
correspondence

Bioconda: sustainable and comprehensive
software distribution for the life sciences
Björn Grüning1,12, Ryan Dale2,12, Andreas Sjödin3,4, Brad A. Chapman5, Jillian Rowe6, Christopher H. Tomkins-Tinch7,8, Renan Valieris9, Johannes
Köster10,11* and The Bioconda Team13

1Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany. 2Laboratory of Cellular and Developmental Biology,
National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, USA. 3Division of CBRN Security and Defence,
FOI–Swedish Defence Research Agency, Umeå, Sweden. 4Department of Chemistry, Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden.
5Harvard T.H. Chan School of Public Health, Boston, MA, USA. 6Center for Genomics and Systems Biology, Genomics Core,, NYU Abu Dhabi,, Abu Dhabi,,
United Arab Emirates. 7Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA. 8Broad Institute of MIT and Harvard,
Cambridge, MA, USA. 9Laboratory of Bioinformatics and Computational Biology, A. C. Camargo Cancer Center, São Paulo, Brazil. 10Algorithms for Reproducible
Bioinformatics, Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg–Essen, Essen, Germany. 11Medical Oncology,
Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA. 12These authors contributed equally: Björn Grüning and Ryan Dale. 13A full list of
authors and affiliations is available as Supplementary Table 1. *e-mail: johannes.koester@uni-due.de

In the format provided by the authors and unedited.

SUPPLEMENTARY INFORMATION
https://doi.org/10.1038/s41592-018-0046-7

Nature Methods | www.nature.com/naturemethods

mailto:johannes.koester@uni-due.de
https://doi.org/10.1038/s41592-018-0046-7
http://www.nature.com/naturemethods

Supplement to Bioconda: A sustainable and comprehensive

software distribution for the life sciences

S1 Software management with Conda

Via the Conda package manager, installing software from Bioconda becomes very simple. In the following,
we describe the basic functionality (see Fig. S1f) assuming that the user has access to a Linux or macOS
terminal. After installing Conda (https://conda.io/miniconda.html), the first step is to set up the
Bioconda channel via:

$ conda config --add channels conda-forge

$ conda config --add channels bioconda

Now all Bioconda packages are visible to the Conda package manager. For example, the software CNVkit1,
can be searched for with

$ conda search cnvkit

in order to check if and in which versions it is available. Alternatively, packages can be searched interactively
at http://bioconda.github.io. CNVkit can be installed with:

$ conda install cnvkit

CNVkit needs various dependencies from Python and R, which would otherwise have to be installed in
separate manual steps (Supplementary Fig. S1c). The above command installs all dependencies needed by
CNVkit, including Python and R themselves. Conda enables updating and removing all these dependencies
via one unified interface.

A key benefit of Conda is the ability to define isolated, shareable software environments. This can happen
ad-hoc, or via YAML (https://yaml.org) files. For example, the following file defines an environment
consisting of Salmon5 and DESeq26. Here we specify the exact versions to install, though this is not strictly
necessary as the latest available version will be installed by default:

channels:

- bioconda

- conda-forge

- defaults

dependencies:

- bioconductor-deseq2 =1.16.1

- salmon =0.8.2

- r-base =3.4.1

Assuming that the above environment specification is stored in the file env.yaml, an environment my-env

containing the specified requirements and all of their dependencies, including R itself, can be created via the
command:

$ conda env create --name my-env --file env.yaml

1

https://conda.io/miniconda.html
http://bioconda.github.io
https://yaml.org

Creating an environment does in general not mean that Conda will install new copies of all required packages.
Instead, whenever possible, it will use hard links to a single central installation of each package, such that
environments are lightweight even if hundreds of packages are involved. To use the commands installed in
above new environment, it must first be activated by issuing the following command:

$ source activate my-env

Multiple environments can exist on the same system and only the packages in the currently-activated envi-
ronment will be accessible.

Within the activated environment, R, Salmon, and DESeq2 are available in exactly the defined versions. For
example, Salmon can be executed with:

$ salmon --help

It is possible to modify an existing environment by using conda update, conda install and conda remove.
For example, we could add a particular version of Kallisto7 and update Salmon to the latest available version
with:

$ conda install kallisto=0.43.1

$ conda update salmon

Finally, the environment can be deactivated again with the following command:

source deactivate

S1.1 How isolated software environments enable reproducible research

With isolated software environments as shown above, it is possible to define an exact version for each package.
This increases reproducibility by eliminating differences due to implementation changes. Note that above
we also pin an R version, although the latest compatible one would also be automatically installed without
mentioning it. To further increase reproducibility, this pattern can be extended to all dependencies of DESeq2
and Salmon and recursively down to basic system libraries like zlib and Boost (https://www.boost.org).
Environments are isolated from the rest of the system, while still allowing interaction with it: e.g., tools
inside the environment are preferred over system tools, while system tools that are not available from within
the environment can still be used. Conda also supports the automatic creation of environment definitions
from already existing environments. This allows to rapidly explore the needed combination of packages
before it is finalized into an environment definition:

$ conda env export --name my-env > full-env.yaml

This file can then be shared with other researchers, who, with the following two commands, can exactly
reproduce the same environment on their system and then activate that environment to use it:

$ conda env create --name from-collaborator --file full-env.yaml

$ source activate from-collaborator

In combination with workflow management systems like Galaxy8, bcbio-nextgen (https://github.com/
chapmanb/bcbio-nextgen), and Snakemake9 that interact directly with Conda, a data analysis can be
shipped and deployed in a fully reproducible way, from description and automatic execution of every anal-
ysis step down to the description and automatic installation of any required software. While this ensures
that exactly the same software is used, the underlying operating system and used hardware can still have
influence on the obtained results. While in theory robust results should not be affected by such aspects, it is
important to note that a Conda based approach can always be combined with virtual machines and container
images. The hosting of Bioconda packages is guaranteed by Anaconda Inc. without time limit. Nevertheless,
sustainability can be further improved by archiving a workflow together with all used packages via Zenodo
(https://zenodo.org), for example when using Snakemake (http://snakemake.readthedocs.io/en/v4.

2

https://www.boost.org
https://github.com/chapmanb/bcbio-nextgen
https://github.com/chapmanb/bcbio-nextgen
https://zenodo.org
http://snakemake.readthedocs.io/en/v4.3.0/snakefiles/deployment.html#sustainable-and-reproducible-archiving
http://snakemake.readthedocs.io/en/v4.3.0/snakefiles/deployment.html#sustainable-and-reproducible-archiving

3.0/snakefiles/deployment.html#sustainable-and-reproducible-archiving). Naturally, above no-
tion of reproducibility only involves the ability to rerun in silico experiments under the same technical
circumstances and with the same data. It does not free the researcher from properly designing experiments.

S2 Relation to container and module infrastructure

Reproducible software management and distribution is enhanced by other current technologies. Conda in-
tegrates well with environment modules (http://modules.sourceforge.net/), a technology used nearly
universally across HPC systems. An administrator can use Conda to easily define environment modules
or use Conda itself as an environment manager in order to maintain software stacks for multiple labs and
project-specific configurations. Another approach to reproducibility is to use containers, popularized by
Docker, which provide a way to publish an entire software stack down to the operating system. They pro-
vide greater isolation and control over the environment that software is executed in, but at the expense of
some customizability. Conda complements container-based approaches. Where flexibility is needed, Conda
packages can be installed directly on the system. Where the uniformity of containers is required, Conda can
be used to build images, avoiding the nuanced installation steps that would ordinarily be required to build
and install software within an image. In fact, for each Bioconda package, our build system automatically
builds a minimal Docker image containing that package and its dependencies, which is subsequently uploaded
and made available via the Biocontainers project2. As a consequence, every built Bioconda package is avail-
able not only for installation via Conda, but also as a container via Docker, Rkt (https://coreos.com/rkt),
and Singularity3, such that the desired level of reproducibility can be chosen freely4.

S3 New recipes, maintenance and quality assurance in the Bio-
conda project

To ensure reliable maintenance of thousands of packages, we use a semi-automatic, agent-assisted devel-
opment workflow (Supplementary Fig. S1d), orchestrated by a suite of tools we authored and maintain
(bioconda-utils, https://github.com/bioconda/bioconda-utils). All Bioconda recipes are hosted in a
GitHub repository (https://github.com/bioconda/bioconda-recipes). Both the addition of new recipes
and the update of existing recipes in Bioconda is handled via pull requests. A contributor opens a pull
request on the GitHub repository with a modified version of one or more recipes, and these changes are
automatically compared against the current state of Bioconda. Once a pull request arrives, our infrastruc-
ture performs several automatic checks. Problems discovered in any step are reported to the contributor
and further progress is blocked until they are resolved. First, the modified recipes are checked for syntactic
anti-patterns, i.e., formulations that are syntactically correct but bad style (termed linting). This process
ensures consistency across all submitted recipes, serving as an initial quality-control step and easing the
automated maintenance of recipes. Second, the modified recipes are built on Linux and macOS, via a cloud
based, free-of-charge service (https://travis-ci.org). Successfully built recipes are tested (e.g., by run-
ning the generated executable). Since Bioconda packages must be able to run on any supported system, it is
important to check that the built packages do not rely on particular elements from the build environment.
Therefore, testing happens in two stages: (a) test cases are executed in the full build environment and (b)
test cases are executed in a minimal Docker (https://docker.com) container which purposefully lacks all
non-common system libraries. Hence, a dependency that is not explicitly defined will lead to a failure in
the latter, more stringent test. Once the build and test steps have succeeded, a member of the Bioconda
team reviews the proposed changes and, if acceptable, merges the modifications into the official repository.
Upon merging, packages are uploaded to the hosted Bioconda channel (https://anaconda.org/bioconda),
where they become available via the Conda package manager. When a Bioconda package is updated to a
new version, older builds are generally preserved, and recipes for multiple older versions may be maintained
in the Bioconda repository.

3

http://snakemake.readthedocs.io/en/v4.3.0/snakefiles/deployment.html#sustainable-and-reproducible-archiving
http://snakemake.readthedocs.io/en/v4.3.0/snakefiles/deployment.html#sustainable-and-reproducible-archiving
http://modules.sourceforge.net/
https://coreos.com/rkt/
https://github.com/bioconda/bioconda-utils
https://github.com/bioconda/bioconda-recipes
https://travis-ci.org
https://docker.com
https://anaconda.org/bioconda

Above process appears to scale well with the growing number of recipes and contributors (Supplementary
Fig. S1a,b). The usual turnaround time of the workflow is short (Supplementary Fig. S1e): 61% of the
pull requests are merged within 5 hours. Of those, 36% are even merged within 1 hour. Only 18% of the
pull requests need more than a day. Hence, publishing software in Bioconda or updating already existing
packages can be accomplished typically within minutes to a few hours.

Using Bioconda as a service to obtain packages for local installation entails trusting that (a) the provided
software itself is not harmful and (b) it has not been modified in a harmful way. Ensuring (a) is up to the
user. In contrast, (b) is handled by our workflow. First, source code or binary files defined in recipes are
checked for integrity via MD5 or SHA256 hash values. Second, all review and testing steps are enforced via
the GitHub interface. This guarantees that all packages have been tested automatically and reviewed by
a human being. Third, all changes to the repository of recipes are publicly tracked, and all build and test
steps are transparently visible to the user. Finally, the automatic parts of the development workflow are
implemented in the open-source software bioconda-utils. In the future, we will further explore the possibility
to sign packages cryptographically.

Figure S1: Development, dependency structure, workflow, and turnaround time. (a) contributing authors
and (b) added recipes over time. (c) largest connected component of directed acyclic graph of Bioconda
packages (nodes) and dependencies (edges). Highlighted is the induced subgraph of the CNVkit1 package
and its dependencies spanning Python, C/C++, and R ecosystems (node coloring as defined in Fig. 1a
in main text, squared node represents CNVkit). (d) GitHub based development workflow: a contributor
provides a pull request that undergoes several build and test steps, followed by a human review. If any
of these checks does not succeed, the contributor can update the pull request accordingly. Once all steps
have passed, the changes can be merged. (e) Turnaround time from submission to merge of pull requests in
Bioconda. (f) Workflow for using Conda packages. After the Bioconda channel has been set up, packages
can be searched and installed directly. Alternatively, isolated software environments can be created.

4

References

1. Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: Genome-Wide Copy Number Detection and
Visualization from Targeted DNA Sequencing. PLoS Comput Biol 2016; 12: e1004873.

2. da Veiga Leprevost F, Grüning BA, Alves AS, Röst HL, Uszkoreit J, Barsnes H et al.. BioContainers:
an open-source and community-driven framework for software standardization. Bioinformatics 2017; 33:
2580–2582.

3. Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute. PLOS
ONE 2017; 12: e0177459.

4. Grüning B, Chilton J, Köster J, Dale R, Goecks J, Backofen R et al.. Practical computational repro-
ducibility in the life sciences. bioRxiv preprint 2017. doi:10.1101/200683.

5. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification
of transcript expression. Nat Methods 2017; 14: 417–419.

6. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biol 2014; 15: 550.

7. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat
Biotechnol 2016; 34: 525–7.

8. Afgan E, Baker D, van den BM, Blankenberg D, Bouvier D, Čech M et al.. The Galaxy platform for
accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 2016; 44:
W3–W10.

9. Köster J, Rahmann S. Snakemake–a scalable bioinformatics workflow engine. Bioinformatics 2012; 28:
2520–2522.

5

	Bioconda: sustainable and comprehensive software distribution for the life sciences
	Bioconda: sustainable and comprehensive software distribution for the life sciences
	SpringerNature_NatMeth_46_ESM.pdf
	SpringerNature_NatMeth_46_ESM.pdf
	Software management with Conda
	How isolated software environments enable reproducible research

	Relation to container and module infrastructure
	New recipes, maintenance and quality assurance in the Bioconda project

	SpringerNature_NatMeth_46_supplement.pdf
	Bioconda: sustainable and comprehensive software distribution for the life sciences
	Bioconda: sustainable and comprehensive software distribution for the life sciences
	Bioconda: sustainable and comprehensive software distribution for the life sciences

