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Supplementary Figure 1: PGS and cohort overview. Bayesian genome-wide PGS were 
generated from a published European-ancestry hypertrophic cardiomyopathy (HCM) GWAS 
meta-analysis of seven case-control studies (comprising 5,900 cases and 68,359 controls; 
PGSGWAS), and multi-trait analysis of GWAS (analysing HCM with three genetically-correlated 
quantitative traits measured using cardiac MRI [CMR] in 36,203 UKB participants: LV 
concentricity, LV end systolic volume and LV circumferential strain; PGSMTAG). In order to 
minimise inflation due to overlap of samples in the base GWAS and cohort in which the PGS 
is being evaluated, leave-one-study-out GWAS meta-analyses were performed to generate 
base GWAS without any sample overlap. For example, when PGS was evaluated in GeL, first 
a GWAS meta-analysis excluding the GeL cohort was performed, which was then used to 
generate PGS that was tested in GeL. Similarly, for association of CMR traits in the UKB, 
given that the MTAG used GWAS summary statistics of imaging traits performed in the UKB, 
PGS derived from GWAS meta-analysis (PGSGWAS) was used rather than PGS derived from 
MTAG. All PGS performed similarly well in their associations with population risks of HCM in 
the UKB (Table S1). UKB – UK Biobank, GeL – 100,000 Genomes Project; EMC – Erasmus 
Medical Centre, Netherlands; RBH – Royal Brompton Hospital, UK. LV – left 
ventricle/ventricular, LVESV – LV end-systolic volume.  
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Supplementary Figure 2: Polygenic scores in 343,182 participants from the general 
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population. (a) Prevalence of dilated cardiomyopathy (DCM) in the UKB in each HCM-PGS 
decile.  DCM defined using self-reported and ICD-10 codes (I42.0, I42.6, I42.7, and O90.3), 
in the absence of coronary artery disease and congenital heart disease. Data presented as 
prevalence with a binomial 95% confidence interval (CI) for each PGS decile. (b) Time to DCM 
diagnosis in top decile, median quintile and bottom deciles in UKB. Hazards ratio calculated 
using Cox proportional hazards model, adjusted for age, age2, sex, and first ten genetic PCs, 
with two-sided P-value. (c) Prevalence of HCM in the UKB in each PGS decile. Data presented 
as prevalence with a binomial 95% confidence interval for each decile. (d) OR for HCM 
comparing a range of top quantiles with median 20% and lowest quantiles, with 95% CI. (e,f) 
Hazards ratio for adverse cardiovascular events when comparing the top quantile with the 
median (e) and bottom (f) quintiles. Data presented as hazard ratios with 95%  CI.  Full results 
for the top centile, along with individual components of composite outcomes is reported in 
Supplementary Table 5. HCM composite consists of death, heart failure, AF, stroke, cardiac 
arrest, septal reduction therapy (surgical myectomy or alcohol septal ablation), ICD 
implantation, LVAD implantation, or cardiac transplantation. MACE consists of HCM 
diagnosis, heart failure, AF, stroke or cardiac arrest.  
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Supplementary Figure 3: HCM PGS and cardiac imaging traits in the 30,663 individuals 
in the general population. (A) PGSGWAS associations with machine-learning derived 
quantitative CMR traits in 30,663 unrelated participants in the UKB. Univariate regression line 
of PGS and trait (red line). Linear regression adjusting for age, age2, sex, body surface area, 
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systolic blood pressure at time of scan, and top ten genetic PCs. Two-sided FDR-adjusted P-
values presented. (B) Violin plot of quantitative CMR traits in top (N=305) and bottom (N=304) 
PGS centiles. Box plots indicate mean and standard deviation. Changes in quantitative CMR 
traits per SD and comparing top centile with median and bottom quintiles is presented in 
Tables S6 and S7. LV – left ventricle/ventricular; maxLVWT – maximum LV wall thickness; 
LVEF – LV ejection fraction; RV – right ventricle/ventricular; RVEF – RV ejection fraction; FD 
– fractal dimension; strainradial – mean global LV radial strain; strainlong – mean global LV 
longitudinal strain; straincirc – mean global LV circumferential strain; LVEDV – LV end-diastolic 
volume; LVESV – LV end-systolic volume; RVEDV – RV end-diastolic volume; RVESV – RV 
end-systolic volume. 
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Supplementary Figure 4: Mendelian randomization of pheWAS significant associations. 
Relationship of SNP effects on the exposure trait: systolic (a) and diastolic blood pressure (b), 
body mass index (c), glycated haemoglobin (d), and HDL (e) and HDL cholesterol (f); with 
HCM for 2 Mendelian randomization test methods (inverse variance weighted [IVW], and MR 
Egger). Genetic instruments were extracted from large-scale published GWAS (blood 
pressure traits from GWAS of 757,601 individuals1, glycemic traits from 281,416 individuals2, 
lipid traits from GWAS of 188,577 individuals3, and BMI from 461,460 individuals4). Error bars 
are 95% confidence intervals for SNP effects. Slope of the line is the beta of the MR test 
method. Two-sided unadjusted P-values are reported. 
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Supplementary Figure 5: Mendelian randomization of HCM as exposure on heart failure 
and atrial fibrillation. Relationship of SNP effects of HCM as the exposure on heart failure5 
(a,b) and atrial fibrillation6 (c,d), using two Mendelian randomization test methods (inverse 
variance weighted [IVW], and MR Egger). Effect-effect plots (a,c) shown for included 
instruments. Error bars are 95% confidence intervals for SNP effects. Slope of the line is the 
beta of the MR test method. Two-sided unadjusted P-values are reported. Forest plots (b,d) 
shown to compare the MR estimates against individual SNP results. Effect size and 95% 
confidence intervals reported. Genetic instruments were extracted from large-scale published 
GWAS of heart failure5 (47,309 cases and 930,014 controls) and atrial fibrillation6 (60,620 
cases and 970,216 controls).  
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Supplementary Figure 6: PGS in non-European ancestry groups. (a) PGS distribution 
across ancestries in South Asian (9 HCM cases in 7,542 participants, 0.1%), Afro-Caribbean 
(27 cases in 7,346, 0.4%) and East Asian (2 cases in 1,457, 0.1%) participants in the UKB, 
and in non-European British case and controls. (b) Pooled PGS distribution in non-European 
ancestry individuals in UKB, stratified by case-control status. (c) Standardised effect size per 
PGS SD on CMR traits in non-European ancestry groups (Afro-Caribbean: N=7,346; South 
Asian: N= 7,538; East Asian: N=1,457). Full results in Table S9. (d) Standardised effect size 
per PGS SD on CMR traits in 1,457 East Asian ancestry individuals in UKB using standard 
PGS (PGSGWAS) and PGS generated with the addition of a GWAS of 184 cases and 776 
controls of East Asian ancestry, using PGS-CSx (PGSEast-Asian). Full results in Table S10. For 
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(c,d), effect estimates were generated using linear regression adjusting for age, age2, sex, 
systolic blood pressure, body surface area, and top ten genetic PCs, with unadjusted two-
sided P value. Data are presented as effect estimates with 95% confidence intervals.   
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Supplementary Figure 7: Singapore East Asian ancestry HCM case-control GWAS. (a) 
Manhattan and (b) QQ plot of Singapore HCM case-control GWAS consisting of 174 HCM 
cases and 776 controls, all of East Asian ancestry (lambda GC 1.03). GWAS was tested using 
an additive model, adjusting for age, sex, and first ten principal components. P-values are two-
sided and unadjusted. Blue line indicates suggestive significance threshold (P<1x10-5). No 
SNPs reached genome-wide significance (P<5x10-8). 
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Supplementary Figure 8: PGS in sarcomere-positive carriers. (a) PGS distribution in 
318,945 whole-exome sequenced UKB participants with (n=640) and without (n=318,305) 
pathogenic HCM-causing variants shows no difference between groups, suggesting again any 
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marked selection or suvival bias. (b) Cumulative curve of gene positive HCM cases across 
PGS centiles. Dashed lines represent population mean, ±1 SD and ±2 SD. (c) Time to HCM 
composite outcome (comprising death, cardiac arrest, atrial fibrillation, stroke, HCM, heart 
failure, ICD implantation, septal reduction therapy, LVAD implantation and cardiac 
transplantation) in top, median and bottom quintiles. Hazards ratio calculated using Cox 
proportional hazards model, adjusted for age, age2, sex, and first ten genetic PCs, with two-
sided P value. (d) Violin plot of quantitative CMR traits in individuals with a PGS above (N=26) 
and below (N=27) the median. Box plot indicating median and interquartile range, whiskers 
denoting 1.5-times the interquartile range, and the edges of violin plot indicating minimum and 
maximum values. (e) Standardized effect size of PGS SD on quantitative CMR traits known 
to be affected in HCM, in those with (N=53) and without (N=29,002) SARC-PLP variants 
highlighting directionally concordant trends in both groups. Data presented as standardized 
effect size for each SD increase in HCM PGS from a linear regression model with 95% 
confidence interval. 
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Supplementary Figure 9: PGS in SARC-PLP carrier relatives of HCM cases. (a) PGS 
distribution in 214 relatives of HCM cases in the Erasmus cohort, stratified by HCM status. (b) 
Scatter plot of maxLVWT against PGSEMC among 194 sarcomere-positive relatives of HCM 
index patients from Erasmus cohort. Univariate linear regression line (blue line) and common 
diagnostic cutoff for HCM in relatives of cases (13 mm, grey dotted line). (c) Cumulative major 



   
 

17 

adverse cardiovascular events (MACE) after initial screening in sarcomere-positive relatives 
of HCM probands stratified by PGSEMC in the top, middle and bottom quintiles. MACE was 
defined as a composite of septal reduction therapy, cardiac transplantation, aborted cardiac 
arrest, appropriate defibrillator shock, or sudden cardiac death. Hazards ratio calculated using 
Cox proportional hazards model, adjusted for sex, first four genetic PCs, and genetic 
relatedness matrix, with two-sided P value. 
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Supplementary Figure 10: PGS predicts adverse events and disease severity in HCM 
cases. Cumulative hazard curves for all-cause mortality in UKB (n=382) (a) and GeL (n=683) 
(b) after HCM diagnosis, stratified by median PGS. Hazards ratio calculated using Cox 
proportional hazards model, adjusted for age, age2, sex, and first ten genetic PCs, with two-
sided P value. (c) Risk of adverse events in HCM cases, comparing top with median and 
bottom PGS quintiles in 382 HCM cases in the UKB. Data presented as hazard ratios with 
95%  confidence intervals. Full results in Supplementary Table 12. HCM composite adverse 
outcome consists of death, heart failure, atrial fibrillation, stroke, cardiac arrest, septal 
reduction therapy (myectomy or alcohol septal ablation), ICD implantation, LVAD implantation 
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or cardiac transplantation. HCM hard composite outcome consists of death, stroke, cardiac 
arrest, myectomy, LVAD implantation or cardiac transplantation. Major adverse cardiovascular 
events (MACE) consists of heart failure, atrial fibrillation, stroke or cardiac arrest. (d) Effect of 
PGS on CMR imaging traits in 440 HCM cases at the Royal Brompton Hospital, stratified by 
genetic status (101 SARC-PLP, 104 SARC-Neg) and all (440 cases, including 235 with VUS 
or unknown variant status). Data presented as standardized effect size for each SD increase 
in HCM PGS from a linear regression model with 95% confidence intervals. 
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LV trait GWAS and multi trait analysis of GWAS  
Multi-trait analysis of GWAS was performed for HCM using genetically correlated traits as 
previously described1. GWAS of ten left ventricular (LV) cardiac magnetic resonance (CMR) 
phenotypes was performed in 39,559 participants in the imaging substudy of UK Biobank 
(UKB) as previously described1. Individuals with ICD-10 code and self-reported diagnoses of 
heart failure, cardiomyopathy, previous myocardial infarction, or structural heart disease 
were excluded. After imaging and genotype quality control, exclusion of comorbidities, and 
restricting to a subset of unrelated individuals (3rd degree or closer), there was a maximum 
cohort size of 36,083 individuals. CMR imaging analysis has previously been described1,2. 
The ten included LV phenotypes for GWAS included LV end diastolic volume (LVEDV), end-
systolic volume (LVESV), ejection fraction (LVEF), mass (LVM), concentricity index (LVconc 
= LVM/LVEDV), mean wall thickness (meanWT), maximum wall thickness (maxWT) and 
global peak strain in radial, longitudinal and circumferential directions. The GWAS model 
was adjusted for age, sex, mean arterial pressure, body surface area, and the first 8 genetic 
principal components.  
 
Selection of traits to be incorporated with HCM in MTAG was limited to 4 traits (HCM and 3 
LV traits) due to computational burden of computing the maximum false discovery rate 
(maxFDR). Selection of the 3 LV traits was performed as follows. First, pairwise genetic 
correlation between LV traits (including HCM) was assessed using LD score regression 
(LDSC v1.1.1)3 using precomputed LD scores from the European 1000 Genomes Project. 
Second, heirarchical clustering of the 10 LV traits using the absolute value of the pairwise 
genetic correlations, Euclidean distance and the complete method, predefining the number 
of clusters to 3. This resulted in clustering of LV traits into an LV contractility cluster (LVEF, 
global peak strain in radial longitudinal, and circumferential direction), an LV volume cluster 
(LVEDV, LVESV) and an LV mass cluster (LVM, LVconc, meanWT, and maxWT). Finally, 
we selected the trait with the highest genetic correlation with HCM from each cluster to 
include in MTAG together with HCM (Figure).  
 
MTAG was performed using mtag using default settings4. MTAG can result in inflation of 
results and false positives when there is poor genetic correlation or when GWAS of 
associated traits have greater power than the GWAS of interest (in this case HCM). The 
maxFDR calculates the type I error in the analyzed dataset for the worst-case scenario, and 
was calculated as suggested by the MTAG developers4.  
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Figure (from Tadros et al.1) showing the genetic correlation (rgHCM) and heirarchical 
clustering of LV traits with HCM. LV traits included with HCM in MTAG were selected as the 
trait with the highest correlation with HCM (rgHCM) from each of the 3 clusters representing 
LV mass (red), volumetric (green), and contractility (blue). MTAG improved discovery power, 
with an increase in effective GWAS number from 21,725 to 28,106. The maximum directly 
computed false discovery rate was 0.027.  
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HCM definition across cohorts 
 
UK Biobank 

• Self-reported hypertrophic cardiomyopathy (HCM) or hypertrophic obstructive 
cardiomyopathy (HOCM) at time of study enrollment (UKB field 20002) in the 
absence of aortic stenosis. 

• ICD-10 (I42.1, I42.2) or ICD-9 (425.1) code for HCM or HOCM recorded on hospital 
episode statistic or on death record (https://github.com/UK-Digital-Heart-
Project/UKBB_filter), in the absence of aortic stenosis (UKB fields 40001, 40002, 
41202, 41204, and 41270). 

• Maximum LV wall thickness of at least 15mm in the absence of aortic stenosis with 
SBP<140mmHg on date of scan, quantified using approach in De Marvao et al.5 
 

100K Genomes Project 
• Referral to study with diagnosis of HCM or HOCM from HPO terms. 
• ICD-10 (I42.1, I42.2) code for HCM or HOCM recorded on hospital episode statistic. 

 
Erasmus Medical Centre, NL 

• Clinical diagnosis of HCM/HOCM using guideline-based criteria (imaging, personal 
and family history, examination, genetic, and other investigations)6,7. 
 

Royal Brompton Hospital, UK 
• Clinical diagnosis of HCM/HOCM using guideline-based criteria (imaging, personal 

and family history, examination, genetic, and other investigations)6,7. 
 
National Heart Center Singapore, Singapore 

• Clinical diagnosis of HCM/HOCM using guideline-based criteria (imaging, personal 
and family history, examination, genetic, and other investigations)6,7. 

  

https://github.com/UK-Digital-Heart-Project/UKBB_filter
https://github.com/UK-Digital-Heart-Project/UKBB_filter
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Clinical outcomes in UK Biobank 
 
HCM composite: 

• Death 
• HCM 
• Heart failure 
• Atrial fibrillation/flutter 
• Stroke 
• Cardiac arrest 
• Septal reduction therapy (surgical myectomy or alcohol septal ablation) 
• ICD implantation 
• LVAD implantation 
• Cardiac transplantation  

HCM hard composite: 
• Death 
• Stroke 
• Cardiac arrest 
• Surgical myectomy 
• LVAD implantation 
• Cardiac transplantation 

Major adverse cardiovascular: 
• HCM 
• Heart failure 
• Atrial fibrillation/flutter 
• Stroke 
• Cardiac arrest 

 
Note: for analysis of clinical outcomes in HCM cases, HCM diagnosis was excluded from all 
of the above composite outcomes. 
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Erasmus Medical Centre cohort methods 
 
Clinical outcomes 
Three endpoints were predefined and evaluated in the Erasmus Medical Centre (EMC) 
cohort of 214 sarcomere-positive relatives of HCM probands.  

1. HCM diagnosis 
2. LV maximum wall thickness (maxLVWT) at last available transthoracic 

echocardiogram (TTE) or cardiac magnetic resonance imaging (CMR). For 
participants who underwent cardiac transplantation and/or septal reduction therapy, 
the last available imaging prior to cardiac transplantation and/or septal reduction 
therapy was used. Given the higher precision of CMR to assess wall thickness, 
maxLVWT from CMR was used whenever available unless CMR performed more 
than 5 years before the most recent TTE.  

3. Time to first major adverse clinical event, a composite of myectomy therapy, alcohol 
ablation, cardiac transplantation, sustained ventricular arrhythmia, sudden cardiac 
death, or appropriate defibrillator shock. 

 
Statistical analysis 
The association between PGSHCM and HCM was assessed using a Wald logistic mixed-
effects model using the glmm.wald() function from R-package GMMAT (v.1.3.2)8, adjusting 
for fixed-effects of sex, age, age2 and PCs 1-4. To account for the between-sample 
relatedness, we incorporated a genetic relatedness matrix (GRM), estimated using GCTA 
(v.1.92.4 beta)9, as a random effect. The association of PGSHCM with maxLVWT was 
assessed using a linear mixed-effects model implemented in function lmekin() from R-
package coxme (v.2.2-17), adjusting for sex, age at imaging, age at imaging2, imaging 
modality (CMR vs TTE), ancestral PCs 1 to 4, and the GRM. The association of PGSHCM with 
incident major clinical events was assessed using a Cox proportional hazards mixed-effects 
model using function coxme() from R-package coxme. Time 0 was set to birth in the Cox 
model and study participants were censored at the time of last clinical follow up. Sex, 
ancestral PCs 1 to 4 and the GRM were again included as covariates. MYH7 rare variant 
genotype was more prevalent among samples with higher PGSHCM (Supplementary Table 
1); despite rare variant genotype not being found associated with any of the three endpoints, 
we performed sensitivity analyses adjusting for rare variant gene for each endpoint.  
 
Primary analyses were performed using PGSHCM as a continuous variable. In secondary 
analyses, we split PGSHCM into quintiles and performed analyses testing top PGS quintile 
versus bottom PGS quintile, and top quintile versus median quintile. These analyses were 
performed to assess effect sizes between meaningful extremes of the PGS distribution.  
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Variant pathogenicity 
 
UK Biobank 
Pathogenic rare variants in 8 HCM-causing genes (MYBPC3, MYH7, TNNT2, TNNI3, TPM1, 
ACTC1, MYL3, and MYL2) were identified from whole exome sequencing data using the 
following approach5. Variants 100bp up or downstream of genes with a minor allele 
frequency of <0.1% in gnomAD and UKB were extracted. Splice region variants reported as 
pathogenic in ClinVar were manually curated for functional evidence of splicing10. LOFTEE11 
was used to identify low confidence predicted loss of function (pLOF) variants, and all 
remaining pLOF variants were annotated for prediction of nonsense mediated decay (NMD) 
escape. The variants were then filtered for disease-causing mechanism and met a filtering 
allele frequency of <0.00004 in gnomAD: all MYBPC3 protein-altering variants were kept, 
and for the other 7 genes only variants influencing gene product structure or level were 
retained. Finally, the variant list was shorted to only include variants that would be called 
pathogenic or likely pathogenic in a patient with HCM using CardioClassifier12 and ClinVar, 
with manual curation of variants if they had evidence of pathogenicity.  
 
100K Genomes Project 
Pathogenic rare variants in 8 HCM-causing genes (MYBPC3, MYH7, TNNT2, TNNI3, TPM1, 
ACTC1, MYL3, and MYL2) were identified from whole genome sequencing data. Variants 
100bp up or downstream of genes with a minor allele frequency of <0.1% in gnomAD and 
GeL were filtered for pathogenicity using ClinVar (annotated as pathogenic or likely 
pathogenic for HCM from multiple submitters without conflict) or CardioClassifier12, and for 
disease-causing mechanism (variants influencing gene product structure or level in MYH7, 
TNNT2, TNNI3, TPM1, ACTC1, MYL3, and MYL2). 
 
Royal Brompton Hospital 
HCM probands were sequenced using the Illumina Trusight Cardio Sequencing Kit on 
Illumina MiSeq and NextSeq platforms and a custom Agilent SureSelect cardiac gene panel 
on the Life Technologies SOLiD 5500xl platform. Rare variants were defined as having a 
mean allelic frequency of less than 1x10-4 in ExAC, and were required to be protein-altering 
(missense, nonsense, frameshift, in-frame indels, and essential splice site) and with high 
quality calling (PASS filter). Rare variant pathogenicity was determined following ACMG 
variant classification guidelines13,14 and incorporated the use of the CardioClassifier 
resource12. 
 
Erasmus Cohort 
Apart from genotyping using the Global Screening Array (in the research setting), all 
Erasmus cohort samples also underwent sequencing or targeted genotyping in the context 
of clinical genetics assessments. All samples included in the present study were found to be 
carriers of class 4 or class 5 variants in sarcomere genes (MYBPC3, MYH7, TNNT2, TNNI3, 
TPM1, ACTC1, MYL3, and MYL2). Variant pathogenicity was assessed centrally according 
to the American College of Medical Genetics and Genomics and the Association for 
Molecular Pathology (ACMG/AMP) guidelines13 using an adapted version of the 
CardioClassifier resource12, as described previously2. Homozygous carriers and those 
carrying multiple pathogenic or likely pathogenic variants were excluded in the present 
analysis." 
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