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Supplementary Notes

EM algorithm for estimating the prior parameters

We first restate our full model as described in Methods. We have a linear model with K groups of
explanatory variables:

y =
KX

k=1

X

j2Mk

�jXj + ✏, ✏ ⇠ N(0,�2), (1)

where Xj , 1  j  p, is j-th explanatory variable and j 2 Mk denotes that it belongs to the group k.
The e↵ect size �j ’s follow spike-and-slab prior distributions with group-specific parameters. Let �j be an
indicator of whether Xj has non-zero e↵ect:

�j ⇠ Bernoulli(⇡k)
�j |�j = 1 ⇠ N(0,�2

k)
�j |�j = 0 ⇠ �0.

(2)

For simplicity, we assume �
2 is given (see Methods). Our goal is to estimate the prior parameters

✓ = {⇡k,�
2
k, 1  k  K}.

We use Expectation-Maximization (EM) algorithm to estimate these parameters, treating the e↵ect sizes
� = (�1, · · · ,�p) and the configuration of all indicators � = (�1, · · · , �p) as missing data. The complete data
log-likelihood function is given by:

logP (y,�,�|X, ✓) = logP (�|✓) + logP (y,�|X,�, ✓) (3)

= logP (�|✓) + logP (�|�, ✓) + logP (y|X,�) (4)

=
KX

k=1

X

j2Mk

logP (�j |⇡k) +
KX

k=1

X

j2Mk

logP (�j |�j ,�2
k) + logP (y|X,�). (5)

Note that the last term does not depend on the prior parameters ✓, so we can ignore it in the EM algorithm.
In the E-step, we take expectation of the complete log-likelihood function over �,�|✓(t), where ✓(t) is the

parameters from step t:

Q(✓|✓(t)) = E�,� logP (y,�,�|X, ✓,�) (6)

=
KX

k=1

X

j2Mk

E�j logP (�j |⇡k) +
KX

k=1

X

j2Mk

E�j ,�j logP (�j |�j ,�2
k) + constant. (7)

We can simplify this function. First, we note:

E�j logP (�j |⇡k) = E�j [�j log ⇡k + (1� �j) log(1� ⇡k)] = ↵
(t)
j log ⇡k + (1� ↵

(t)
j ) log(1� ⇡k), (8)

where ↵
(t)
j = P (�j = 1|✓(t),X,y) is the posterior inclusion probability of variable j at the t-th iteration.

Next,

E�j ,�j logP (�j |�j ,�2
k)) = E�j ,�j [�j logP (�j |�j = 1,�2

k) + (1� �j) logP (�j |�j = 0)] (9)

= ↵
(t)
j · E�j |�j=1[logP (�j |�j = 1,�2

k)] + (1� ↵
(t)
j ) · E�j |�j=0[logP (�j |�j = 0)]. (10)

Given that �j = 0 when �j = 0, the second term in the expectation is simply 0. For the first term, we plug
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in the normal density �j ⇠ N(0,�2
k):

E�j ,�j logP (�j |�j ,�2
k)) = ↵

(t)
j · E�j |�j=1

 
� log

p
2⇡�k �

�
2
j

2�2
k

!
= ↵

(t)
j ·

 
� log

p
2⇡�k �

⌧
2,(t)
j

2�2
k

!
, (11)

where ⌧
2,(t)
j = E(�2

j |�j = 1,X,y, ✓(t)) is the second moment of posterior e↵ect size distribution of �j given
the current parameter estimate ✓

t and that �j = 1.
Putting all these together, we have:

Q(✓|✓(t)) =
KX

k=1

X

j2Mk

h
↵
(t)
j log ⇡k + (1� ↵

(t)
j ) log(1� ⇡k)

i
+

KX

k=1

X

j2Mk

↵
(t)
j

 
� log

p
2⇡�k �

⌧
2,(t)
j

2�2
k

!
(12)

At the M-step, we find ✓ that maximize Q(✓|✓t). We begin with the update rule for ⇡k, noting that only
the first term contains ⇡k.

@Q(✓|✓(t))
@⇡k

=
X

j2Mk

"
↵
(t)
j

⇡k
�

1� ↵
(t)
j

1� ⇡k

#
= 0. (13)

Solving this equation gives the update rule of ⇡k:

⇡
(t+1)
k =

1

|Mk|
X

j2Mk

↵
(t)
j , (14)

where |Mk| is the size of Mk. Next we derive the update rule of �2
k:

@Q(✓|✓(t))
@�k

=
X

j2Mk

↵
(t)
j

"
� 1

�k
+

⌧
2,(t)
j

�
3
k

#
= 0. (15)

This leads to the update rule for �2
k as:

�
2,(t+1)
k =

P
j2Mk

↵
(t)
j ⌧

2,(t)
j

P
j2Mk

↵
(t)
j

. (16)

The computation of ↵(t)
j and ⌧

2,(t)
j at each iteration will be described below. We perform E and M step until

each prior parameters change < 0.00001 in one iteration or the maximum number of iterations is met.

Calculation of ↵j and ⌧ 2j under the single e↵ect approximation.

In the EM iteration, we need to compute the PIP ↵
(t)
j and the posterior second moment ⌧

2,(t)
j of each

variable (the index (t) will be dropped later for simplicity). To simplify, we analyze each block one at a time,
assuming each block has at most a single variable with non-zero e↵ects. We further assume that each single
block explains a minimal variance of y, so we set � = 1 in the calculation. Let �j be the configuration where
�j = 1 and all other indicators are 0, and �0 be the null configuration where �j = 0 for all variables. Let pj
be the prior inclusion probability of variable j, which depends on the group variable j belongs to, pj = ⇡k

when j 2 Mk. The prior probabilities of the configurations are given by:

P (�0|✓) =
Y

j

(1� pj), (17)
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P (�j |✓) =
pj

1� pj
· P (�0|✓). (18)

For variable j, we define its Bayes factor, as the probability of data under �j vs. under �0. Based on
the Wakefield formula[1], it is given by:

Bj :=
P (y|X,�j , ✓)

P (y|X,�0, ✓)
(19)

=

s
s
2
j

�
2
k + s

2
j

· exp
 

�̂j
2
�
2
k

2s2j (�
2
k + s

2
j )

!
, (20)

where �k is the prior variance of e↵ect size for variables in group k. �̂j is the estimated e↵ect size of variable
j, and sj is the standard error. They are given by:

�̂j := XT
j y/n, (21)

s
2
j := (y �Xj �̂j)

T (y �Xj �̂j)/(nX
T
j Xj) ⇡ 1/n. (22)

The posterior inclusion probabilities depend on the prior and the BFs of variables:

↵j = P (�j = 1|X,y, ✓) (23)

= P (�j |X,y, ✓) (24)

=
P (y|X,�j , ✓)P (�j |✓)

P (y|X,�0, ✓)P (�0|✓) +
P

j P (y|X, �j , ✓)P (�j |✓)
(25)

=
P (�j |✓) ·Bj

P (�0|✓) +
P

j P (�j |✓) ·Bj
(26)

=
pj/(1� pj)Bj

1 +
P

j pj/(1� pj)Bj
. (27)

Following the derivation in the SuSiE paper, the posterior distribution of �j |�j = 1 follows N(µ1j ,�
2
1j)

where �
2
1j = s

2
j�

2
k/(�

2
k + s

2
j ) and µ1j = �

2
1j �̂j/s

2
j , so we have the second moment of posterior distribution,

⌧
2
j = E(�2

j |�j = 1, ✓) = var(�j |X,y, ✓, �j = 1) + (E(�j |X,y, ✓, �j = 1))2 = µ
2
1j + �

2
1j . (28)

When using summary statistics in the form of Z-scores, we replace �̂j as ẑj/n, where ẑj is the Z-score of
variable j. ↵j can still be derived by Equation 27 where Bj is given by

Bj =

s
s
2
j

�
2
k + s

2
j

· exp
 

ẑj
2
�
2
k

2s2j (�
2
k + s

2
j )

!
. (29)

where �k is the variance of Z score for variables in group k. ⌧
2
j can still be derived by Equation 28 where

µ1j = �
2
1j ẑj .

We provided some justifications of the single e↵ect assumption. In statistical fine-mapping, several
methods have been developed to incorporate functional information of variants to set the prior inclusion
probabilities. In such models, it has been found that for the purpose of estimating parameters of the prior
distributions, the single e↵ect approximation is often su�cient [2]. Furthermore, in our implementation,
we prune large blocks that are likely to contain multiple causal variables in the parameter estimation step.
Finally, our simulations showed that the parameters estimated under single-e↵ect assumption were generally
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accurate (Figure 2 of the main text).
In the implementation of our method, we used the algorithm of single e↵ect model (SER) from SuSiE

to get ↵j and ⌧
2
j . When pj ⌧ 1, PIP and the second moment of posterior distribution under SuSiE SER

should be similar or the same as those from our model. In more detail, we use pj as prior probabilities in
SuSiE and ⇡0 = 1�

P
j pj as null weight, PIP under SuSiE SER ↵

0
j is given by

↵
0
j =

pjBj

⇡0 +
P

j pjBj
=

pj/⇡0 ·Bj

1 +
P

j pj/⇡0 ·Bj
⇡ ↵j . (30)

For the approximation, we used ⇡0 = 1�
P

j pj ⇡ 1� pj under the assumption that pj ⌧ 1. The posterior
distribution of �j |�j = 1 under SuSiE SER is the same as in our model.

Similarly, we used the algorithm of the SER model in SuSiE RSS to get ↵j and ⌧
2
j when the input is

summary statistics(ẑ,R).

Initialization and selection of single e↵ect blocks

To have a good chance of working with blocks satisfying the single e↵ect assumption, we compute the
prior probability of a block having at most one causal variable, denoted as psingle e↵ect. It is given by:

psingle e↵ect = P (�0) +
X

j

P (�j) =
Y

j

(1� pj)

0

@1 +
X

j

pj

1� pj

1

A . (31)

Note that this probability considers both cases where a block has no causal variable, and just one. We choose
blocks with psingle e↵ect above a threshold, 0.8 in our simulation and real data analysis, to be used in prior
parameter estimation. The e↵ect of this block selection step is that large blocks that are likely to contain
more than one signal a priori, are filtered.

To initialize the EM algorithm described in ”Inference of the individual level model” and ”Inference of
the summary statistics model”, we use the same prior parameters for genes and variants. The thinning
procedure is applied at the beginning of the EM algorithm if specified. We then run 3 iterations of the EM
algorithm using all LD blocks, using this as an initial estimate of pj . Then, we select single e↵ect blocks
based on psingle e↵ect given by Equation (31) and used these for 30 more iterations of the EM algorithm.

Computation of marginal associations ẑ and correlation matrix R

. When variable j is a gene, we can compute its Z-score, ẑj following the S-PrediXcan formula [3].
Specifically, suppose the gene j has m SNPs with nonzero weights in its expression prediction model. Let
wj = (wj1, wj2, .., wjm) be their standardized weights, ẑs

j = (ẑj1, ẑj2..., ẑjm)T be the Z scores of the associ-
ations of the variants to the phenotype, and Rs

j be the m ⇥m correlation matrix, i.e. LD matrix, of these
variants. Then ẑj is basically the weighted sum of the Z-scores of all the m variants:

ẑj =
wj ẑs

jq
wjRs

jw
T
j

. (32)

We also need R, the correlation matrix, of all variables. We denote its element at row i and column j

as Rij = Cor(Xi,Xj), where Xi and Xj are the n-dim. vectors (n is sample size) of the variables i and j.
When both variable i and j are variants, Rij is given by the variant LD matrix. When one of the variable,
for example Xj , is an imputed gene, we can write it as: Xj = Xs

jw
T
j , where Xs

j is a n ⇥ m matrix of
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genotypes for the m variants in gene j’s prediction model. Rij is then given by:

Rij =
Cov (Xi,Xj)p
Var(Xi)Var(Xj)

=
Cov (Xi,Xs

jw
T
j )q

Var(Xi)Var(Xs
jw

T
j )

=
Rs

i,jw
T
jq

wjRs
jw

T
j

, (33)

where Rs
i,j is the m-dimensional vector of correlation between variant i with each of the m variants in the

prediction model of gene j. When both variables i and j are genes,

Rij =
Cov (Xi,Xj)p
Var(Xi)Var(Xj)

=
Cov (Xs

i w
T
i ,X

s
jw

T
j )q

Var(Xs
i w

T
i )Var(X

s
jw

T
j )

=
wiRs

i,jw
T
j

p
wiRs

iw
T
i

q
wjRs

jw
T
j

, (34)

where Xs
i is the genotype matrix and wi is the vector of standardized weights for variants in gene i’s

prediction model. Rs
i is the correlation matrix of Xs

i . Rs
i,j is now the correlation matrix between the

variants in the prediction models of gene i and gene j.

Speeding up computation

Parameter estimation is the most time-consuming step. This is especially the case when variants are
densely genotyped. We developed a ”thinning” procedure to speed up this step. Specifically, we randomly
select a fraction of SNPs in the single e↵ect blocks, and only use these variants in the EM update. When
most selected blocks have < 1000 variants, the EM algorithm can be done in one or two hours. We have
found in our simulations that this thinning step does not a↵ect the accuracy of results. In the final step of
analyzing individual blocks, the estimated prior probability for variants from the thinning procedure will be
scaled back for the original variants data. This is done by dividing the prior probability by the fraction of
selected variants. The other parameters are not a↵ected by this procedure. To reduce computational burden
of the final step, we can analyze an individual block with the original variants only when results using the
thinned variants showed strong signals for gene e↵ect, e.g the maximum PIP of genes in the block > 0.8. Our
software allows the user to specify the desired thinning parameter (the fraction of variants selected) in the
parameter estimation step and the PIP threshold used to determine which blocks to analyze with original
variants in the final step.

Connection with colocalization methods

We show that under certain conditions, cTWAS reduces to colocalization analysis. Specifically, we assume
there is a single causal gene in a region being studied, and that gene has a single causal eQTL variant (known
as eQTN in literature). Let X be the expression of the causal gene, X̃ be its cis-genetic component, and Gj

be the genotype of the eQTN. We have:
X̃ = Gjwj , (35)

where wj is the weight of Gj in the prediction model of X. We also assume that Gj acts on the phenotype
only through the gene X, thus its direct e↵ect ✓j = 0. Our model of the phenotype y is given by:

y = X̃� +
X

i 6=j

Gi✓i + ✏, (36)

where �, ✓i are the causal e↵ects of the gene and variants, respectively. Also note that both � and ✓i’s follow
spike-and-slab prior with prior inclusion probabilities ⇡G (gene e↵ect) and ⇡V (variant e↵ect), respectively.
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We can now plug in X̃ = Gjwj into the model of phenotype:

y = Gjwj� +
X

i 6=j

Gi✓i + ✏. (37)

We see now that the gene e↵ect � 6= 0 if and only if the e↵ect of variant j, wj� 6= 0. So our problem reduces
to a fine-mapping problem, where we determine which variant(s) has non-zero coe�cients. The di↵erence
with standard fine-mapping is that the prior inclusion probabilities vary with variants. The eQTN variant
has prior probability ⇡G, while other variants have prior ⇡V , generally smaller than ⇡G. So the model would
e↵ectively perform fine-mapping, favoring the eQTN variant.

The model we described is e↵ectively Enloc, a method for colocalization analysis [4]. We give a short
description here of Enloc here. We denote dj as an indicator of whether Gj is an eQTL, and �j as an
indicator of whether Gj is a causal variant of the phenotype in GWAS. Colocalization of eQTL and GWAS
trait in a region of interest thus means that there is some variant in the region, where dj = 1 and �j = 1.
Enloc performs colocalization analysis in several steps. It first performs fine-mapping analysis of eQTL data,
estimating P (dj = 1) for all variants. In the next step, Enloc assesses how often the eQTNs are also causal
variants of a complex phenotype from GWAS. This step estimates the conditional distribution P (�j |dj). In
general, we expect P (�j = 1|dj = 1) >> P (�j = 1|dj = 0). The enrichment of causal variants in eQTNs is
reflected by the parameter ↵1 in Enloc, defined as the log odds ratio:

↵1 = log
P (�j = 1|dj = 1)/P (�j = 0|dj = 1)

P (�j = 1|dj = 0)/P (�j = 0|dj = 0)
. (38)

Enloc uses the data across genome to estimate ↵1. In the final step, Enloc performs fine-mapping of the
GWAS trait in any regions of interest, using the prior probabilities of �j ’s estimated in the previous step.
Because eQTNs generally have higher prior, this allows Enloc to favor eQTNs in fine-mapping of the trait
GWAS. The results of Enloc are expressed as P (dj = 1, �j = 1|D, ↵̂1), where D means all the data we have.

From this description of Enloc, we can see that the reduced cTWAS model, Equation 37, is almost
equivalent to Enloc. Both methods perform fine-mapping of causal variants of a phenotype, favoring eQTNs.
In fact, the prior probabilities of the two models are related by:

P (�j = 1|dj = 0) ⇡ ⇡V , P (�j = 1|dj = 1) = ⇡G. (39)

To see this, we note that under cTWAS, the prior probability of a non-eQTN variant being causal variant to
the GWAS trait is ⇡V . The prior probability of an eQTN being causal variant is just the prior probability
that its target gene is causal, which is ⇡G. We can now express ↵1, the key Enloc parameter, in terms of ⇡G

and ⇡V :

↵1 = log
⇡G/(1� ⇡G)

⇡V /(1� ⇡V )
⇡ log

⇡G

⇡V
, (40)

where we use the approximation that ⇡G,⇡V are usually small, so 1� ⇡G ⇡ 1 and 1� ⇡V ⇡ 1. There is one
subtle di↵erence between this reduced cTWAS model and Enloc. Enloc uses a common parameter for the
prior variance of e↵ect sizes for all variants, including eQTNs. cTWAS in contrast, allows the prior variance
to di↵er between gene e↵ects (hence eQTL e↵ects) and variant e↵ects. In our simulations, we have found
that using a common prior variance for gene and variant e↵ects leads to inflated PIPs (data not shown).

Having shown the near equivalence of Enloc and the reduced cTWAS model, we can see that cTWAS is
also related to coloc [5]. coloc performs model selection, comparing several models, H1: there is an eQTL in
the region being analyzed but no causal variant for GWAS, H2: there is a causal variant for GWAS trait but
no eQTL, H3: there are distinct eQTL and GWAS causal variants, and H4: the same causal variant a↵ects
both expression and phenotype. The goal of coloc is largely about estimating the posterior probability of
H4, i.e. P (H4|D), where D denotes the eQTL and GWAS data we have. This probability is related to the
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Enloc model by:

P (H4|D) =
X

j

P (dj = 1, �j = 1|D). (41)

Having shown the connection between coloc and Enloc, we can also relate the key parameters under the two
models. In coloc, the prior probabilities of the four models are related to the prior inclusion probabilities of
variants: p1, the prior of a variant being eQTN; p2, the prior of causal variant of GWAS trait; and p12, the
prior of a variant being causal to both expression and GWAS trait. Whether coloc detects a colocalization,
i.e. H4 is chosen, is controlled largely by these prior parameters, p1, p2, p12. In the Enloc paper, the authors
show that Enloc is equivalent to coloc with the parameters under the two methods related by (see Equation
10 of Enloc):

↵1 = log
p12(1� p1 � p2 � p12)

p1p2
⇡ log

p12

p1p2
, (42)

where we again assume small prior probabilities. We can also see that the coloc parameteres are related to
the cTWAS parameters. In fact, p1 is the prior of causal variant, so p1 ⇡ ⇡V ; and p12/p2 is the conditional
probability that a variant is causal to the phenotype given that it is an eQTN. As we have explained above,
this is P (�j = 1|dj = 1), which is ⇡G under the reduced cTWAS model. So the enrichment parameter under
coloc becomes:

log
p12

p1p2
= log

p12/p2

p1
⇡ log

⇡G

⇡V
. (43)

This is the same Equation 40 we have derived linking ↵1 in Enloc and prior parameters of cTWAS.
From these derivations, we see that under the simple scenario of single causal gene, and single eQTN,

cTWAS is equivalent to Enloc and coloc. Compared to coloc, both Enloc and the reduced cTWAS have
the advantage that all the key prior parameters are estimated from the genome-wide data analysis. In
contrast, coloc sets the parameters, p1, p2, p12, somewhat arbitrarily. Many have reported that coloc results
are sensitive to these parameters. Of course, the equivalence of cTWAS with colocalization methods only
applies in the simple scenario. In general, cTWAS has the advantage that it allows multiple causal genes,
and multiple eQTNs.

Running other methods on simulation data

We ran FUSION (https://github.com/gusevlab/fusion_twas) on the same simulated GWAS sum-
mary statistics data and the same gene prediction models. We ran coloc (https://cran.r-project.org/
web/packages/coloc/index.html) which is provided as part of the FUSION package and used PIP4 > 0.8
as cuto↵. We ran FOCUS (https://github.com/bogdanlab/focus, v0.6) under the default setting and
use PIP > 0.8 as the cut o↵. For SMR with HEIDI filter (https://yanglab.westlake.edu.cn/software/
smr/), we used the significant ceQTL marginal association statistics provided by GTEx v7 as input, for genes
with FUSION prediction models. These include significant variants±1mb of the transcription start site (TSS)
of each gene. For SMR (v1.0.3), we used B-H adjusted p values < 0.05 to select significant genes, and we also
required p HEIDI > 0.05 for the HEIDI filter. For MR-JTI (https://github.com/gamazonlab/MR-JTI),
we used the full eQTL marginal association statistics provided by GTEx v7 after LD-pruning (r2 = 0.2) as
input. These include all variants ±1mb of the TSS of each gene. We analyzed genes with Fusion B-H adjusted
p values < 0.05 using MR-JTI and required a Bonferroni-corrected p < 0.05 to determine significance. For
PMR-Egger (https://github.com/yuanzhongshang/PMR, v1.0), we used the full eQTL marginal associa-
tion statistics provided by GTEx v7 as input, for genes with FUSION prediction models. We restricted the
data to variants ±100kb of the body of each gene. Based on correspondence with the author of PMR-Egger,
we regularized the LD matrices for these variants as 0.8R+ 0.2I to avoid matrix decomposition errors. We
used B-H adjusted p < 0.05 to select significant genes for PMR-Egger. For MRLocus (v0.0.25), we used the
full eQTL marginal association statistics provided by GTEx v7 as input. We restricted our analysis to genes
with FUSION B-H adjusted p values < 0.05. For these genes, we used the recommended settings from the
MRLocus paper. These include clumping variants with LD r

2
> 0.1 and retaining only those with eQTL
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p < 0.001. After clumping and running the colocalization model, we trimmed eSNPs with LD r
2
> 0.1,

prioritizing those with the highest eQTL significance. To control for multiple testing, we used a local false
sign rate (LFSR) ¡ 0.1s. LFSR is analogous to local false discovery rate (LFDR), but reflects confidence in
the sign of e↵ect rather than in the e↵ect being non-zero[6].

Detailed simulation results for PMR-Egger

While all competing methods su↵ered from high false positive rates in our simulations, PMR-Egger
performed particularly poorly. Its false rate rate was even higher than standard TWAS (FUSION). This
is quite unexpected, given that the objective of PMR-Egger is to avoid false positives under TWAS. We
thus investigated the simulation results for PMR-Egger in more detail to understand the reasons for its poor
performance.

We begin with a short review of PMR-Egger. PMR-Egger analyzes one gene a time. Let X be the
expression of a gene of interest, and X̃ be its cis-genetic component. PMR-Egger assumes that the trait
y, depends on X̃, as well as the pleiotropic e↵ect of nearby variants, whose genotypes are denoted as Zy

(p-dimension). We have:
y = µy + X̃↵+ Zy� + ✏y, (44)

where µy is the mean trait value, ↵ is the gene e↵ect, and � the p-dimensional e↵ect sizes of nearby variants.
PMR-Egger also accounts for the uncertainty of X̃ through another model linking observed expression X

with genotypes of all nearby variants under a polygenic assumption. The model as shown in Equation 44,
by itself, is not identifiable, because of colinearity of X̃ and Zy: X̃ is e↵ectively a linear combination of
variant genotypes. Thus PMR-Egger made an extra assumption, known as Egger regression in Mendelian
Randomization, that all variants have identical pleiotropic e↵ects: �1 = �2 = · · · = �p = �. The goal of
PMR-Egger is to test if ↵ = 0, while allowing � 6= 0.

When we first ran PMR-Egger with default settings, we noted that it did not return results for a large
percentage of genes (83.4% on average for the high PVE simulations) due to errors decomposing LD matrices.
Tuning the shrinkage parameter (�), as suggested by the software, did not substantially reduce the number
of decomposition errors. Upon discussion with the author, we performed an alternative regularization of
the LD matrices, regularizing them as 0.8R + 0.2I, where R is the original LD matrix, and I the identity
matrix. The number of decomposition errors was substantially reduced, although a substantial fraction of
genes still have errors (18.6% on average for the high PVE simulations).

Among the genes that were significant by PMR-Egger, the proportion of false positives was very high
(85.9% on average for the high PVE simulations), higher than FUSION. To understand this discrepancy, we
focused on a single simulation from the high PVE scenario and the 6,454 genes which had both FUSION and
PMR-Egger results. We observed that � log10 p-values for FUSION and PMR-Egger are generally correlated
(r = 0.567), but there are outlier genes which are insignificant by FUSION but highly significant by PMR-
Egger (Fig. S19A). Many of these outlier genes are confounded by nearby causal variants with relatively
large e↵ect sizes.

As an example, we visualized the locus containing the gene ICA1, which was insignificant by FUSION,
but had very significant p-values (⇠ 10�29) by PMR-Egger (Fig. S19B). At this locus, there is a single causal
variant with a large e↵ect size, and no causal gene. As expected, the causal variant shows the strongest
association in the locus (Fig. S19B, top, the red vertical bar). The FUSION expression prediction model
of ICA1 has two variants, both of which are nearby (within 72kb) the causal variant (Fig. S19B, middle),
but are not in LD with the causal variant (R2 = �0.022 for strongest correlation). In the eQTL analysis
of ICA1, the two variants in the prediction model show strong associations, as expected, but the causal
variant is also nominally significant (Fig. S19B, bottom). Because PMR-Egger uses all cis-variants of a gene
to predict expression under a polygenic assumption, it is likely that the prediction model of PMR-Egger
includes some contribution of the causal variant. This induces a correlation of predicted expression of ICA1
with the simulated trait. On the other hand, the null model of PMR-Egger, where ↵ = 0, attempts to
explain the data using an identical e↵ect for all cis-variants of ICA1. However, this is a mismatch of the
data, as the association is simply due to a single causal variant with large e↵ect. Taken together, we believe
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these two facts (the correlation of x̃ and y due to PMR-Egger’s expression prediction model, and the poor
fit of the data by the null model) explain the false positive finding by PMR-Egger in this case. The FUSION
method, on the other hand, avoided this mistake. The two variants of ICA1 are not in high LD with the
causal variant, and have low associations with the trait in GWAS (Fig. S19B, top). As a result, the imputed
expression using FUSION is not highly correlated with the trait.

Many other genes that are discordant between FUSION and PMR-Egger are qualitatively similar. These
results suggest that PMR-Egger is susceptible to false positives, when (1) the underlying expression prediction
model is sparse with only a few causal variants, and (2) when there is a nearby large e↵ect causal variant
acting on the phenotype directly.

Prediction model of gene expression.

We used expression prediction models for 49 GTEx [7] tissues from PredictDB [8] [3]. We used the
mashr-based prediction models, which borrowed information across tissues to improve prediction accuracy
in any specific tissue [9]. These prediction models were built using fine-mapped variants and are sparse, with
a maximum of 5 eQTL per gene. The models were constructed using in-sample LD from GTEx, and the
covariance between pairs of variants within each gene is reported alongside the models. We included only
protein-coding genes for our analyses. Variants included in the models but missing in the GWAS summary
statistics or LD reference were given zero weight.

Total heritability and percentage of heritability mediated by genes using MESC.

To assess parameter estimates from cTWAS, we computed total heritability and the percentage of her-
itability mediated by genes using MESC [10] for comparison. We used the same summary statistics as in
the cTWAS analysis, and we used GTEx v8 expression scores for individual tissues available via the MESC
repository. These expression scores are derived from the same GTEx dataset as the PredictDB models.
Note that expression scores for ”Kidney Cortex” tissue were not available from MESC, although this tissue
is included in PredictDB and our other analyses.

Silver standard and previously reported candidate genes of complex traits.

To evaluate our findings, we compared the genes detected using cTWAS to curated lists of known or
candidate genes for each trait. For LDL, we combined curated gene lists from two previous studies [11] [12],
for a total of 69 LDL-related genes. These are genes that cause Mendelian disease or are drug targets, are
in the KEGG ”cholesterol metabolism” pathway, or are otherwise documented in the literature. For IBD,
we used a list of 26 genes curated from literature, reported in the paper describing the activity-by-contact
(ABC) model [13]. We refer to the gene lists for LDL and IBD as ”silver standard” gene lists throughout
the text based on the strength of their evidence. In supplemental materials, we also refer to ”previously
reported candidate genes” for SCZ and SBP. These are gene lists that are primarily supported by GWAS
data rather than literature or experimental evidence. For SCZ, we used a list of 120 genes prioritized as
SCZ-related based on proximity to GWAS, fine-mapping results and eQTL evidence [14]. For SBP, we used
a list of 53 genes, supported by TWAS, gene expression, drug targets, pathway analysis and rare variant
studies, reported in a large trans-ethnic GWAS (Table 3 of the paper) [15].

Assessing the novelty of cTWAS detected genes.

If a gene was not included in the list of silver standard or previously reported genes of a trait, and
was not the nearest gene of the lead variant in a genome-wide significant locus, we considered the gene a
”novel” finding. We defined ”nearest” genes as those with start or end positions that were the nearest out
of all protein-coding genes to the lead variant of a genome-wide significant locus. To define independent
lead variants for the GWAS, we performed the following procedure. First, we selected the most significant
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variant as a lead variant, and we removed all other variants within 500kb. Then, we iterated these selection
and removal steps until there were no genome-wide significant variants remaining. We then identified the
protein-coding genes that were nearest to each lead variant in the resulting list.

Gene Ontology (GO) analysis of candidate genes.

We performed enrichment analysis to characterize the genes detected by cTWAS for LDL and IBD. We
used Enrichr [16] to identify Gene Ontology terms in the Biological Process, Molecular Function, or Cellular
Component domains that are enriched for genes detected by cTWAS. Enrichr uses the Benjamini-Hochberg
procedure to control FDR in each domain. We used a threshold of FDR ¡ 0.05 for significant enrichment. We
report the full enrichment analysis results using Enrichr across all domains for LDL and IBD (Supplementary
Table 3; Supplementary Table 10). We compared the results from cTWAS genes with similar enrichment
analysis results that used silver standard genes for LDL and IBD (Supplementary Table 4; Supplementary
Table 11). We also compared these results with enrichment results from MAGMA [17] [18], a method
that performs enrichment analysis based on GWAS data, using default settings (Supplementary Table 5;
Supplementary Table 12). When reporting the IBD results (Supplementary Table 8), we annotated detected
genes with the enriched GO terms (using cTWAS genes, silver standard genes, or MAGMA) that each gene
is a member of. For all three GO annotations, a maximum of 5 significant terms per gene were shown,
ordered by odds ratios (cTWAS, silver standard) or p-values (MAGMA).

To visualize the GO biological process terms enriched for LDL cTWAS genes (Fig. 5b), we removed
redundant terms to improve clarity. To do this, we first ranked all GO terms by their significance (p-values).
A term was considered redundant if all the cTWAS genes in that term had already been included in a more
significant GO term.

To visualize the GO biological process terms enriched for IBD cTWAS genes (Fig. 6e), we used the
”Weighted Set Cover” tool in WebGestalt [19] to remove redundant GO terms. To further simplify visual-
ization, we omitted GO terms whose detected genes were all included in other terms identified by Weighted
Set Cover. We also report the full enrichment analysis results using WebGestalt for IBD (Supplementary
Table 9).

Analyzing the HPR and POLK / HMGCR loci using other methods.

We analyzed the genes at the HPR and POLK loci using coloc, SMR, and FOCUS. We applied these
methods as described in the ”Running other methods on simulation data” subsection of the methods, with
the following exception. For SMR, rather than use a FDR-based significance threshold, which requires p-
values genome-wide, we used a local Bonferroni significance threshold to account for the number of genes
tested at each locus.

Fine-mapping analysis of POLK / HMGCR locus.

To examine the POLK / HMGCR locus, we used fine-mapping results of LDL from UK Biobank from
PolyFun-SuSiE [20] (downloaded from http://data.broadinstitute.org/alkesgroup/polyfun_results/
biochemistry_LDLdirect.txt.gz). Specifically, PolyFun specifies prior probabilities for fine-mapping by
estimating functional enrichments for a broad set of coding, conserved, regulatory and LD-related annota-
tions. Then SuSiE was applied using the estimated priors with L=10 e↵ects per locus.

To annotate the functions of variants their putative target genes, we used additional datasets. H3K4me1
ChIP-seq data of from human liver samples were downloaded from the ENCODE portal (ENCODE ID:
”ENCFF323TFF”). Promoter Capture Hi-C (PC-HiC) data from human liver were obtained from a previous
study [21]. Liver activity-by-contract (ABC) data were also obtained from a previous study [22].
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Novel candidate genes from application of cTWAS on several complex traits.

The application of cTWAS to several complex traits suggested interesting and novel candidate genes.
In the case of LDL, we identified two genes, ACVR1C and INHBB, in the signaling pathway of activin,
a signaling molecule in the TGF-beta superfamily. ACVR1C is a receptor of activin A and INHBB is
a subunit of activin B. Both activin A and B regulate lipolysis in hepatocytes and adipocytes and alter
lipid compositions [23] [24]. In an exome-wide association study, a loss-of-function variant of ACVR1C
was associated with metabolic phenotypes such as triglycerides and high-density lipoprotein level [25]. We
identified another signal transduction gene, a protein kinase, PRKD2, as a candidate gene a↵ecting LDL.
PRKD2 deficiency in mice triggers hyperinsulinemia, metabolic disorders and dysregulation of LDL [26].

Our study of IBD revealed a number of interesting candidate IBD risk genes (Table 1). IFNGR2 is a
receptor of interferon-gamma, a proinflammatory cytokine, whose activation may result in intestinal lesions
[27]. IRF8 is an important regulator of multiple immune processes ranging from antigen presentation to
response to cytokines [28]. IRF8 deficiency in an experimental model of colitis resulted in more severe in-
flammation [29]. CCR5 is a chemokine receptor, best known for its role in HIV infection. CCR5 blockade in
mice inhibited leukocyte tra�cking and reduced mucosal inflammation in murine colitis [30]. TYMP encodes
thymidine phosphorylase, and TYMP mutations cause Mitochondrial Neurogastrointestinal Encephalomy-
opathy (MNGIE), a rare recessive disease [31]. The disease causes gastrointestinal symptoms and is often
misdiagnosed as celiac or Crohn’s disease [31]. LSP1 is a regulator of T-cell migration, and deletion of LSP1
gene has been implicated in rheumatoid arthritis, an autoimmune disease [32].
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Supplemental Figures 

 
 
 
Supplementary Figure 1. Causal diagrams representing several scenarios of how genetic variant, 
expression and phenotype are related.  𝑋 and 𝑋′, gene expression; 𝐺 and 𝐺′ are genotypes of variants 
affecting expression of the two genes; �̃� and 𝑋′̃, cis-genetic component of gene expression (i.e. imputed 
expression); 𝑦, phenotypic trait; 𝑈, unmeasured confounder. Arrows indicate causal effect; double-headed 
arrows between 𝐺 and 𝐺′ indicate LD. Note that it is possible that 𝐺 and 𝐺′ are identical variants. This happens 
when the same variant affects both 𝑋 and 𝑋′. a. Reverse causality: the phenotype 𝑦 has an effect on the 
expression of gene 𝑋. There are two paths from �̃� to 𝑦, either through 𝑋 or not. But in both paths, 𝑋 is a 
collider that blocks the association of �̃� and 𝑦. b. Confounding by a nearby gene 𝑋′ creates correlation of �̃� 
and 𝑦. The LD between eQTLs of the two genes creates a non-causal, backdoor path (shown in red) between 
�̃� and 𝑦. c. Confounding by a nearby variant 𝐺′ creates correlation of �̃� and 𝑦. The backdoor path from �̃� to 𝑦 
through 𝐺′ is shown in red.  



 
 
Supplementary Figure 2. Additional simulation results. a. Parameter estimation results for variant effect 
related parameters. From left to right, percentage of causal variants (𝜋𝑉), average effect size of causal variants 
and PVE from variants. The high and low PVE settings are the same as described in Figure 2. b. Gene PIP 
calibration plots under additional settings. For each plot, we listed the parameters used in simulating the trait at 
the top. 𝜋𝐺 is prior probability for a gene being causal, 𝑃𝑉𝐸𝐺 is PVE by gene effect;  𝜋𝑉 is prior probability for a 
variant being causal, 𝑃𝑉𝐸𝑉 is PVE by variant effect. Under each setting, gene PIPs from 5 simulations are 
grouped into bins. The plot shows the proportion of true causal genes (Y axis) against the average PIPs (X 
axis) under each bin. A well calibrated method should produce points along the diagonal lines (red). +/- 
standard error is shown for each point in the vertical bars calculated over five independent simulations. 



 
Supplementary Figure 3. Comparison of power at a given false discovery proportion (FDP). Here , FDP 
is defined as the proportion of false genes among those predicted by a method at a given cutoff. For each 
method, we select genes by starting from the top of ranked gene lists generated by that method and stop when 
the given false discovery proportion was reached, then we count the number of causal genes that were found. 
The height of the bar is the mean over five independent simulations; the standard error is shown for each bar 
in vertical lines from the same five simulations. a and b. False discovery proportion 20%. c and d. False 
discovery proportion 40%. a and c, high gene PVE setting as in Figure 2. b and d, low gene PVE setting as in 
Figure 2.  Given the generally high false positive rates, alternative methods other than cTWAS often cannot 
reach FDP at 5% or 10%, no matter how stringent the thresholds are, so we compare the methods at FDP 
cutoff of 20% and 40%.  
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Supplementary Figure 4. Simulations under the low 
heritability setting. PVE of variants range from 0.1 - 0.2, and 
PVE of genes from 0.01 to 0.1. From a to j, each panel shows 
results from one simulation setting. a-f, simulations performed 
using GWAS with ~45k individuals as described in “Methods”. 
g-j, simulations performed using GWAS with ~113k 
individuals. We randomly selected 200k individuals from UK 
Biobank and used the same filtering strategy as described in 
“Methods” to generate genotype data, which ended up with 
112,824 individuals and 6,227,963 variants. The first 4 
figures in each panel show parameter estimation results. 𝜋𝐺 is 
the prior probability for a gene being causal; 𝜋𝑉 is the prior 
probability for a SNP being causal; enrichment is defined as 
𝜋𝐺/𝜋𝑉; gene PVE and variant PVE are the percent of 
phenotypic variance explained by genes and variants, 
respectively. Each dot represents the result from one out of 
five simulations. Horizontal bars show the true parameter 
values.  The last figure under each simulation setting is the 
PIP calibration plot, similarly as described in Figure 2b and 
Supplementary Figure 2b. Under each setting, gene PIPs 
from 5 simulations are grouped into bins. The plot shows the 
proportion of true causal genes (Y axis) against the average 
PIPs (X axis) under each bin. +/- standard error is shown for 
each point in the vertical bars calculated over five 
independent simulations. 
 
  



 
Supplementary Figure 5. Comparison of cTWAS with other methods for low heritability settings. a to f 
correspond to the simulation settings in supplementary Figure 4a to f. We run comparator methods using their 
default settings same as described for Figure 3b. We use different colors for causal genes identified by each 
method, and the top gray bars indicate non-causal genes. The height of the bar is the mean over five 
independent simulations; the standard error is shown for each bar in vertical lines from the same five 
simulations. 
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Supplementary Figure 6. PIPs from simulations with the new LD block definition from McManus et al.  
a. PIP calibration plots. Left, high gene PVE setting; right, low gene PVE setting, the same settings as in Figure 
2. Under each setting, gene PIPs from 5 simulations are grouped into bins. The plot shows the proportion of 
true causal genes (Y axis) against the average PIPs (X axis) under each bin. +/- standard error is shown for 
each point in the vertical bars calculated over five independent simulations. b. Scatter plots for PIPs of genes 
from LDetect blocks (X-axis) and PIPs from McManus blocks (Y-axis). Top row, results from three simulation 
runs from the high gene PVE setting. Bottom, results from three simulation runs from the low gene PVE 
setting.  



 
Supplementary Figure 7. Results from simulations using 
mixtures of normal distribution as the prior distribution 
of effect sizes. From a to j, each panel shows results from 
one simulation setting. The first 4 figures in each panel show 
parameter estimation results. 𝜋𝐺 is the prior probability for a 
gene being causal; 𝜋𝑉 is the prior probability for a SNP being 
causal; enrichment is defined as 𝜋𝐺/𝜋𝑉; gene PVE and 
variant PVE are the percent of phenotypic variance explained 
by genes and variants, respectively. Each dot represents the 
result from one out of five simulations. Horizontal bars show 
the true parameter values.  The last figure under each 
simulation setting is the PIP calibration plot, similarly as 
described in Figure 2b and Supplementary Figure 2b. Under 
each setting, gene PIPs from 5 simulations are grouped into 
bins. The plot shows the proportion of true causal genes (Y 
axis) against the average PIPs (X axis) under each bin. +/- 
standard error is shown for each point in the vertical bars 
calculated over five independent simulations. 
 
 
  



 
 
Supplementary Figure 8. Additional results for cTWAS analysis of LDL cholesterol using liver eQTLs.  
a. Convergence of estimated parameters over 30 iterations of the E-M algorithm. “Proportion Causal” is the 
prior inclusion probability of genes and variants. “Effect Size” is the prior variance of the gene and variant effect 
sizes. “Enrichment” is the ratio of gene to variant prior inclusion probabilities. “PVE” is the proportion of 
variance explained by genes and variants. b. cTWAS results at the PRKD2 locus. Figure legend is the same 
as in the locus plots in the main figures, see Fig. 4b.  
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Supplementary Figure 9. Extended results at the HPR locus. Figure legend for the top three tracks and the 
bottom track are the same as in Figure 4b. The fourth track from the top represents the posterior probability of 
colocalization (PP4) for each gene from coloc. The fifth track depicts the -log10 p-value for each gene using SMR. 
The red dotted line indicates the local significance threshold for this locus (Bonferroni corrected p-value < 0.05 
for the genes depicted). Genes labels are colored in red if they do not pass the HEIDI filter. The sixth track shows 
the PIP for genes at this locus using FOCUS.  
 
 
 
 
 
 
 



 

 
 
Supplementary Figure 10. Extended results at the POLK locus. Same legend as in Supplementary Figure 
9. 



 
 
Supplementary Figure 11. Mean number of imputed genes across all tissues for IBD, SCZ and SBP. The 
numbers of imputed genes analyzed by cTWAS vary slightly among the three traits, because of the differences 
in the variants included in GWAS summary statistics. For simplicity, we show the mean numbers among three 
traits.  
 



 
Supplementary Figure 12. Estimated prior parameters for genes across all tissues for IBD, SCZ and 
SBP. The estimated prior parameters for genes across all n=49 independent GTEx tissues for IBD, SCZ and 
SBP. Each dot represents the gene parameter for one of the tissues.  “Proportion Causal” is the prior inclusion 
probability of genes. “Effect Size” is the prior variance for gene effects. “Enrichment” is the ratio of gene to 
variant prior inclusion probabilities. “PVE” is the proportion of variance explained by genes. The centers of the 
box plots denote medians, the hinges of the boxes denote the 25th and 75th percentiles, and the whiskers 
extend 1.5 times the inter-quartile range from the hinges, or to the most extreme point, whichever is less. 
 



 
Supplementary Figure 13. Estimated proportions of mediated heritability by eQTLs for SCZ (a) and SBP 
(b), as estimated by MESC (X-axis) and by cTWAS (Y-axis). Each dot represents the result from one GTEx 
tissue. The black dotted lines denote equivalence between the methods, and the blue dashed lines denote the 
slope relating cTWAS and MESC mediated heritability estimates. Top two tissues by cTWAS were highlighted.  
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Supplementary Figure 14. Number of genes detected by cTWAS, at PIP > 0.8, across all tissues, for IBD 
(a), SCZ (b), and SBP (c). Each bar represents the result from one GTEx tissue. 
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Supplementary Figure 15. Comparison of number of genes detected by TWAS and cTWAS across all 
tissues for IBD (a), SCZ (b), and SBP (c). cTWAS uses the cutoff of PIP > 0.8 (Y-axis), and TWAS uses a 
Bonferonni threshold (X-axis). Each dot represents the result from one GTEx tissue. The blue dashed lines 
denote the slopes relating the number of genes detected by cTWAS and TWAS.  
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Supplementary Figure 16. Number of genes detected by cTWAS, at PIP > 0.8, across tissue groups for 
SCZ (a) and SBP (b). A gene was detected in a tissue group if it was detected in any of the tissues in that group. 
A gene was considered novel if it was not a previously reported candidate gene or if it was not the nearest gene 
to a genome-wide significant locus (“Nearest”).  
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Supplementary Figure 17. Tissue specificity of genes detected by cTWAS. For all genes detected at PIP > 
0.8 in at least one GTEx tissue, the number of tissues where the genes were detected at a relaxed threshold of 
PIP > 0.5 were shown. (a) 110 genes for IBD. (b) 104 genes for SCZ. (c) 142 genes for SBP.  
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Supplementary Figure 18. cTWAS results at selected loci for IBD. a. The TYMP locus using the “Esophagus 
Mucosa” eQTL data. The figure legend is the same as in the locus plots of the main figures (e.g. see Fig. 4B). 
b. The LSP1 locus using the “Esophagus Muscularis” eQTL data. c. The CCR5 locus using the “White Blood” 
eQTL data. Exact p-values and PIPs are available in the Supplementary Data. 
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Supplementary Figure 19. Investigating false positives using PMR-Egger. Detailed results for a single 
simulation from the high PVE scenario. a. Significance by TWAS and PMR-Egger for 6,454 genes analyzed by 
both methods. Vertical and horizontal dashed lines denote Bonferroni significance thresholds for TWAS and 
PMR-Egger, respectively. Diagonal dotted line denotes equivalence between the two methods. “Causal genes” 
have a true effect on the simulated trait. “Genes near causal variant(s)” are non-causal genes within 100kb of 
variants with true effect on the simulated trait. “Non-causal genes” are other genes not in these categories, 
including those potentially confounded by genes. b. GWAS and eQTL summary statistics for variants at the ICA1 
locus. The top panel shows the magnitude of the GWAS z-scores. The purple square is the TWAS z-score of 
the ICA1 gene. The middle panel shows the magnitude of the weights from the FUSION lasso-based eQTL 
prediction model of ICA1. The bottom panel shows the magnitude of the eQTL z-scores for ICA1. In all panels, 
the solid red lines denote the location of a simulated causal variant. The black dashed lines denote the 
boundaries for PMR-Egger input (+/-100kb from gene body). 
 
 
  

a

b



Supplemental Table Legends 
 
Supplementary Table 1. cTWAS results of all analyzed genes for LDL using liver eQTL data. The “id” and 
“genename” columns are Ensembl gene IDs and gene symbols. The “chrom” and “pos” columns are the genomic 
positions of the first eQTL in the prediction model for each gene. Note that eQTL positions rather than TSS 
positions are reported here because cTWAS uses eQTL positions to assign genes to regions for analysis. The 
“region_tag” column is a unique identifier of the region that each gene was analyzed in. The “cs_index” column 
denotes the confidence set that each gene is assigned to within a region; values of 0 indicate genes that were 
either unassigned or assigned to an impure confidence set (see Methods). The “PIP”, “tau2”, and “PVE” columns 
are the posterior inclusion probabilities, effect sizes, and proportions of variance explained using cTWAS for 
each gene. The “z” and “num_eqtl” columns are the TWAS z-scores and the number of eQTL in the gene 
prediction models after harmonization for each gene.  
 
Supplementary Table 2. cTWAS results of silver standard and bystander genes for LDL using liver eQTL 
data. The “annotation” column denotes whether each gene is in the silver standard (“known”) or bystander 
(“bystander”) gene lists. Column legends for other columns are the same as in Supplementary Table 1. Silver 
standard genes without imputed expression are only listed with gene symbols and their number of eQTL (0). All 
other columns are shown as “NA”s. The “z”-score column shows the results from standard TWAS analysis with 
a genome-wide, Bonferroni-corrected significance threshold of |z| > 4.56.  
 
Supplementary Table 3. GO enrichment analysis of the genes detected by cTWAS at PIP > 0.8 for LDL 
cholesterol using liver eQTL data. The “Term” and “DB” columns are the GO terms and database names. The 
“Overlap” column is the number of detected genes divided by the total number of genes in each term. The 
“P.value” and “Adjusted.P.value” columns are the p-values for enrichment of detected genes in each term using 
the Fisher exact test before and after multiple testing correction using B-H. The “Odds.Ratio” column is the ratio 
of the odds of detected genes being in a term relative to the odds of undetected genes being in a term. The 
“Combined.Score” column is a metric reported by Enrichr for ranking enriched terms; it is the product of the log 
p-value and the z-score of deviation from expected rank for each term. The “Genes” column lists the detected 
genes under each term. 
 
Supplementary Table 4. GO enrichment analysis of 69 silver standard genes for LDL cholesterol. Column 
legends are the same as in Supplementary Table 2. 
 
Supplementary Table 5. GO enrichment analysis using MAGMA for LDL cholesterol. The “Category” and 
“GeneSet” columns are the database names and GO terms. The “N_genes” and “N_overlap” columns are the 
total number of genes and the number of genes identified from the GWAS by MAGMA in each term.  The “p” 
and “adjP” columns are the p-values for enrichment of genes identified from the GWAS in each term before and 
after multiple testing correction using B-H.  The “genes” column lists the genes identified from the GWAS by 
MAGMA in each term. 
 
 
 
 
 
 
 
 
 



Supplementary Table 6. Estimated parameters and proportion of mediated heritability using cTWAS 
across all tissues for IBD, SCZ, and SBP. The “trait” column is the abbreviated trait name for each analysis. 
The “tissue” column is the tissue used in each analysis. The “prior_g” and “prior_v” columns are the estimated 
prior inclusion probabilities for genes and variants in each analysis. The “prior_var_g” and “prior_var_v” columns 
are the estimated prior effect sizes for genes and variants in each analysis. The “enrich” column is the ratio of 
“prior_g” to “prior_v” and is a measure of the importance of gene inclusion relative to variant inclusion. The 
“pve_g” and “pve_v” columns are the proportions of trait variance attributable to genes and variants in each 
analysis. The “h2” column is the total heritability from all genetic variants and genes, computed as the sum of 
“pve_g” and “pve_v”. The “prop_h2_g” column is the proportion of total heritability mediated by genes, computed 
as “pve_g” / “h2”. 
 
Supplementary Table 7. Proportion of mediated heritability using MESC across all tissues for IBD, SCZ, 
and SBP. The “trait” column is the abbreviated trait name for each analysis. The “weight” column is the tissue 
used in each analysis. The “pve_g” and “pve_v” columns are the proportions of trait variance attributable to 
genes and variants in each analysis. The “h2” column is the total heritability, computed as the sum of “h2med” 
and “h2nonmed”. The “prop_h2_g” column is the proportion of total heritability mediated by genes, computed as 
“h2med” / ”h2”. Note that expression scores for “Kidney_Cortex” tissue were not available from MESC. 
 
Supplementary Table 8. IBD genes detected by cTWAS at PIP > 0.8 in the Blood/Immune and Digestive 
tissue groups. The “genename” and “ensembl_gene_id” columns are gene symbols and Ensembl gene IDs. 
The “chromosome” and “start_position” columns are the genomic positions of the transcription start site for each 
gene. The “max_pip tissue” and “max_pip” columns denote the tissue with the highest PIP for each gene and its 
corresponding PIP. The “region_tag_tissue” column is a unique identifier of the region that each gene was 
analyzed in, for the tissue with the maximum PIP. The “z_tissue” and “num_eqtl_tissue” columns are the TWAS 
z-scores and the number of eQTL in the gene prediction models after harmonization for each gene, for the tissue 
with the maximum PIP. The “nearest_region_peak” column indicates if each gene is the nearest gene to the 
maximum GWAS signal in the region. The “distance_region_peak” column is the number of bases to the 
maximum GWAS signal in the region of each gene. The “which_nearest_region_peak” column lists the gene(s) 
nearest the maximum GWAS signal in the region of each gene; “-” denotes an unnamed gene. The “nearby” 
column indicates if each gene is within 500kb of a genome-wide significant locus. The “nearest” column indicates 
if each gene is the nearest gene to a genome-wide significant locus. The “distance” column is the number of 
bases to the nearest genome-wide significant locus, for genes that are “nearby” a genome-wide significant locus. 
The “which_nearest” column lists the gene nearest to a genome-wide significant locus, for genes that are 
“nearby” a genome-wide significant locus. The “known” column indicates genes that are on the silver standard 
gene list for IBD. The “GO_cTWAS” column lists the GO terms significantly enriched for cTWAS genes 
(Supplementary Table 10) that are associated with each gene.  The “GO_silver” column lists the GO terms 
significantly enriched for silver standard genes (Supplementary Table 11) that are associated with each gene. 
The “GO_MAGMA” column lists the GO terms significantly enriched using MAGMA (Supplementary Table 12) 
that are associated with each gene. For all three GO annotations, a maximum of 5 significant terms per gene 
are shown, ordered by odds ratios (cTWAS, silver standard) or p-values (MAGMA). 
 
 
 
 
 
 
 
 



Supplementary Table 9. GO enrichment analysis using WebGestalt of genes detected by cTWAS at PIP > 
0.8 for IBD using eQTLs in the Blood/Immune or Digestive tissue groups. The “geneSet” and “description” 
columns are the GO terms and names. The “size” column is the total number of genes in each term. The “overlap” 
column is the number of detected genes in each term. The “expect” column is the expected number of detected 
genes in each term. The “enrichment” column is the ratio of the “overlap” and “expect” columns. The “pValue” 
and “FDR” columns are the p-values for enrichment of detected genes in each term before and after correcting 
for multiple comparisons. The “Genes” column lists the detected genes in each term. 
 
Supplementary Table 10. GO enrichment analysis using Enrichr of genes detected by cTWAS at PIP > 
0.8 for IBD using eQTLs in the Blood/Immune or Digestive tissue groups. Column legends are the same 
as in Supplementary Table 3. 
 
Supplementary Table 11. GO enrichment analysis of silver standard genes for IBD. Column legends are 
the same as in Supplementary Table 3. 
 
Supplementary Table 12. GO enrichment analysis using MAGMA for IBD. Column legends are the same as 
in Supplementary Table 5. 
 
Supplementary Data Legend.  
cTWAS results of all analyzed genes across all tissues for IBD, SCZ, and SBP. Results are stored 
separately for each combination of traits and tissues. Column legends for each set of results are the same as in 
Supplementary Table 1. 
 




