). 
 
ChIP QPCR 

ChIP qPCR was performed using the EZ-Magna ChIP A/G Chromatin Immunoprecipitation Kit (#17-10086, 
Millipore), according to manufacturer’s instructions. Briefly, cells were fixed in 1% formaldehyde and sonicated 
to fragment sizes of 200-800 bp. Samples were incubated overnight with 10 μg USF1 antibody (#ab180717, 
Abcam) or IgG antibody bound to protein A and protein G magnetic beads. After antibody incubation, samples 
were washed once each with high salt, low salt, lithium chloride and TE buffers. Samples were de-crosslinked 
by incubation at 65°C for 4 hours, followed by incubation at 95°C for 10 minutes, and purified using a PCR 
purification kit (#K3100-01, Invitrogen). QPCR was performed using PowerUp SYBR Green Master Mix 
(#A25918, Thermo Fisher Scientific) (Supplementary table 14).  
 
Patients 

Patients were treated with Abemaciclib 100 mg per os twice daily. Treatment was held in the setting 
myelosuppression (absolute neutrophil count less than 1.5), and treatment-associated diarrhea was managed 
with over-the-counter medications. Meningioma volumes on serial magnetic resonance imaging studies were 
determined using MIM (MIM Software Inc), and the electronic medical record for all patients was reviewed in 
early 2021.  
 
Nomograms 

Prognostic models for LFFR were generated using multivariable Cox regression via the survival R package 
(v3.2-13). The proportional hazards assumption was confirmed by visual inspection of the Schoenfeld residuals 
and the Schoenfeld global test42. Variables included in the final model were selected by a two-step process, first 
by a univariable Cox regression threshold of p≤0.05, followed by selection of features with greatest variable 
importance as estimated by the Breiman permutation method using concordance as the model metric43. The top 
7 features were selected to allow for at least 10 events per variable in the final model. This process was repeated 
for creation of the DNA methylation group model and the CNV group model. Models were compared using the 
bootstrapped time-dependent delta-AUC and delta-Brier-score for LFFR at 5 years44. The survAUC R package 
(v1.0-5) was used to calculate time-dependent AUC and Brier-scores. Nomograms based on the final Cox 
models were visualized using the ‘nomogram’ function of the rms R package (v6.2-0). Within nomograms, each 
variable contributes points (top row) to the total score, which estimates the probably of 5-year LFFR (bottom 2 
rows)45. Cox model calibration of 5-year LFFR was estimated using the ‘calibrate’ function of the rms R package 
with default settings, utilizing Kaplan-Meier estimates, bootstrapping, and with an average group size of 50 
subjects per calibration level. Unless otherwise specified, all bootstrap procedures were performed with 500 
iterations. Recursive partitioning analysis of CNV and methylation groups was performed using the rpart R 
package (v4.1.16), with a minimum of 30 observations per split attempt and minimum of 15 observations per 
terminal leaf. The optimal complexity parameter was determined by 5-fold cross-validation, with selection of the 
most parsimonious model defined as the model with fewest splits and no more than one standard-error above 
the error of the best model46. Finally, interactive web nomogram graphical user interfaces were created using 
the DynNom R package (v5.1.0).  
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