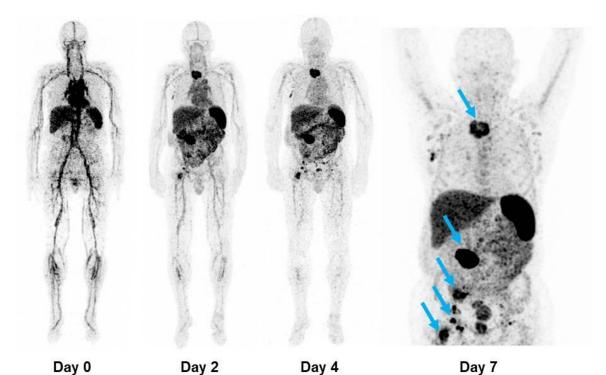
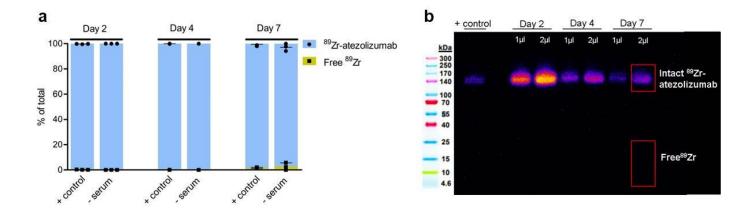
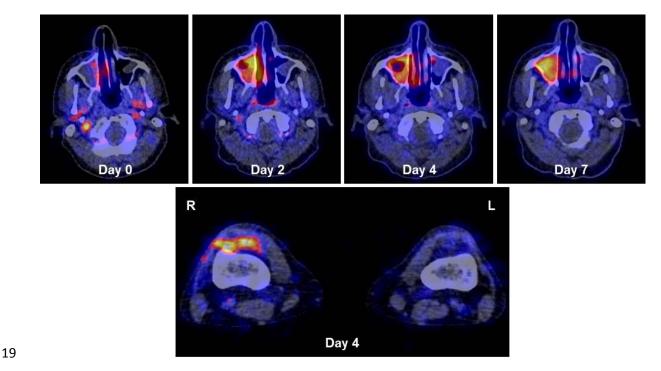
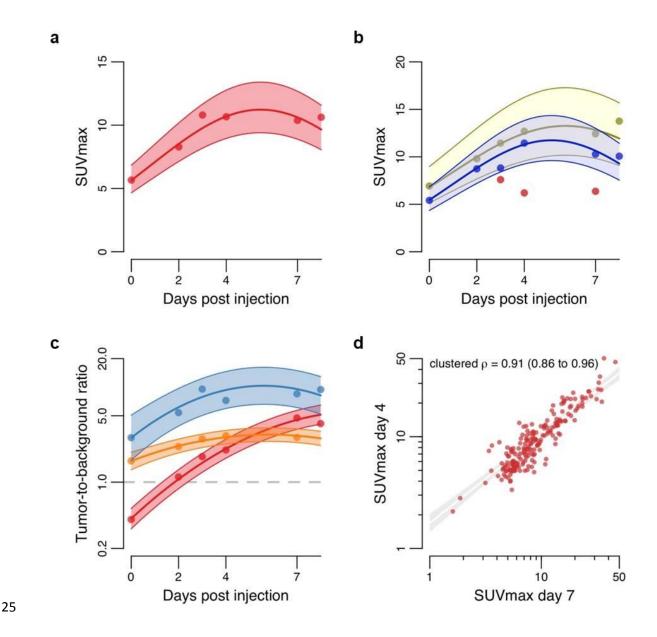

In the format provided by the authors and unedited.


⁸⁹Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer

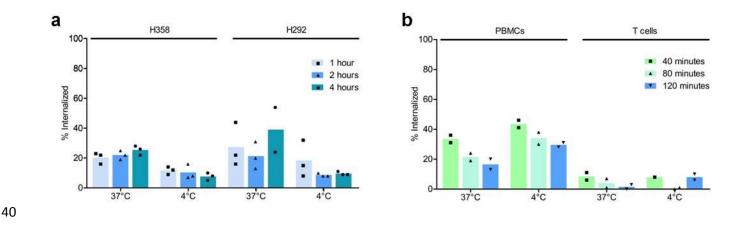
Frederike Bensch¹, Elly L. van der Veen¹, Marjolijn N. Lub-de Hooge^{2,3}, Annelies Jorritsma-Smit², Ronald Boellaard³, Iris C. Kok¹, Sjoukje F. Oosting¹, Carolina P. Schröder¹, T. Jeroen N. Hiltermann⁴, Anthonie J. van der Wekken⁴, Harry J. M. Groen⁴, Thomas C. Kwee³, Sjoerd G. Elias⁵, Jourik A. Gietema¹, Sandra Sanabria Bohorquez⁶, Alex de Crespigny⁶, Simon-Peter Williams⁶, Christoph Mancao⁷, Adrienne H. Brouwers³, Bernard M. Fine [©]⁶ and Elisabeth G. E. de Vries [©]^{1*}


¹Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. ²Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. ³Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. ⁴Pulmonary Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. ⁵Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands. ⁶Genentech, San Francisco, CA, USA. ⁷Genentech, Basel, Switzerland. *e-mail: e.g.e.de.vries@umcg. nl

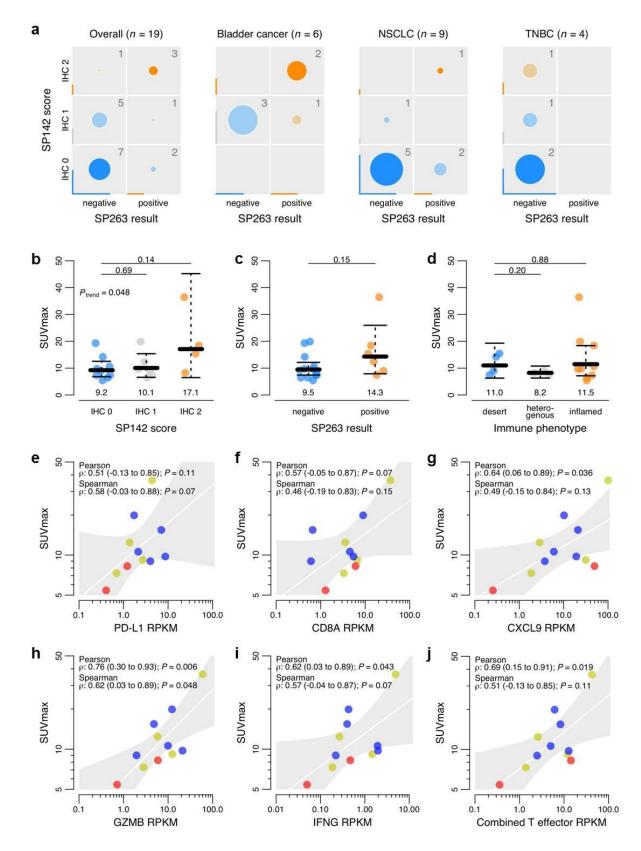

Supplementary Figure 1 Atezolizumab pharmacokinetics. (a) Atezolizumab serum concentration (ng/mL) over time plotted as geometric means per time point, including fitted regression line with 95%CI based on a linear mixed effect model with 62 measurements from 22 patients. (b) Scatter plot of PET derived atezolizumab concentration and ELISA derived atezolizumab serum concentration (both ng/mL) and regression line with 95%CI based on a linear mixed effect model with 95%CI based on a linear mixed effect model with 95%CI based on a linear mixed concentration and ELISA derived atezolizumab serum concentration (both ng/mL) and regression line with 95%CI based on a linear mixed effect model with 62 measurements from 22 patients; ρ: Pearson's correlation coefficient extended to clustered data with 95%CI.


⁹ Supplementary Figure 2 ⁸⁹Zr-atezolizumab biodistribution. Representative PET images (maximum intensity projections) of a patient one hour post tracer injection, and at days 2, 4 and 7. Multiple bone lesions, malignant inguinal and mediastinal lymphadenopathy and a big abdominal wall metastasis are indicated with blue arrows on the last PET scan 7 days postinjection (PET scans were performed once per patient and time point).

Supplementary Figure 3 Intactness of ⁸⁹Zr-atezolizumab over time. (a) Stability of ⁸⁹Zr-atezolizumab determined by SDS-PAGE in patients' blood samples drawn 2, 4 and 7 days postinjection (n = 3 biologically independent samples). Positive control (+ control) is ⁸⁹Zr-atezolizumab stored at 2-8°C. Mean with error bars indicating standard deviation. (b) Representative example of an SDS-PAGE (SDS-PAGE was performed once per sample).

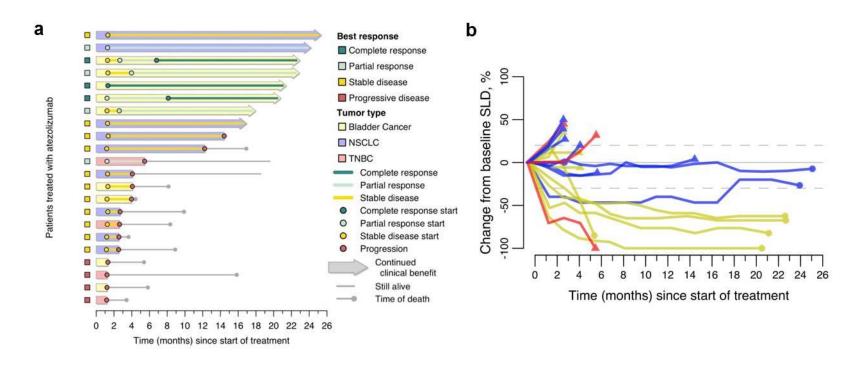


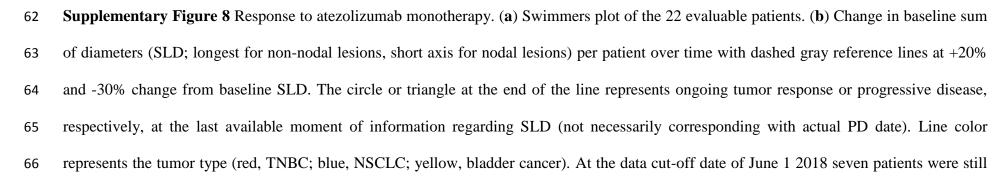
Supplementary Figure 4 ⁸⁹Zr-atezolizumab uptake in sites of inflammation. Upper panel
shows transversal PET/LD CT images of a patient with chronic sinusitis with increasing tracer
uptake over time. Lower panel shows increased tracer uptake in a patient with bursitis of the
right knee on day 4 after tracer injection (days 0 and 2 not scanned; knees were not in the field
of view on day 7; PET scans were performed once per patient and time point).



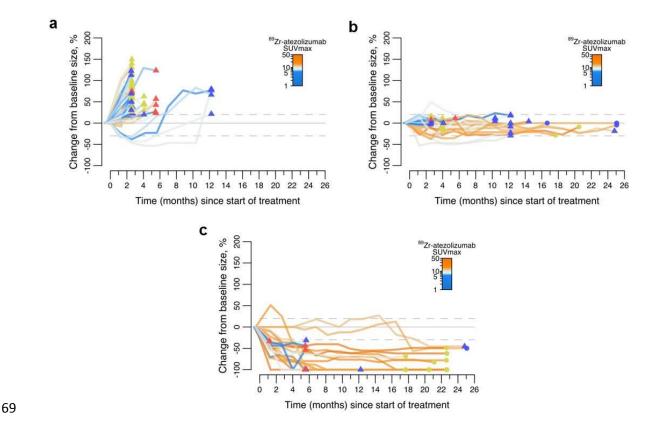
Supplementary Figure 5⁸⁹Zr-atezolizumab tumor uptake. (a) Relation between time post 26 tracer injection and tumor SUVmax (n = 196 in 22 patients) plotted as geometric mean per 27 time point, including fitted regression line with 95% CI. (b) Relation between time post tracer 28 injection and tumor SUVmax for bladder cancer (yellow, n = 85 in 9 patients) and NSCLC 29 (blue, n = 43 in 9 patients) separately plotted as geometric mean per time point, including 30 31 fitted regression line with 95% CI. For TNBC (red, n = 68 in four patients) no time-activity curve was included as all four patients were only scanned at two time points, prohibiting 32 curve-estimation. (c) Relation between time post tracer injection and tumor-to-background 33 ratio of lung metastases (blue, n = 44 in 10 patients) and bone metastases (orange, n = 62 in 9 34

patients), as well as tumor-to-blood ratio (red, n = 196 in 22 patients) plotted as geometric mean per time point, including fitted regression line with 95%CI. (d) Scatter plot of SUVmax day 4 and SUVmax day 7 and regression line with 95%CI based on a linear mixed effect model with 196 measurements from 22 patients; ρ : Pearson's correlation coefficient extended to clustered data with 95%CI.

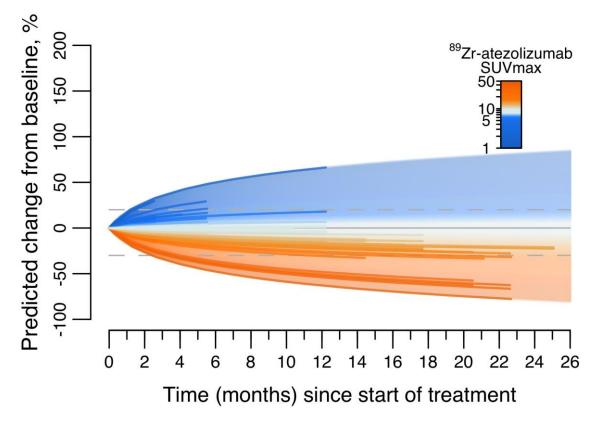

41 **Supplementary Figure 6** Internalization of ⁸⁹Zr-atezolizumab over time. (**a**) Internalization 42 of ⁸⁹Zr-atezolizumab in vitro by H292 and H358 tumor cells (n = 3 replicate wells). (**b**) 43 Internalization of ⁸⁹Zr-atezolizumab in vitro by human peripheral blood mononuclear cells 44 (PBMCs) and T cells of healthy volunteers (n = 2 replicate wells).



45


46 Supplementary Figure 7 Relation of IHC, immune phenotypes, PD-L1 and T effector gene 47 expression levels with ⁸⁹Zr-atezolizumab tumor uptake. (a) Confusion matrix of the 48 agreement in IHC results between the two tested PD-L1 antibodies, overall and according to

cancer type (size of circles corresponds with the relative distribution in each panel; marginal 49 horizontal and vertical lines show the distribution per antibody). (b-c) Relationship between 50 PD-L1 IHC ((b) SP142, (c) SP263; n = 19 biologically independent samples) or (d) immune 51 phenotype based on IHC (n = 16 biologically independent samples) of biopsied lesions and 52 ⁸⁹Zr-atezolizumab uptake on day 7 postinjection of the respective lesion. Data is summarized 53 as geometric mean SUVmax with 95%CI as error bars; two-sided P values shown on top are 54 derived from independent-samples t-tests, and the p for trend by linear regression. (e-j) 55 56 Pearson's and Spearman's rank correlation (95%CI) of PD-L1 (e) and gene expression levels of CD8 (f), chemokine ligand 9 (g), granzyme B (h), interferon gamma (i) and combined T 57 effector signature (j) with ⁸⁹Zr-atezolizumab uptake of the biopsied lesion (n = 11 biologically 58 independent samples); RPKM, reads per kilobase per million; red, TNBC; blue, NSCLC; 59 yellow, bladder cancer. 60



- 67 in follow-up: four of them were still on treatment, two were discontinued from treatment after 2 years and have an ongoing response, and one
- 68 patient discontinued treatment despite clinical benefit due to side effects.

Supplementary Figure 9 Spaghetti plots at lesion level grouped for tumor response per 70 71 lesion. Change in baseline diameter of single lesions (measured on CT; longest for non-nodal lesions, short axis for nodal lesions; diameter > 20 mm) over time (n = 651 measurements 72 from 107 metastases in 21 patients). Lines are color coded based on ⁸⁹Zr-atezolizumab uptake 73 (SUVmax). The circle or triangle at the end of the line represents ongoing tumor response or 74 progressive disease, respectively, at the last available moment of patient based information 75 76 regarding SLD, and the color represents the tumor type (red, TNBC; blue, NSCLC; yellow, 77 bladder cancer). Lesions are grouped based on percent change in diameter from baseline compared to last measurement ((a) \geq 20%; (b) >-30% and <20%; (c) \leq -30%) with dashed gray 78 79 reference lines at +20% and -30% change from baseline diameter.

Supplementary Figure 10 Individual lesion's response to treatment. Graphical results of a linear mixed effect model showing the relation of percent change from baseline size over time and baseline SUVmax (n = 651 measurements from 107 tumor lesions in 21 patients). The colored lines are predicted trajectories of actual lesions measured in the study for the duration of their actual observation, and the gradient filled area is a continuous representation of the model.

80

	All	Geometric mean	Geometric mean
		SUVmax below	SUVmax above
		median	median
	n = 22	<i>n</i> = 11	<i>n</i> = 11
Median age, years (range)	62.5 (40-76)	60 (42-71)	63 (40-76)
Sex, <i>n</i> (%)			
Male	13 (59)	5 (45)	8 (73)
Female	9 (41)	6 (55)	3 (27)
Primary tumor, <i>n</i> (%)			
BC	9 (41)	3 (27)	6 (55)
TNBC	4 (18)	4 (36)	0 (0)
NSCLC	9 (41)	4 (36)	5 (46)
ECOG performance status, n (%)			
0	14 (64)	7 (64)	7 (64)
1	8 (36)	4 (36)	4 (36)
Number of metastases, <i>n</i>			
Median (min-max)	4 (1-50)	5 (2-50)	3 (1-24)
Mean (SD)	8.9 (11.9)	12.2 (15.1)	5.6 (6.7)
Number of previous systemic regimens			
in the locally advanced or metastatic			
setting, <i>n</i> (%)			
1	15 (68)		
2	6 (27)		
≥ 3	1 (5)		

Supplementary Table 1. Demographics and disease characteristics of evaluable patients (n = 22) at study entry.

89 BC, Bladder cancer. TNBC, Triple-negative breast cancer. NSCLC, Non-small cell lung cancer. ECOG, Eastern

90 Cooperative Oncology Group. SUV, Standard uptake value.

Supplementary Table 2. ⁸⁹Zr-atezolizumab and atezolizumab treatment-related adverse events in 22 evaluable patients.

		No. (%) of ev	vents
		Any grade	Grade 3**
Tracer*	Pruritus	1 (100)	-
	Alanine aminotransferase increased	2 (2)	-
	Alkaline phosphatase increased	1 (1)	-
	Alopecia	1 (1)	_
	Aspartate aminotransferase increased	3 (3)	_
	Anorexia	1 (1)	-
	Arthralgia	3 (3)	-
	Chills	1 (1)	-
	Diarrhea	3 (3)	-
	Dizziness	1 (1)	
	Dry eyes	1 (1)	-
	Dry mouth	1 (1)	-
	Dry skin	4 (5)	-
	Edema	3 (3)	-
	QT corrected interval prolonged	1 (1)	-
A (1'	Fatigue	4 (5)	-
Atezolizumab	Flatulence	1 (1)	-
	Flu like symptoms	2 (2)	-
	Hyperthyroidism	4 (5)	-
	Hypothyroidism	2 (2)	-
	Gammaglutamyltransferase increased	9 (10)	-
	Infusion related reaction	4 (5)	1 (1)
	Insomnia	2 (2)	-
	Myalgia	4 (5)	_
	Nausea	1 (1)	-
	Pain in extremity	7 (8)	-
	Paresthesia	2 (2)	-
	Platelet count decreased	1 (1)	-
	Pneumonitis	1 (1)	-
	Pruritus	9 (10)	_
	Rash	7 (8)	_

AE, Adverse event. *Tracer comprises ⁸⁹Zr-labeled and unlabeled atezolizumab. ** No grade 4 events were
 observed. No, number.

15

Supplementary Table 3. Response rate per tumor type. 95

Tumor type (<i>n</i>)	$\operatorname{CR}(n)$	PR (<i>n</i>)	SD (<i>n</i>)	PD (<i>n</i>)	ORR (%)
BC (9)	3	2	2	2	56
NSCLC (9)	0	1	8	0	11
TNBC (4)	0	1	1	2	25

96 97

BC, Bladder cancer. NSCLC, Non-small cell lung cancer. TNBC, Triple-negative breast cancer. CR, Complete response. PR, Partial response. SD, Stable disease. PD, Progressive 98 disease. ORR, Objective response rate.

99 Supplementary Table 4. Adjustment for tumor type and tumor load.

- 100 1. Results of linear mixed-models with random intercept per patient relating best RECIST response to SUVmax
- 101 with various levels of adjustment (n = 22 patients with 196 lesions):

		Unadjusted		Adju	isted for tumor t	ype
Best RECIST	% Difference	95%CI	Р	% Difference	95%CI	Р
response	in SUVmax			in SUVmax		
PD	Reference	-	-	Reference	-	-
SD	41	-4 to 106	0.073	15	-26 to 79	0.49
PR	78	11 to 186	0.020	61	3 to 150	0.038
CR	235	98 to 467	0.00021	175	64 to 364	0.0013
Per category increase	45	24 to 69	$2.24e^{-05}$	37	18 to 60	$4.68e^{-05}$

102

	Adjusted for tumor type and number of lesions			s Adjusted for tumor type, number of lesions lesion localization, VOI size		
				lesion	localization, vO	I size
Best RECIST	% Difference	95%CI	Р	% Difference	95%CI	Р
response	in SUVmax			in SUVmax		
PD	Reference	-	-	Reference	-	-
SD	10	-33 to 81	0.68	3	-35 to 61	0.91
PR	53	-9 to 157	0.10	44	-10 to 130	0.12
CR	169	54 to 369	0.0025	110	26 to 249	0.0077
Per category	38	16 to 63	$7.08e^{-05}$	28	10 to 50	0.00031
increase						

103

104 2. Results of relation between doubling in SUVmax and best percent change in SLD with various levels of

105 adjustment by linear regression (n = 21 patients):

Model	Estimate	95%CI	Р	
Unadjusted	-34	-61 to 9	0.010	
Adjusted for tumor type	-41	-68 to -13	0.0060	
Adjusted for tumor type and number of lesions	-41	-70 to -11	0.0096	

106

107 3. Relation between SUVmax and PFS/OS (HR for above median SUVmax per patient and below median

108 SUVmax) with various levels of adjustment:

Small sample bias corrected Cox (Firth)						
		Unadjusted		Adjust	ed for tumor type a	nd load
	HR	95%CI	Р	HR	95%CI	Р
All patients (n = 22)					
PFS	11.7	3.3 to 62.7	$6.59e^{-09}$	10.0	2.2 to 62.4	0.0025
OS	6.3	1.8 to 33.4	0.0035	9.3	1.7 to 69.9	0.0084
Without TNB	BC (<i>n</i> = 18)					
PFS	10.7	2.7 to 59.6	0.00055	12.6	2.7 to 79.7	0.00097
OS	7.5	1.9 to 41.7	0.0041	12.4	2.3 to 99.2	0.0029

109

			Regular Cox	<u>C</u>			
		Unadjusted			Adjusted for tumor type and load (IPW)*		
	HR	95%CI	Р	HR	95%CI	Р	
All patients (n	n = 22)						
PFS	14.2	4.5 to 45.7	< 0.001	14.7	4.4 to 45.7	< 0.001	
OS	8.4	2.4 to 30.0	0.0015	8.5	1.9 to 33.5	0.0008	
Without TNB	C (<i>n</i> = 18)						
PFS	13.2	4.1 to 40.9	< 0.001	13.9	3.9 to 41.3	< 0.001	
OS	9.0	2.4 to 29.9	0.0030	9.2	1.6 to 33.5	0.020	

110 * Achieved balance assessed by post-IPW C-index (best 0.5; worst 1.0): All patients, tumor type and load

adjustment: 0.60; No TNBC, tumor type and load adjustment: 0.50.

Supplementary Table 5. Continuous analysis of relationship between ⁸⁹Zr-atezolizumab 112

uptake and patient outcome. 113

114

	⁸⁹ Zr-atezolizumab uptake as geometric mean SUVmax			
-	PFS OS			
HR*	6.6	4.0		
95%CI	2.3-26.7	1.5-16.1		
P^{**}	0.000032	0.0018		

PFS, progression free survival; OS, overall survival; HR, hazard ratio. * HR
per standard deviation decrease in the per patient geometric mean SUVmax. **

117 Likelihood ratio *P*.

118 Supplementary Table 6. Discriminatory performance of ⁸⁹Zr-

119 atezolizumab tumor uptake and PD-L1 IHC.

	geometric mean ⁸⁹ Zr- atezolizumab uptake	IHC SP142	IHC SP263
AUC (95%CI)*	$\frac{(n=22)}{0.83 \ (0.55-1.00)}$	$\frac{(n=19)}{0.60\ (0.35-0.85)}$	$\frac{(n=19)}{0.63 (0.39-0.88)}$
C-index PFS (95%CI)	0.86 (0.69-1.00)	0.55 (0.39-0.70)	0.60 (0.45-0.76)
C-index OS (95%CI)	0.80 (0.61-1.00)	0.55 (0.37-0.73)	0.65 (0.47-0.82)

120 AUC, area under the receiver operating characteristics curve; IHC, immunohistochemistry; PFS, progression

121 free survival; OS, overall survival. *Outcome defined as patients with and without CR/PR as best tumor 122 response.