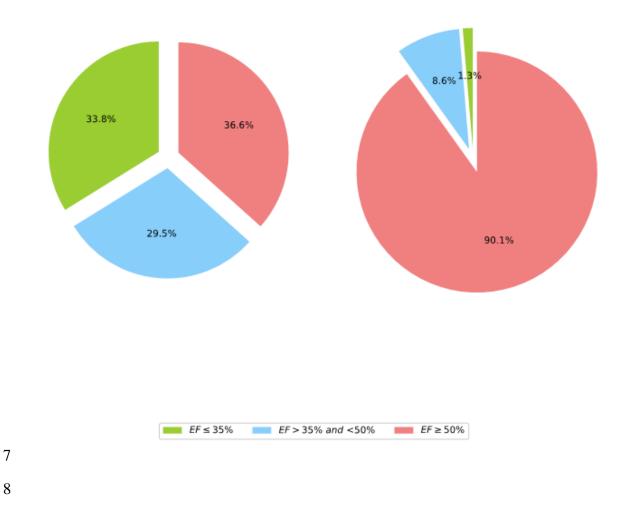
In the format provided by the authors and unedited.

Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram

Zachi I. Attia¹, Suraj Kapa¹, Francisco Lopez-Jimenez¹, Paul M. McKie¹, Dorothy J. Ladewig², Gaurav Satam², Patricia A. Pellikka¹, Maurice Enriquez-Sarano¹, Peter A. Noseworthy¹, Thomas M. Munger¹, Samuel J. Asirvatham¹, Christopher G. Scott³, Rickey E. Carter⁴ and Paul A. Friedman¹

¹Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA. ²Business Development, Mayo Clinic, Rochester, MN, USA. ³Health Sciences Research, Mayo Clinic, Rochester, MN, USA. ⁴Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA. *e-mail: friedman.paul@mayo.edu

1 Supplemental Information


2

- 3 Supplementary Figure 1 Legend: Distribution of Ejection Fraction based on
- 4 **network classification**. Of patients classified as having a low ejection fraction using the
- 5 threshold selected to achieve similar sensitivity and specificity, 63.5% had a EF under
- 6 50%. If classified as normal, 1.3% had a EF \leq 35%, and 90.1% had an EF \geq 50%.

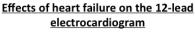
Distribution of EF Values by Classification

10,544 Patients classified as having Low EF

42,326 Patients classified as not having Low EF

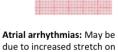
1

9	Supplemental Figure 2 Legend: Effects of Ventricular Dysfunction on the 12-Lead
10	Electrocardiogram. Cardiac hypertrophy, ventricular enlargement, and cardiac
11	abnormalities that lead to a reduced ejection fraction may be reflected by
12	electrocardiographic abnormalities in several ways including but not limited to those
13	outlined in the figure. Scarring of the ventricles may lead to changes in several
14	electrocardiographic findings due to aberrant electrical conduction, including the
15	presence of Q waves, QRS prolongation, or fractionation in the QRS. In turn, the
16	hemodynamic abnormalities associated with poor forward flow may lead to other
17	arrhythmias such as atrial fibrillation. Enlargement and scarring of the ventricles may
18	lead to both depolarization abnormalities (reflected as abnormalities in the QRS as noted)
19	or repolarization prolongation as reflected by a long QT interval. In addition, enlargement
20	of the ventricle may lead to a shift in the cardiac axis which is reflected on the 12-lead
21	electrocardiogram by the net electrical activation vector, QRS height, and other findings.
22	All of these features may be present to different extents depending on the individual with
23	heart failure and the cause of heart failure.



QRS widening: May be due to disease in intrinsic conduction system or myopathic process resulting in delayed activation

across myocardium


Q waves / QRS fractionation: May be due to volume overload of LV or regions of infarct resulting in delayed or atypical activation patterns

Other features:

- R wave progression: Delayed in infarcted patients Net QRS axis: Abnormal with
- verticular enlargement Atrial size: Predicted by P wave morphology QRS height: Correlates with .
- voltage and cardiac size Heart rate variability: . Correlates with autonomic state, which is often abnormal in heart failure

atria from poor ventricular hemodynamics and atrial enlargement

Repolarization abnormalities: Myocardial disease may be reflected by QT prolongation on the ECG

24

25 Supplemental Figure 3 Legend – Network Architecture: an abstraction of the selected 26 architecture, the network is composed of three main part : 1) temporal features extraction 27 - using convolutional blocks on the temporal axis. 2) Spatial feature extraction - using 28 similar convolutional blocks but with no zero padding. 3) Dense/Fully connected network 29 to regress the visual features to the output.

30 31