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SUPPLEMENTARY INFORMATION 

 

Supplementary Table [1]: Demographics and cancer staging breakdown of patients in 
NLST subsets used. The total number of patients with cancer staging information (affected rows 
indicated by an asterisk *) is greater than the number of cancer patients reported in this table 
because some patients received a cancer diagnosis after the initial 3 years of screening, and were 
therefore considered cancer negative patients in our main analysis. In this table we only show 
patients that were considered cancer positive in our main analysis. 

 



 

 

Supplementary Table [2]: Manufacturer and model distributions for cases in the NLST 
subsets used. The number of volumes per manufacturer CT scanner model is shown for each 
column. 



 

 

Supplementary Table [3]: Attenuation, margin, and diameter volume counts of relevant 
subsets of data. These were generated using the nodule annotations in NLST, which happen 
once per patient year. The NLST data did not provide a reliable way of linking these back to a 
specific volume, but for all sets besides the training sets we used heuristics to select a single 
stack per screening year which was most likely to have been the stack that was used to generate 
the nodule annotations. However, this means that the volume counts are likely to be less accurate 
for the training set, where we did not apply heuristics to select a single stack per screening year. 

 



 

 

Supplementary Table [4]: Results with matched specificity and sensitivity. For the reader 
study without priors as an alternative to LUMAS, we (a) set the model’s specificity to match the 
average reader specificity and then compared sensitivity and matched sensitivity and then (b) 
matched the average reader sensitivity and compared specificity. In both cases analysis was 
conducted with n=507 volumes from 507 patients.  The same was done for the prior reader study 
in (c) and (d) with n=308 volumes from 308 patients. In the entire NLST test set, the matched 
specificity and sensitivity to NLST readers are shown for matched specificity (e) and matched 
sensitivity (f), comparing on n=6,716 cases. Note that these comparisons are more favorable to 
the model because they are based on operating points that maximize the delta. All comparisons 
in this table were made using a two-sided permutation test using 10,000 random resamplings of 
the data. 

 



 

 

Supplementary Table [5]: Subset analysis on reader study on a single CT volume (without 
using priors). 

 



 

 

Supplementary Table [6]: Subset analysis on reader study using prior CT volumes. 

 



 

 

Supplementary Table [7]: Reader disagreements. Numbers shown are fraction of cases with 
disagreements. We analyzed three different disagreement types: raw Lung-RADS score 
disagreement, management level disagreement (which groups Lung-RADS 1 and 2 as done for 
all other analyses presented) and large management disagreements where the disagreements were 
not in adjacent risk buckets (i.e. one reader reports Lung-RADS 2 and the other reports 
Lung-RADS 4A). This includes data from both reader studies (with priors and without priors). 

 

 

Supplementary Table [8]: Recall values on all cancer cases labeled with bounding boxes 
within the test dataset. The numerator and denominator refer to the number of found vs total 
malignant nodules in both single volume cases and those with priors. The @1 and @2 suffixes 
refer to the top single detection and top two detections surfaced by the detection model, 
respectively. The corresponding HIT values shown in Figures 2 and 3 focus on the subset of 
correctly classified cancer cases. Since the HIT@2 metric achieved a 100% hit rate in both 
baseline and with priors cases, the missed detections may have impacted the classification for 
these two cancer cases. 

 



 

 

Supplementary Table [9]: Summary of the differences between the model and the 
consensus of the readers. Each disagreement with a reader in cases where the model disagreed 
with the consensus of the readers appears once for every time one of the questions in the leftmost 
column is true. 

 

Kernel Selection 

Each case often had multiple reconstruction kernels available. When running the model on a case 

we selected harder kernels commonly used in lung imaging (see list below). In the reader study, 

we used the same volumes that were chosen for the model. Within each case we chose the 

highest ranked kernel according to the following lists. There were no cases with more than one 

manufacturer. 

● Siemens 
○ 1. B50f, 2. B45f, 3. B50s, 4. B40f, 5. B41s, 6. B60f, 7. B60s, 8. B70f, 9. B36f, 10. 

B35f, 11. B30f 12. B31s 
● GE 

○ 1. LUNG, 2. BONE, 3. BODY FILTER/BONE, 4. STANDARD, 5. BODY 
FILTER/STANDARD, 6. SOFT, 7. EXPERIMENTAL7, 8. BODY 
FILTER/EXPERIMENTAL7 



 

● Philips 

○ 1. D, 2. C, 3. B, 4. A 

● Toshiba 

○ 1. FC51, 2. FC50, 3. FC52, 4. FC53, 5. FC30, 6. FC11, 7. FC10, 8. FC82, 9. 
FL04, 10. FC02, 11. FC01, 12. FL01 

 

Additional Modeling Details 

 At a high level, our model begins with lung segmentation, followed by detection, and ending 

with classification, an approach that has been described in past research. However, for each of 

these components, we upgraded the specific techniques to state of art approaches (at the time of 

publication) for the general computer vision tasks: MaskRCNN44 for instance segmentation, 

Retinanet47 for object detection, and I3D47,49 for action recognition from video (also a volume 

classification task).  

Different lung segmentation approaches vary in terms of quality and computational cost. In our 

case, the approach used was solely to determine a center point of the lung segmentation 

bounding box and therefore precise lung boundaries were not a critical factor in the final results. 

One advantage of the MaskRCNN approach is that the segmentation is performed on 

two-dimensional (2D) slices and is independent of slice spacing. 

The cancer ROI detection model was trained on LIDC first, and then we collected additional 

labels on NLST to fine tune the model to only detect malignant nodules instead of all nodules. 

For classification, we found on our tune set that I3D alone performed well when predicting 

cancer directly. We then sought to combine this full volume approach with our two-stage 

approach (see Methods - Model Development and Training). We used I3D as the base feature 

extractor for classification tasks after determining it outperformed several other feature 

extractors on our tune set. We used the spatial resolutions shown in Extended Data Figure 10, 

which were the highest resolutions allowed by commercial hardware. For the cancer ROI 

detection and cancer risk prediction model, we were able to train on subvolumes smaller than the 
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whole volume, which allowed us to use 1.4 mm x 0.7 mm2 resolution images. While this may 

introduce additional “partial voluming” effects seen in clinical radiology, what the algorithm 

“sees” is generally quite different compared to human perception, and the training and evaluation 

was performed solely on these resampled volumes. For the full volume model we used a 

resampled 1.5 mm3 resolution. Detecting cancer alone for the full volume model is difficult due 

to the wide range of appearance and locations of nodules; therefore, the model was also trained 

to detect the presence of nodules. In order to assess the contribution of the full volume model, we 

retrospectively computed an AUC of 89.0% on the test set. Additionally, the subjective analysis 

showed evidence that the model focused on nodules (see Supplementary - “Subjective Analysis 

and Review of Results”). These results demonstrate that the full volume model effectively 

collected features relevant for cancer detection. 

 

Subjective Analysis 

We analyzed subsets in which LUMAS differed from the majority vote of our six readers. We 

first examined disagreements between our model and Retrospective-Lung-RADS on the tune set 

with three radiologists to generate hypotheses to pursue on the test cases. They generated nine 

hypotheses framed as questions with categorical answers. We then labeled all cases in the 

without prior reader study where the LUMAS bucket disagreed with the consensus reader 

bucket. Upon labeling disagreements, the most commonly present hypotheses were “Lesion 

could be categorized as scarring?,” “Stable compared to prior?” (only for cases with priors), 

“Scarring appears nodular in axial, more obviously scarring in orthogonal planes?” The full 

results of this analysis are shown in Supplementary Table 9, where each disagreement with a 

reader shows up once in the table for every time one of the hypotheses was labeled as true. 

Additionally, to better characterize and analyze model behavior, attribution regions for 12 cases 

in the tune set were examined through focused questions. These regions were computed using 

integrated gradients to show positive and negative classification influences53. A series of 

questions concerning the model’s region of focus for the global and local views were given. All 

readers unanimously agreed that both positive and negative attributions focused on the nodules 

https://paperpile.com/c/itSqlD/eqHiL


 

in all cancer positive cases. In 40% of the negative cases, the readers noted that parenchymal 

vasculature was highlighted. In 86% of the cancer positive cases, the readers noted that the full 

volume model focused on the same nodule as the two-stage model. Finally, in characterizing the 

region on the nodule examined, the strongest agreement was that for 4 of 7 of the cancer positive 

cases the readers agreed that the negative attributions were examining the edges of the nodule. 

Extended Data Figures 6a and 6b give examples of these cases. 

 

Review of Results 

The final manuscript draft was evaluated using the Radiomics Quality Score system (Radiomics, 

Maastricht, Netherlands) prior to submission receiving a score of 92%. 

 

Subset Analysis 

We computed the sensitivity and specificity of the model’s risk buckets and the average readers 

risk buckets on subsets based on nodule properties, lung cancer staging, and nodule size. This 

information was collected in the NLST trial. For some subsets, such as cancer staging, there were 

only cancer positive examples in the subset and therefore we only computed sensitivity. Full 

results are shown in Supplementary Tables 5 and 6. 




