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Supplementary Notes 
 
Supplementary Note 1: The SCENIC+ workflow 
 
The SCENIC+ workflow consists of three main steps, performed with three linked 

Python modules: 1) unsupervised identification of enhancers with shared accessibility 

patterns from scATAC-seq data (pycisTopic), 2) prediction of TF binding sites via motif 

enrichment analysis (pycisTarget) and 3) prediction of eGRNs combining TF 

expression, TF binding sites, region accessibility and gene expression (SCENIC+). 

The minimal input for SCENIC+ is a gene expression matrix with cell type annotation 

and a corresponding scATAC-seq fragments file. The two latter can be replaced by a 

precompiled matrix with fragment counts and precomputed peak coordinates. 

The three Python modules include detailed tutorials to facilitate their use for 

standalone analyses. Links to the tools, SCENIC+ code and tutorials are available at: 

scenicplus.readthedocs.io. 

 
PycisTopic 

Pycistopic is an improved Python-based version of our Bayesian framework cisTopic1, 

which exploits a topic modelling technique called Latent Dirichlet Allocation (LDA)2. 

This unsupervised approach simultaneously clusters cells and co-accessible regions 

into regulatory topics. Outside the SCENIC+ framework, pycisTopic can be used to 

analyze independent scATAC-seq data as well. PycisTopic is available at 

https://github.com/aertslab/pycisTopic , with full documentation and tutorials available 

at pycistopic.readthedocs.io The full pycisTopic pipeline consists of the following steps 

(*indicates those required for the SCENIC+ workflow, ** indicates those recommended 

for the SCENIC+ workflow): 

- Consensus peak calling*: PycisTopic will first create a set of consensus peaks 

across all cells by calling and merging peaks on pseudobulk ATAC-seq profiles per 

cell type.  First, pseudobulk fragment bed files per cell type are generated utilizing 

the fragments file and cell type annotations provided by the user. In a second step, 

peaks are called using MACS23, with parameters –format BEDPE (as we are 

providing fragments bed files as input) and –keep-dup all --shift 73  --ext_size 146, 

as recommended for scATAC-seq data. To derive a set of consensus peaks, an 

iterative overlap peak merging procedure is used as described in Corces et al. 



20184.  First, each summit is extended a `peak_half_width` (by default, 250bp) in 

each direction and less significant peaks are iteratively filtered out. During this 

procedure peaks will be merged and depending on the number of peaks included 

into them, different processes will happen: 1) 1 peak: The original peak will be 

kept, 2) 2 peaks: The original peak region with the highest score will be kept and 

3) 3 or more peaks: The original region with the most significant score will be taken, 

and all the original peak regions in this merged peak region that overlap with the 

significant peak region will be removed. The process is repeated with the next 

most significant peak (if it was not removed already) until all peaks are processed. 

This procedure will happen twice, first for each pseudobulk peak, and after peak 

score normalization to process all peaks together. We recommend using this set 

of regions downstream, as we have observed that using pseudobulk peaks 

improves signal compared to using bulk peaks across the whole population 

(specially for rare cell types, whose signal may be confused by noise while using 

the merged ATAC-seq profile of the whole population).  In case of independent 

scATAC-seq data, the cell annotation can also be obtained from alternative 

methods, such as a preliminary clustering analysis using a predefined set of 

genome-wide regions/peaks (e.g. SCREEN5) as input to identify cell populations. 

- QC analysis and cell selection**:  PycisTopic computes QC metrics at the 

sample-level and the barcode-level. Sample-level statistics can be used to assess 

the overall quality of the sample, while barcode level statistics can be used to 

differentiate good quality cells versus the rest. 

Sample-level statistics include:  

• Barcode rank plot: The barcode rank plot shows the distribution of non-

duplicate reads and which barcodes were inferred to be associated with cells. 

A steep drop-off ('knee') is indicative of good separation between the cell-

associated barcodes and the barcodes associated with empty partitions. 

• Insertion size: ATAC-seq requires a proper pair of Tn5 transposase cutting 

events at the ends of DNA. In the nucleosome-free open chromatin regions, 

many molecules of Tn5 will fragment the DNA; around nucleosome-occupied 

regions, Tn5 can only access the linker regions. Therefore, in a good ATAC-seq 

library, one should expect to see a sharp peak at the <100 bp region (open 

chromatin), and a peak at ~200bp region (mono-nucleosome), and other larger 



peaks (multi-nucleosomes). A clear nucleosome pattern indicates a good 

quality of the experiment. 

• Sample TSS enrichment: The TSS enrichment calculation is a signal to noise 

calculation. The reads around a reference set of TSSs are collected to form an 

aggregate distribution of reads centered on the TSSs and extending to 1,000 

bp in either direction (for a total of 2,000bp). This distribution is then normalized 

by calculating a fold change compared to 100bp at either side of the flanks of 

the distribution.  

• FRiP distribution: Fraction of all mapped reads that fall into the called peak 

regions, i.e. usable reads in significantly enriched peaks divided by all usable 

reads. A low FRIP indicates that many reads form part of the background, and 

so that the data is noisy. 

• Duplication rate: A fragment is considered “usable” if it uniquely maps to the 

genome and remains after removing PCR duplicates (defined as two fragments 

that map to the same genomic position and have the same unique molecular 

identifier). The duplication rate serves to estimate the number of usable reads 

per barcode. High duplication rates may indicate over-sequencing or lack of 

fragments after transposition and encapsulation. 

Barcode-level statistics include: 

• Total number of (unique) fragments per cell-barcode 
• TSS enrichment per cell-barcode: The normalized coverage at the TSS 

position for each barcode (average +-10bp from the TSS). Noisy cells will have 

a low TSS enrichment. 

• FRiP per cell-barcode: The fraction of reads in peaks for each barcode. Noisy 

cells have low FRIP values. However, this filter should be used with nuance, as 

it depends on the quality of the original peaks. For example, if there is a rare 

population in the sample, its specific peaks may be missed by peak calling 

algorithms, causing a decrease in their FRIP values. 

- Count matrix generation*: PycisTopic can generate a fragment count matrix from 

the fragments files, a set of regions (preferably, consensus regions as previously 

explained) and a list of high quality cells. Alternatively, a precomputed count matrix 

can also be used as input. In this step a cisTopic object will be created, including 

the fragment counts, path/s to the fragments files (if used to generate the count 

matrix) and cell/region metadata. 



- Doublet identification: The fragment count matrix can be used as input for 

Scrublet6 (v0.2.3), By default, and when dealing with 10x data sets, the expected 

doublet rate is set to 10%. 

- Topic modelling algorithms and model selection*: PycisTopic implements two 

algorithms for topic modelling, serial LDA with a Collapsed Gibbs Sampler (as 

implemented in the lda module) and Mallet, which allows to parallelize the LDA 

model estimation. The same default parameters as in cisTopic1 are used. 

Following metrics for model selection are included in pycisTopic: 
• Mimno_2011: Uses the average model coherence as calculated by Mimno et 

al (2011)7. To reduce the impact of the number of topics, the average coherence 

based on the top values is used. Better models have a higher coherence. 

• Log-likelihood: Uses the log-likelihood in the last iteration as calculated by 

Griffiths and Steyvers (2004)8, as used in cisTopic. Better models have a higher 

log-likelihood. 

• Arun_2010: Uses a density-based metric as in Arun et al (2010)9 using the 

topic-region distribution, the cell-topic distribution and the cell coverage. Better 

models have a lower score for this metric. 

• Cao_Juan_2009: Uses a divergence-based metric as in Cao Juan et al 

(2009)10 using the topic-region distribution. Better models have a lower score 

for this metric. 

The best model (i.e. the one with the optimal number of topics) is the model with the 

smallest number of topics where coherence (Minmo_2011) and Log-likelihood are 

maximized and Arun_2010 and Cao_Juan_2009 are minimized. 
- Dimensionality reduction and batch effect correction**: Cells (or regions) can 

be clustered using the leiden algorithm and embedded using dimensionality 

reduction with UMAP and TSNE using the cell-topic (or topic region distributions). 

In addition, harmonypy (v0.0.5) can be used on scaled cell-topic distributions to 

correct for batch effect between samples (see mouse cortex analysis). When 

working with single cell multiome data, it is possible to co-cluster and reduce 

dimensionality using both the scRNA-seq and scATAC-seq data by using UMAP 

to build fuzzy simplicial sets (similar to KNN graphs). 

- Topic binarization and QC*: To perform motif analysis (and other downstream 

steps) topics have to be binarized into region sets rather than continuous 

distributions. Several binarization methods are included in pycisTarget (applicable 



for topic-region and cell-topic distributions): 'otsu' (Otsu, 1979)11, 'yen' (Yen et al., 

1995)12, 'li' (Li & Lee, 1993)13, 'aucell' (Van de Sande et al., 2020)14 or 'ntop' (Taking 

the top n regions per topic). Otsu and Yen's methods work well for topic-region 

distributions; however, for some downstream analyses, it may be convenient to 

use 'ntop' to have balanced region sets (e.g. training of classification models). By 

default, pycisTopic uses Otsu thresholding for binarization, as it results in the 

largest number of regions per topic while limiting the amount of “noise” for motif 

enrichment analysis. For cell-topic distributions, we recommend using the AUCell 

method. In addition, pycisTopic includes new metrics to assess topic quality: 

• Number of assignments and regions/cells per binarized topic. 
• Topic coherence (Mimno et al., 2011)7: Measures to which extent high scoring 

regions in the topic are co-accessible in the original data. If it is low, it indicates 

that the topic is rather random. Better topics have a higher score. 

• The marginal topic distribution: Indicates how much each topic contributes 

to the model. Better topics have a higher score. 

• The gini index: Value between 0 and 1, that indicates the specificity of topics 

(0: General, 1: Specific) 

- Drop-out imputation*: Thanks to the probabilistic nature of topic modelling, drop-

outs can be imputed by multiplying the cell-topic and topic-region distributions, 

resulting in a matrix with the probabilities of each region in each cell. 

- Calculation of Differentially Accessible Regions (DARs)*: Using the imputed 

fragment matrix Differentially Accessible Regions, or DARs can be calculated. 

Briefly, a Wilcoxon rank sum test is performed for user specified contrasts. By 

default, a DAR is defined as a region with LogFC > 0.5 and benjamini hochberg  

adjusted p values < 0.05. 

- Gene activity and Differentially Accessible Genes (DAGs): The gene activity 

recapitulates the overall accessibility values in a space around the gene. 

Differentially Accessible Genes (DAGs) can be derived from this matrix. The user 

can select among different options: 

• Search space: The user can choose whether the search space should include 

other genes or not (use_gene_boundaries), and the minimum and maximum 

distance it should have (upstream and downstream). Promoters can be 

excluded from the calculations, as they are usually ubiquitously accessible. 



• Distance weight: The parameters weights the impact of distance when 

inferring region to gene weights as an exponential function. The user can 

control whether this weight should be used (distance_weight) and the effect of 

the distance (decay_rate). In addition, the user can choose from which distance 

to the gene body this weight is applied (extend_gene_body_upstream and 

extend_gene_body_downsstream) 

• Gene size weight: Large genes may have more peaks by chance. The user 

can optionally apply a weight based on the size of each gene 

(gene_size_weight), which by default is dividing the size of each gene by the 

median gene size in the genome. Alternatively, the user can also 

use average_scores which will calculate the gene activity as the mean 

weighted region accessibility of all regions linked to the gene. 

• Gini weight: This weight will give more importance to regions that are highly 

specific (gini_weight). 

- Label transfer: PycisTopic includes wrappers for several label transfer methods 

using annotated scRNA-seq and the gene activity matrix. The methods available 

for label transferring are: ‘ingest’15, 'harmony'16, 'bbknn'17, 'scanorama'18 and 'cca'. 

Except for ingest, these methods return a common coembedding and labels are 

inferred using the distances between query and reference cells as weights. 

- pyGREAT: pycisTopic makes GREAT (Genomic Regions Enrichment of 

Annotations Tool)19 analysis automatic by constructing a HTTP POST request 

according to an input region set and automatically retrieving results from the 

GREAT web server. 

- Signature enrichment: Given epigenomic signatures are intersected with the 

regulatory regions in the dataset and summarized into region sets. Using the 

imputed fragment matrix, all regions in each cell are ranked and the cell-specific 

rankings are used as input for AUCell. By default, we use 5% of the total number 

of regions in the dataset as a threshold to calculate the AUC. 

- Export to loom files**: PycisTopic allows to export cisTopic object to loom files 

compatible with Scope for visualization20 and SCopeLoomR, for importing 

pycisTopic analyses into R. 

 

PycisTarget 



PycisTopic unsupervisedly identifies groups of co-accessible regions (cis-regulatory 

topics) as well as cell type specific enhancers (DARs). These regulatory programs are 

used in the second step of SCENIC+, in which TFs and their potential target regions 

(i.e. cistromes) are identified using motif enrichment analysis. For this purpose, we 

have developed pycisTarget, a motif enrichment suite that combines different motif 

enrichment approaches such as cisTarget21–23 and Homer24; and a novel approach to 

compute Differentially Enriched Motifs between sets of regions called DEM. 

Pycistarget is available at https://github.com/aertslab/pycistarget , with full 

documentation and tutorials available at pycistarget.readthedocs.io. 

- Homer: PycisTarget includes a wrapper to run Homer’s findMotifsGenome.pl, 

allowing the identification of known and de novo motifs (by default using default 

Homer parameters). For identifying cistromes for each motif, found motifs are used 

as input for homer2 find. Known motifs are annotated according to the motif 

annotation in the SCENIC+ motif collection. To annotate de novo motifs, Tomtom25 

is run with the SCENIC+ motif collection to identify the closest match, allowing to 

transfer its annotation to the de novo motif when specified. To form TF cistromes, 

motif-based cistromes are combined based on the TF annotations. 

- Generation of cisTarget databases: cisTarget and DEM require ranking and 

score-based databases, respectively, with regions as rows, motifs (or motif 

clusters) as columns, and scores or ranking values of these scores, as values. For 

this, we have developed an adapted version of Cluster-Buster26, which is now 2 

times faster. Cluster-Buster uses Hidden Markov Models (HMMs) to score clusters 

of motifs (i.e., Cis-Regulatory Modules (CRM)) given a set of regions. This 

implementation is available at 

https://resources.aertslab.org/cistarget/programs/cbust. The source code for our 

cluster-buster implementation is available at https://github.com/ghuls/cluster-

buster/tree/change_f4_output. Briefly, given a motif collection (in cb format) and a 

set of regions, Cluster-Buster is run using each motif across all regions. When 

dealing with motif clusters, Cluster-Buster uses all motif variations by implanting 

each motif as a hidden state in a HMM, and each candidate sequence receives a 

log-likelihood ratio (LLR) score per motif cluster (i.e. CRM score). A scores 

database is first generated by taking the highest CRM score per sequence. A 

ranking database is then generated by ranking, for each motif, all the regions by 

decreasing motif score. The code and documentation to generate these databases 



is available at https://github.com/aertslab/create_cisTarget_databases. The motif 

collection to generate custom databases is available at 

https://resources.aertslab.org/cistarget/motif_collections/. We provide 

precomputed motif databases using predefined sets of regulatory regions for 

hg38, mm10 (using SCREEN regions5) and dm6 (using cisTarget regions, defined 

by partitioning the entire non-coding Drosophila genome based on cross-species 

conservation) at:  https://resources.aertslab.org/cistarget/databases/. cisTarget 

databases can also be generated using genomic tracks, for instance from TF 

ChIP-seq. To generate track databases, a bed file indicating each genomic region 

and the average signal (e.g. as output from bigWigAverageOverBed) has to be 

provided. Regions will then be sorted per track in decreasing order based on these 

scores. In the case of TF ChIP-seq tracks, tracks are linked to the TF that was 

targeted in the ChIP-seq experiment. 

- cisTarget: pycisTarget implements the ranking based motif enrichment method 

cisTarget21–23. Briefly, genomic regions (i.e. consensus peaks, or predefined 

regions from SCREEN) are first scored using a motif collection with Cluster-Buster, 

as previously described. These regions will be ranked in decreasing order based 

on their score for each motif. The input regions are intersected with regions in the 

database (with at least 40% overlap). cisTarget uses a recovery curve approach 

(for each motif), in which a step is taken in the y-axis when as region in the motif 

ranking (x-axis) is found in the region set. The Area Under the Curve for each motif 

is normalized based on the average AUC for all motifs and their standard deviation, 

resulting in a Normalized Enrichment Score (NES) that is used to quantify the 

enrichment of a motif in a set of regions: 

𝑁𝐸𝑆  =
𝐴𝑈𝐶  −  𝑚𝑒𝑎𝑛(𝐴𝑈𝐶)

𝑠𝑑(𝐴𝑈𝐶)  

With: 

𝑚𝑒𝑎𝑛(𝐴𝑈𝐶)  The average AUC values across all motifs 

𝑠𝑑(𝐴𝑈𝐶)  The standard deviation of AUC values across all motifs 

 

By default, motif that obtain a NES above 3.0 are kept. To obtain the target regions for 

each motif (motif-based cistrome) the regions at the top of the ranking (leading edge) 

are retained. The top of the ranking is defined by an automated thresholding method 



that retains regions with a ranking below the rank at max, which is defined by the 

following formula: 

𝑅𝑎𝑛𝑘𝐴𝑡𝑀𝑎𝑥 = max	(𝑟𝑐𝑐!"#$% − =𝜇?𝑟𝑐𝑐&''	!"#$%)@ + 2 ∙ 𝑆𝐷?𝑟𝑐𝑐&''	!"#$%)@E) 

With: 

𝑟𝑐𝑐!"#$%   the recovery curve of the motif of interest. 

 𝜇?𝑟𝑐𝑐&''	!"#$%)@ the average recovery curve over all motifs. 

 𝑆𝐷?𝑟𝑐𝑐&''	!"#$%)@ the standard deviation of the recovery curve over all motifs. 

To obtain target region for each TF, the motif-based cistromes of motifs annotated to 

the TF are merged. 

- DEM: DEM performs a Wilcoxon test between scores in foreground and 

background region sets to assess motif enrichment. Briefly, genomic regions (i.e. 

consensus peaks, or predefined regions from SCREEN5) are first scored using a 

motif collection with Cluster-Buster, as previously described. Regions in the input 

region sets are intersected with regions in the database (with at least 40% 

overlap), and a Wilcoxon rank sum test is performed between CRM score 

distributions in the two groups. By default, motifs adjusted p-value < 0.05 

(Bonferroni) and LogFC > 0.5 are kept. A cistrome for each motif is generated by 

simultaneously optimizing precision and recall to separate foreground from 

background regions or using a predefined CRM threshold. To obtain the target 

regions for each TF, the motif-based cistromes of motifs (annotated to that TF are 

combined. 
Within the SCENIC+ workflow, motif enrichment is performed by default in binarized 

topics and DARs calculated by pycisTopic, using cisTarget and DEM (including and 

excluding promoters from the region sets). By default, DEM is run using topics or DARs 

as foreground and 500 regions in other topics/DARs as background (with the same 

proportion of promoters as in the foreground). Additional region sets (e.g. DARs 

derived from specific contrasts instead of using all populations as background) can be 

easily added. Cistromes derived from all the motif enrichment analysis are merged by 

TF to generate a final set of TF-region cistromes. 

 

SCENIC+ 

eGRNs are predicted in the final step of SCENIC+. This step requires as input: the 

gene expression matrix, the imputed accessibility matrix (from pycisTopic) and the TF 



cistromes (from pycisTarget). Input data can be single-cell multiome or paired scRNA-

seq and scATAC-seq in matching populations (see below). This final step consists of 

the following steps:  

- Generating pseudo-multiome data (in case of non-multiome data): To 

generate pseudo multiome data, cells must be annotated by common labels in 

both data modalities (single-cell chromatin accessibility and gene expression). 

Pseudo multiome cells are generated by sampling a predefined number of cells 

from each data modality, within the same cell type annotation label, and 

averaging the raw gene expression and imputed chromatin accessibility data 

across these cells to create a multiome meta cell containing data of both 

modalities. By default, the number of meta cells generated for each cell type 

annotation label is set as such that each cell is included in a meta cell on 

average twice. 

- Calculating TF-to-gene and region-to-gene relationships: TF-to-gene 

relationships are calculated as described in14,27. Briefly, the Arboreto python 

package (v0.1.6) is used to calculate TF-to-gene importance scores for each 

TF and each gene, given a list of known TFs and the raw gene expression 

matrix. By default, Gradient Boosting Machine regression is used. Pearson 

correlation is used to separate positively correlating from negatively correlating 

relationships (resp. correlation coefficient above 0.03 or below –0.03 by 

default). The TF itself is not included in the initial TF-gene relationship 

calculation (otherwise it would skew the importance scores of the other genes). 

Therefore, in order to be able to infer autoregulation (TFs regulating their own 

expression) the importance score of the TF itself is set to the maximum 

importance score across all genes added with an arbitrary small value of 1E-5, 

in order to put the TF at the top of its own ranking. Region-to-gene relationships 

are calculated for each gene by considering all regions within a search space 

surrounding that gene. By default, a search space of a minimum of 1kb and a 

maximum of 150kb upstream/downstream of the start/end of the gene or the 

promoter of the nearest upstream/downstream gene is used. By default, the 

promoter of the gene is considered as the TSS of the gene +/- 10 bps.  For 

each consensus peak in the search space of each gene region-to-gene 

importance scores are calculated using the Arboreto python package (v0.1.6) 

using the imputed accessibility of the regions as predictors for the raw gene 



expression counts and Gradient Boosting Machine regression (by default). 

Spearman rank correlation (SciPy v1.8.1) is used to separate positively 

correlating from negatively correlating relationships (resp. correlation 

coefficient above 0.03 or below –0.03 by default). Before eGRN building, 

region-to-gene relationships are binarized using multiple methods. By default, 

the 85th, the 90th and the 95th quantile of the region-to-gene importance scores, 

the top 5, 10, and 15 regions per gene based on the region-to-gene importance 

scores and a custom implementation of the BASC28 method on the region-to-

gene importance scores is used. 

- eRegulon creation: We define an eRegulon as a TF together with its target 

regions and genes. To generate this, information from gene expression, region 

accessibility and motif enrichment are combined. For each TF, TF-region-gene 

triplets are generated by taking all regions that are enriched for a motif 

annotated to the TF and all genes linked to these regions, based on the 

binarized region-to-gene links (see “Calculating TF-gene and region-gene 

relationships”). However, we only want to include genes, and the regions linked 

to them, in the final eRegulon if they are significantly co-expressed with the TF. 

To determine this, Gene Set Enrichment Analysis (GSEA) is used. Here, all 

genes are ranked based on the TF-gene importance scores and an enrichment 

analysis of the set of genes in the triplet compared to the overall ranking of the 

genes is computed, using the gsea_compute function from the GSEApy python 

package (v0.10.8). Finally, only the genes at the top of the ranking, known as 

the leading edge are retained in the final eRegulon. This analysis is run 

separately for TF-gene and region-to-gene relationships with positive and 

negative correlation coefficients, for a total of four GSEA runs. By default, 

eRegulons with less than 10 predicted target genes or obtained from region-to-

gene relationships with a negative correlation coefficient are discarded. 
- eRegulon enrichment: Target regions and genes of each eRegulon are used 

separately together with regions and genes ranked based on imputed 

accessibility and raw gene expression counts in each cell as input for AUCell27, 

using the ctxcore python package (v. 0.1.2.dev2+g1ffcf0f). By default, 5% of the 

total number of regions or genes in the dataset are used as threshold to 

calculate AUC values. High quality regulons are then selected based on the 



correlation between region based and gene-based AUC values (by default 0.4) 

and/or AUC values and TF expression. 
- eRegulon dimensionality reduction: The eRegulon enrichment scores for 

regions and genes are normalized for each cell and used as input into the 

UMAP, tSNE or PCA from the python package umap (v0.5.2), fitsne (v1.2.1) or 

Scikit-learn (v0.24.2) respectively. 
- eRegulon specificity scores: eRegulon specificity scores are calculated using 

the RSS algorithm as described in14,29 using target region or target gene 

eRegulon enrichment scores as input. The Regulon Specificity Score (RSS) is 

used to identify marker regulons that differentiate between clusters or cell types. 

We use the RSS for plotting regulon enrichment (as it normalizes the AUCell 

values) and to prioritize regulons per cell type (to select the most specific 

regulons for plotting, or to prioritize the differentiation velocities). 
- Triplet ranking: all TF-region-gene triplets, as identified by SCENIC+, are 

ranked by generating the aggregated ranking of the TF-to-gene score, region-

to-gene score and TF-to-region score. The TF-to-gene and region-to-gene 

scores are defined as the Gradient Boosting Machine regression importance 

scores for predicting gene expression from resp. TF expression and region 

accessibility across all cells. The TF-to-region score is defined as the best 

ranked position of the region across the ranks of all motifs annotated to the TF 

of interest. Ranks are aggregated as described in30.  
- Export to loom files: To visualize SCENIC+ results in SCope20 a chromatin 

accessibility- and gene expression-based loom file containing the eRegulons 

with target regions/genes and eRegulon enrichment scores for target 

regions/genes is generated, using the LoomXpy python package (v0.4.1; 

https://github.com/aertslab/LoomXpy). In addition, loom files can also be used 

to import data into R via the SCopeLoomR package. 
- Visualization in the UCSC genome browser: To visualize SCENIC+ results 

in the UCSC genome browser a UCSC interaction file, containing region-to-

gene links color coded by region-to-gene importance scores or correlation 

coefficients, and a bed file, containing genomic coordinates of eRegulon target 

regions is generated. The UCSC interact file and the bed file are converted to 

the bigInteract and bigBed format using the bedtobigbed program (v2.7) from 



UCSC. These can be uploaded to the UCSC genome browser along with 

pseudobulk BigWig files. 
- Network visualization: Enhancer GRNs can be visualized using networkx 

(v2.7.1) concentrical and Kamada-Kawai layouts, with customized features for 

nodes (size, shape, color, transparency) and edges (stroke, color, 

transparency). Figures can be generated with networkx (v2.7.1) or interactively 

with pyvis (v0.1.3.1). In addition, SCENIC+ also can export networks to 

Cytoscape (v3.9.0). The SCENIC+ style for Cytoscape is available at:  

https://github.com/aertslab/scenicplus/tree/main/cytoscape_styles. 
 
Supplementary Note 2: The SCENIC+ motif collection 
 
The SCENIC+ motif collection includes more than 49,504 motifs from 29 motif 

collections (Supplementary Table 3), with curated TF motif annotations based on direct 

evidence and orthology across species for human, mouse and fly. In order to account 

for motif redundancy (i.e. the same or a very similar version of the same motif can be 

found in more than one of these collections), we implemented an approach to create 

non-redundant (or clustered) motif collections using a two-step clustering strategy. 

First, identical PWMs across collection (after rescaling) were merged, resulting in 

34,524 motifs. A matrix with motif-to-motif similarity values was computed using 

Tomtom (MEME v5.4.1), and motifs with equal length and q-value < 10-40 were 

merged, resulting in 32,766 motifs (unclustered motif collection). For clustering, motifs 

that are similar to at least another motif (q-value < 10-5 (n=11,526)) were used, while 

the remaining were kept as unique motifs, or singlets (n=9,685). Dimer motifs (1,265) 

were excluded from the clustering, as well as motifs from factorbook and desso, as 

they do not have direct annotations since they are derived from AI models. Motifs with 

an Information Content below 5 were also excluded. We converted the motif similarity 

value matrix to -log10(Tomtom similiarity)+10-45. Seurat (v4.0.3) was used to 

normalize, scale and perform PCA on this matrix. Using 100 PCs, Leiden clustering 

with resolution 25 was performed, resulting in 199 clusters. STAMP was run (v1.3; 

using the -cc -sd –chp option) to refine clusters resulting in 1,985 clusters. For each 

cluster, STAMP’s consensus was used as the logo. The TF annotation of a cluster was 

inferred by merging the TF annotations (direct and orthology) of all its members. 



Overall, the clustered motif collection contains 9,685 singlets, 1,265 dimers and 1,985 

clusters (with a mean of 5.8 motifs per cluster). 

The SCENIC+ motif collection contains 8,384, 8,045, 958 annotated clusters for 1,553, 

1,357 and 467 TFs (with an average of 5, 6, 2 motifs per TF) for human, mouse, and 

fly; respectively. Importantly, motifs are not only annotated based on direct TF-motif 

experimental evidence; but also based on orthology (by downloading gene orthologs 

for the selected species from Ensembl Biomart 105), which permits the incorporation 

of annotations based on experiments in different species. In fact, 433 mouse TFs are 

only found via orthology, augmenting TF-annotations by 47%, as more experiments 

have been performed in human systems than in mouse.  

We provide all PWMs and clusters of the SCENIC+ motif collection for the creation of 

custom databases (with the exemption of the licensed Transfac Pro PWMs) at 

https://resources.aertslab.org/cistarget/motif_collections/, and precomputed 

databases using genomic regions (SCREEN for mouse and human, and cisTarget 

regions for fly) and updated gene-based databases for SCENIC at 

https://resources.aertslab.org/cistarget/databases/.  

 
 
 
Supplementary Note 3: pycisTarget: Motif enrichment databases and 
analysis algorithms 
 
To perform motif enrichment analysis two databases are generated, a score-dbased 

database and a ranking-based database, with regions as rows and (cluster of) motif(s) 

as columns (Fig. 1d). Regions in the databases can be either dataset specific 

consensus peaks or a pre-defined set of regions (for example, we provide 

precomputed databases on the ENDODE’s SCREEN regions5). In the latter case, the 

predefined regions are intersected with dataset specific regions internally, however 

this approach usually results in the loss of certain regions that are not included in the 

SCREEN database. To generate the databases, regions are first scored for each 

(cluster of) motif(s) using Cluster-Buster26. These scores are log-likelihood ratios 

(LLRs) capturing the probability of the sequence given the PWM model, over the 

probability of the sequence given the background model. Cluster-Buster uses a 

Hidden Markov Models (HMM), which permits to use every motif in a PWM cluster as 

one of the hidden states in the HMM. This way a score is generated for each region 



and each PWM cluster, while using all the PWM variation present in each cluster (Fig 

1d). The ranking matrix is obtained by ranking for each motif the regions based on 

their scores (in decreasing order). 

Next, motif enrichment across a set of regions is calculated using two methods, 

namely DEM and cisTarget (Fig. 1d, see Methods). The DEM algorithm, which uses 

the score-based database, compares LLRs of the set of regions (i.e. foreground) to a 

chosen background set using a Wilcoxon rank sum test. The cisTarget algorithm, 

which utilizes the ranking-based database, uses a recovery curve approach (for each 

motif), in which a step is taken on the y-axis when the region in the motif ranking is 

found in the region set. The Area Under the Curve (AUC) is normalized based on the 

average AUC for all motifs and their standard deviation, resulting in a Normalized 

Enrichment Score (NES) that is used to quantify the enrichment of a motif in a set of 

regions. For each motif, regions significantly enriched in the foreground based on 

DEM; and regions found withing the leading edge of the cisTarget ranking are selected 

as positive hits (see Methods). For each TF, we take the union of regions associated 

with its motifs, resulting in a TF cistrome.  

To benchmark the different motif enrichment techniques included in pycisTarget and 

approaches to build databases, the recovery of target TFs was assessed using 309 

ChIP-seq data sets from the Deeply Profiled Cell Lines collection from ENCODE34,35 

that were also included in Unibind36,37 (Supplementary Table 4). Motif enrichment was 

performed using Homer, cisTarget and DEM. For the latter two, three different 

approaches for creating the motif databases were used: 1) generating a database 

without clustering the motif collection and only retaining annotated motifs (24,309 

motifs, named unclustered (u)), 2) generating a database using a single consensus 

motif (or archetype) for each of the STAMP clusters (named archetype (a)) and 3) 

generating a database by scoring regions using all the motifs in a cluster (as described 

above, named clustered (c)). In addition, since our motif collection contains licensed 

motifs from Transfac Pro, we also benchmarked cisTarget and DEM using a publicly 

shareable clustered collection (named public (p), using all PWMs for scoring but 

removing these protected motifs, finding equal TF recovery and comparable scores in 

regions.  

To benchmark the sensitivity of cisTarget and DEM to identify partner TFs between 

different target regions of the same TF (depending on the cellular context), we 

compared the SOXE cistromes inferred in melanoma cell lines (SOX10, from the 



melanoma case study), oligodendrocytes (SOX10, from the human cortex case study) 

and astrocytes (SOX9, from the human cortex case study). These cistromes contain 

18,506, 2,553 and 6,817 target regions, for melanoma, oligodendrocytes, and 

astrocytes, respectively. As cisTarget uses as background other regions in the genome 

(or consensus peaks), motif enrichment analysis of SOXE cistromes in melanoma, 

oligodendrocytes and astrocytes with these methods mostly identifies highly enriched 

SOXE motifs (Supplementary Fig. 2i), with NES 31.6, 22.31 and 31.85, respectively. 

On the other hand, DEM allows to compare sets of regions in a pairwise manner, 

allowing to directly assess differences between the sets of SOXE target regions. DEM 

reveals NFI and HOX motifs on SOXE target regions in astrocytes, OLIG (E-box) in 

oligodendrocytes, and AP1, RUNX, TFAP2 and MITF motifs in melanoma, in 

agreement with literature (Supplementary Fig. 2j)31.  

 

Supplementary Note 4: Benchmark of GRN inference methods 
 
While all methods aim to infer gene regulatory networks, there are conceptual 

differences that result in different types of GRNs and insights (Fig. 3). For instance, 

SCENIC38 only uses scRNA-seq, while the remaining methods use (single-cell) multi-

omics data as input. CellOracle39, like SCENIC, only provides TF-Gene networks 

(despite using chromatin information internally), infers region-gene links only based 

on accessibility and compared to other methods does not assess repression, but can 

predict perturbation effects. Pando40 co-optimizes TF-region-gene relationships, 

resulting in one unique score for each combination, which hinders the assessment of 

region-gene relationships as most regions are targeted by more than one TF, resulting 

in several scores for each region-gene pair. FigR41 derives DORCs (Domains of 

Regulatory Chromatin), which consist of sets of regions (50kb from the gene TSS by 

default) whose accessibility correlates with the gene expression. Motif enrichment is 

then performed across the whole DORC, which prevents assessing to which region 

within the DORC a TF is binding. GRaNIE42 is the only tool conceptually similar to 

SCENIC+ (consisting of different steps to infer TF-region and region-gene 

relationships and a final eGRN compilation step), but it is designed for bulk data. As 

the original ENCODE Deeply Profiled Cell Lines data are bulk profiles, we tested 

GRaNIE with these bulk data. However, its performance was very poor, only finding 

26 TFs and 11,106 TF-region-gene links. Interestingly, when we applied it to our 



simulated single-cell data set (used for all the other tools), its recovery increased 

(finding 39 TFs and 44,666 TF-region-gene links); hence, we report the latter results. 

Finally, SCENIC+ not only builds enhancer-GRNs (with TF-region and region-gene 

information), but can also assess repression, regulon specificity, the effect of TF 

perturbation (as CellOracle) and prioritize eGRNs driving differentiation processes. 

Importantly, both SCENIC and SCENIC+ use the SCENIC+ motif collection with 

thousands of motif/clusters, while most of the remaining methods rely on few hundreds 

of motifs.  

 
Table comparing state-of-the-art methods for GRN inference at single cell 

resolution. 
 

SCENIC and FigR were excluded from the TF-region benchmark since they perform 

motif enrichment in a space around the TSS or DORCs rather than individual regions, 

respectively. SCENIC and Pando were excluded from the region-gene benchmark 

since SCENIC does not calculate region-gene relationships and Pando reports a score 

per TF-region-gene triplet. Because generally several TFs can bind to the same 

region, this results in several scores for the same region-gene pair.   

Of note, we found that knocking down different master regulators in K562 (e.g. 

STAT5A, HOXB9, HOXB4, SFPQ, GATA1, GATA2, ARID3A) can result in similar 

effects and affect similar regulons. These downstream effects can be largely explained 

by indirect effects of the TF-knockdown experiment direct interactions between the 

TFs (i.e the targeted TF activates that other TF) or cooperativity (i.e. these TFs target 

the same genes) (Supplementary Fig. 5). Interestingly, we also observed that some 



repressive regulons are upregulated upon knockdown for the corresponding TFs, such 

as HOXB4, HOXB9 and ARID3A43,44, showing that SCENIC+ is also able to accurately 

recover repressive interactions (Supplementary Fig. 5). 

 

Supplementary Note 5: Spatial projection of SCENIC+ regulons in the 
mammalian cortex 
 
To localize the eGRNs identified by SCENIC+ in the mouse cortex, we generated a 

smFISH atlas using 100 genes (based on marker genes per cell type and literature 

(see Methods)). We then used Tangram45 to transfer cell type annotations and gene 

expression to the segmented cells in the smFISH map (Supplementary Fig. 9e) and 

scored the SCENIC+ regulons using AUCell on the imputed complete transcriptome. 

In line with our previous analyses, this shows activity of Rfx3 in the L2/3 area, Cux1 

and Mef2c from L2/3 to L4, Rorb in L4, Etv1 in L5, Fezf2 in L5 and L6, Tbr1 in L6, and 

Sox10 in the white matter (Supplementary Fig. 9f-g). 

Additionally, we analyzed a publicly available multiome dataset of the human 

cerebellum with matched 10x Visium data from 10x Genomics. From the scRNA-seq 

data of the multiome we annotated nine main cell types, namely OPC, 

oligodendrocytes, Purkinje cells, granule cells, inhibitory neurons (Vip+, Sst+, Pvalb+ 

and Sncg+), and Bergman glia (Fig S24d). Despite the small number of cells in this 

data set (1,736), SCENIC+ identified 111 regulons, including DLX1 and DLX6 in CGE 

interneurons (80 cells), LHX6 in MGE interneurons (134 cells), NEUROD2 and EGR4 

in granule cells (76 cells), NEUROD1 in Purkinje cells (20 cells), PRRX1 and OLIG2 

in OPC (157 cells), SOX10 and TCF12 in mature oligodendrocytes (823 cells), SPI1 

and RUNX1 in microglia (67 cells), and NFIA and SOX9 in the Bergman glia (276 

cells)46–50. SCENIC+ identified a novel master regulator of granule cells, namely 

EMX1. EMX1 has been previously shown to have an effect on the size and morphology 

of the cerebellum and hippocampus, but to our knowledge, this TF had not been 

recognized as key regulator of granule cells51. These results show that, even in small 

data sets and for rare populations, SCENIC+ can infer bona fide gene regulatory 

networks (Supplementary Fig. 9h).  

We then scored SCENIC+ regulons onto the 10X Visium spots using AUCell. This 

shows the LHX6 regulon enriched in the molecular layer of the human cerebellum, 

where interneurons reside; SOX9 on the Purkinje cell layer, where the Bergman glia 



are found; EGR4 in the granule cell layer, and SOX10 in the white matter, which is 

populated by oligodendrocytes (Supplementary Fig. 9j), in agreement with 

literature50,52. 

 

Supplementary Note 6: Predicting repressive interactions using SCENIC+ 
 
Transcriptional repression is an important biological mechanism mostly studied in the 

context of developmental biology53–56, in which transcription factors (TFs) of one cell 

type repress TFs of another (adjacent) cell type thereby locking in the fate of the first 

cell type. Repression is mostly analyzed using genetic gain and loss-of-function 

experiments53, in which it is difficult to disentangle direct from indirect effects. For this 

reason, the mechanisms by which transcription factors (TFs) induce repression on a 

molecular level are poorly understood.  

The eukaryotic genome is compacted in chromatin which maintains a restrictive 

ground state/default “off” state. To activate transcription, (combinations of) TFs bind 

enhancers57, displacing nucleosomes and opening up the chromatin thereby lifting the 

restrictive ground state. In the context of this model in order to induce repression the 

chromatin has to be closed again. For this, two main molecular mechanisms are 

described. First, the access of the activator TF(s) to the chromatin can be limited53. 

For this, the cell can simply stop transcribing the activator TF(s); the cell can transcribe 

a “repressor” TF with a similar DNA binding domain as the activator thereby excluding 

the activator by going into direct competition for binding the DNA; the activator TF(s) 

can be sequestered away from the nucleus using protein-protein interactions; or the 

amount of activator protein can be limited due to repression at the RNA-level. Second, 

the chromatin can be actively closed using repressor TFs which, upon binding the 

DNA, recruit repressive co-factors58. 

To detect this type of repression (repression by chromatin closing) SCENIC+ relies on 

observing negative correlations between on the one hand TF expression and target 

gene expression and on the other hand region accessibility and target gene 

expression. A problem with this approach ensues whenever two or more TFs are 

expressed in the system of interest for which the motif is the same or very similar but 

the expression is anti-correlated. In this case it is impossible to deduce whether the 

chromatin is being closed simply by the absence of the activator TF or it is actively 

closed by the action of the inferred repressor TF (potentially recruiting co-repressors) 



(Supplementary Fig. 10a). This problem is most prevalent in species with many 

paralogs for which there are many TFs belonging to the same family, for example 

human59. 

We illustrate this issue in the melanoma cell line analysis. In this system, the 

expression of the following pairs of TFs is anti-correlated but their motifs are very 

similar: SOX10 and SOX9, MITF and TCF4 and TCF4 and MITF (Supplementary Fig. 

10b). Because of this SCENIC+ predicts repressive eRegulons for SOX9, TCF4 and 

MXI1 (Supplementary Fig. 10c) and the predicted target regions of these TFs strongly 

overlap with the predicted target regions of their activating partners (Fig. S12d). 

Whether SOX9, TCF4 and MXI1 actively close, in the mesenchymal state, the regions 

opened up by respectively SOX10, MITF and TCF4 in melanocytic/intermediate state 

cannot be concluded by the SCENIC+ analysis on its own. Using SCENIC+ alone both 

the scenario in which the regions are passively closed simply by the absence of the 

activators in the mesenchymal state or actively closed by the presence of the 

repressors in the mesenchymal state has the same likelihood. 

Even though one has to be cautious with the interpretation of repressors predicted by 

SCENIC+, these predictions can still lead to novel insights. An interesting example in 

the melanoma cell line analysis is HES1. SCENIC+ predicts a repressive eRegulon 

for HES1, in line with the function of its ortholog in Drosophila melanogaster60. HES1 

is a basic helix-loop-helix transcription factor and thus its DNA binding motif is very 

similar to MITF however its expression is not exactly anti-correlated to MITF 

(Supplementary Fig. 10e). MITF and HES1 are co-expressed in MM031, MM011 and 

all cell lines of the intermediate state (Supplementary Fig. 10e) while MITF but not 

HES1 is expressed in MM001. Given that the expression of HES1 is a better prediction 

for the region accessibility of predicted MITF target regions compared to the 

expression of MITF itself (Supplementary Fig. 10f) and the predicted target regions 

and genes of HES1 strongly overlap with those of MITF (Supplementary Fig. 10g) we 

hypothesize that HES1 represses the action of MITF in melanoma cell lines which co-

express both factors thus restricting MITF target gene expression to MM001. This is 

in line with recent reports where Notch signaling is shown to counteract the effect of 

MITF in melanoma61 and where HES1 is shown to enhance epithelial-to-mesenchymal 

transitions62. 

In the eye-antennal disc, the Cut (Ct) transcription factor, expressed in the antennae 

where it acts as repressor of the eye field, was indeed identified as candidate 



repressor, targeting 13 other TFs (e.g., ss, ey, toy and Optix) (Supplementary Fig. 10h-

i). While it has been previously shown that Ct is necessary for the development of the 

antenna by inhibiting the eye fate63, SCENIC+ shows that Cut works by directly 

repressing these master TFs for eye development. 
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