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Dear Professor Aerts, 

 

Your Article, "SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks", 

has now been seen by 3 reviewers. As you will see from their comments below, although the 

reviewers find your work of considerable potential interest, they have raised a number of concerns. 

We are interested in the possibility of publishing your paper in Nature Methods, but would like to 

consider your response to these concerns before we reach a final decision on publication. 

 

We therefore invite you to revise your manuscript to address these concerns, with additional analysis, 

benchmarking, validation and other changes. 

 

We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact 

us if there are specific requests from the reviewers that you believe are technically impossible or 

unlikely to yield a meaningful outcome. 

 

 

When revising your paper: 

 

* include a point-by-point response to the reviewers and to any editorial suggestions 

 

* please underline/highlight any additions to the text or areas with other significant changes to 

facilitate review of the revised manuscript 
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* address the points listed described below to conform to our open science requirements 

 

* ensure it complies with our general format requirements as set out in our guide to authors at 

www.nature.com/naturemethods 

 

* resubmit all the necessary files electronically by using the link below to access your home page 

 

 

[REDACTED] 

 

<strong>Note:</strong> This URL links to your confidential home page and associated information 

about manuscripts you may have submitted, or that you are reviewing for us. If you wish to forward 

this email to co-authors, please delete the link to your homepage. 

 

 

We hope to receive your revised paper within eight weeks. We are very aware of the difficulties 

caused by the COVID-19 pandemic to the community. If you cannot send it within this time, please let 

us know. In this event, we will still be happy to reconsider your paper at a later date so long as 

nothing similar has been accepted for publication at Nature Methods or published elsewhere. 

 

OPEN SCIENCE REQUIREMENTS 

 

REPORTING SUMMARY AND EDITORIAL POLICY CHECKLISTS 

When revising your manuscript, please update your reporting summary and editorial policy checklists. 

 

Reporting summary: https://www.nature.com/documents/nr-reporting-summary.zip 

Editorial policy checklist: https://www.nature.com/documents/nr-editorial-policy-checklist.zip 

 

If your paper includes custom software, we also ask you to complete a supplemental reporting 

summary. 

 

Software supplement: https://www.nature.com/documents/nr-software-policy.pdf 

 

Please submit these with your revised manuscript. They will be available to reviewers to aid in their 

evaluation if the paper is re-reviewed. If you have any questions about the checklist, please see 

http://www.nature.com/authors/policies/availability.html or contact me. 

 

Please note that these forms are dynamic ‘smart pdfs’ and must therefore be downloaded and 

completed in Adobe Reader. We will then flatten them for ease of use by the reviewers. If you would 

like to reference the guidance text as you complete the template, please access these flattened 

versions at http://www.nature.com/authors/policies/availability.html. 

 

DATA AVAILABILITY 

We strongly encourage you to deposit all new data associated with the paper in a persistent repository 

where they can be freely and enduringly accessed. We recommend submitting the data to discipline-

specific and community-recognized repositories; a list of repositories is provided here: 

http://www.nature.com/sdata/policies/repositories 
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All novel DNA and RNA sequencing data, protein sequences, genetic polymorphisms, linked genotype 

and phenotype data, gene expression data, macromolecular structures, and proteomics data must be 

deposited in a publicly accessible database, and accession codes and associated hyperlinks must be 

provided in the “Data Availability” section. 

 

Refer to our data policies here: https://www.nature.com/nature-research/editorial-policies/reporting-

standards#availability-of-data 

 

To further increase transparency, we encourage you to provide, in tabular form, the data underlying 

the graphical representations used in your figures. This is in addition to our data-deposition policy for 

specific types of experiments and large datasets. For readers, the source data will be made accessible 

directly from the figure legend. Spreadsheets can be submitted in .xls, .xlsx or .csv formats. Only one 

(1) file per figure is permitted: thus if there is a multi-paneled figure the source data for each panel 

should be clearly labeled in the csv/Excel file; alternately the data for a figure can be included in 

multiple, clearly labeled sheets in an Excel file. File sizes of up to 30 MB are permitted. When 

submitting source data files with your manuscript please select the Source Data file type and use the 

Title field in the File Description tab to indicate which figure the source data pertains to. 

 

Please include a “Data availability” subsection in the Online Methods. This section should inform 

readers about the availability of the data used to support the conclusions of your study, including 

accession codes to public repositories, references to source data that may be published alongside the 

paper, unique identifiers such as URLs to data repository entries, or data set DOIs, and any other 

statement about data availability. At a minimum, you should include the following statement: “The 

data that support the findings of this study are available from the corresponding author upon request”, 

describing which data is available upon request and mentioning any restrictions on availability. If DOIs 

are provided, please include these in the Reference list (authors, title, publisher (repository name), 

identifier, year). For more guidance on how to write this section please see: 

http://www.nature.com/authors/policies/data/data-availability-statements-data-citations.pdf 

 

CODE AVAILABILITY 

Please include a “Code Availability” subsection in the Online Methods which details how your custom 

code is made available. Only in rare cases (where code is not central to the main conclusions of the 

paper) is the statement “available upon request” allowed (and reasons should be specified). 

 

We request that you deposit code in a DOI-minting repository such as Zenodo, Gigantum or Code 

Ocean and cite the DOI in the Reference list. We also request that you use code versioning and 

provide a license. 

 

For more information on our code sharing policy and requirements, please see: 

https://www.nature.com/nature-research/editorial-policies/reporting-standards#availability-of-

computer-code 

 

MATERIALS AVAILABILITY 

As a condition of publication in Nature Methods, authors are required to make unique materials 

promptly available to others without undue qualifications. 

 

Authors reporting new chemical compounds must provide chemical structure, synthesis and 
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characterization details. Authors reporting mutant strains and cell lines are strongly encouraged to use 

established public repositories. 

 

More details about our materials availability policy can be found at https://www.nature.com/nature-

portfolio/editorial-policies/reporting-standards#availability-of-materials 

 

ORCID 

Nature Methods is committed to improving transparency in authorship. As part of our efforts in this 

direction, we are now requesting that all authors identified as ‘corresponding author’ on published 

papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on 

the Manuscript Tracking System (MTS), prior to acceptance. This applies to primary research papers 

only. ORCID helps the scientific community achieve unambiguous attribution of all scholarly 

contributions. You can create and link your ORCID from the home page of the MTS by clicking on 

‘Modify my Springer Nature account’. For more information please visit please visit <a 

href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>. 

 

Please do not hesitate to contact me if you have any questions or would like to discuss these revisions 

further. We look forward to seeing the revised manuscript and thank you for the opportunity to 

consider your work. 

 

 

Sincerely, 

 

Lin Tang, PhD 

Senior Editor 

Nature Methods 

 

 

 

Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The manuscript describes SCENIC+, a Python package for gene regulatory network analysis using 

single cell profiles of gene expression and chromatin accessibility. This multimodal data has the 

potential to deepen our understanding of gene regulation. The development of software analysis tools 

for this type of data will be of interest to the research community and the software makes use of 

broadly adopted data structures which will allow for integration with related Python packages. 

 

1. Overall, the paper shows many methods and results that are very similar to those presented in 

previous work by the same group. Much of the new work appears to be analysis which are suggestive 

of interesting biological findings, but without the necessary follow-up experiments to provide solid 

scientific evidence. The software development for this project seems to make some useful algorithms 

more readily available to the community. Nevertheless, by covering such as broad range of topics, 

given today’s high level of activity in single cell algorithm development, the manuscript does not 

appear to be particularly innovative and convincing in any particular aspect. The core of the paper is 

on gene regulatory analysis using multimodal single cell data. In revisions of this manuscript the focus 

might be kept on this aspect, taking care to explicitly present the modeling assumptions along with 
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unbiased evaluations of these assumptions, including sound benchmarking standards. It is unfortunate 

that many of the examples presented in the paper are not based on true multimodal data, but are 

generated using single cell RNA-seq and ATAC-seq data from separate experiments. This suggests 

there is no additional value in multiomic experiments instead of experiments on separate modalities. 

The manuscript might include a comment about the value (or not) of true multiomic data. 

 

2. SCENIC+ provides a Python module, pycisTopic for inference of transcription factor (TF) binding 

sites from TF motif data. The module facilitates motif-based analysis using a compendium of motifs 

collected from a large number of individual motif resources along with algorithms for inferring TF 

binding using this collection. In particular, the suggested approach is based on Cluster Buster (Frith et 

al, Nucleic Acids Research, 2003). The Aerts lab has published multiple papers based on a similar 

strategy of collecting and integrating TF binding motifs, for example Janky et al. PLoS Comput. Biol., 

2014, and the paper describing SCENIC ( Aibar, Nature Methods, 2017). The area under recovery 

curve appears to be the same as presented in the first SCENIC paper. It seems the contribution in the 

current manuscript is mainly in the increased scale of the motif collection and perhaps the 

reimplementation of old software into a new Python package. A clearer description of what is novel in 

this work would be helpful. 

 

3. Although the motif compendium might be a useful resource, the resulting motif compendium itself 

does not appear to have been made available online. Instead results of mappings to various selected 

regions of the genome are provided, which reduces the value of this work. In addition, the reported 

reimplementation of Cluster-Buster does not appear to be available as source code, but as some sort 

of undefined binary file. Perhaps there are other links to the motif collection and source code which 

were not clear on the website? 

 

4. The third step of SCENIC+ is TF to target gene prediction, making use of chromatin accessibility 

data. This part seems important and would benefit from a better description. It appears that this part 

is also reliant on previous approaches developed in the Aerts lab but the description does not clearly 

specify the new developments. There is also work by other labs that do a similar type of analysis (for 

example Duren, Z. et al Proc. Natl. Acad. Sci. U. S. A, 2018). What are the advantages and 

disadvantages of the SCENIC+ approach relative to other methods that try to infer GRNs using gene 

expression and chromatin accessibility data? 

 

5. The illustration of SCENIC+ on PBMC multiome data lacks a description of how the method adds 

insights into the system that would not be observed through other approaches. For example, the 

master regulators of B cells, T cells, dendritic cells and monocytes are identified by SCENIC+, Would 

these regulators not be identifiable by other tools such as chromVAR, Signac, or the original SCENIC 

software? 

 

6. In the validation of SCENIC+ on ENCODE data the first task presented is the prediction of 

regulatory TFs recovered by several methods. In the main text it would be good to define what 

recovering TFs means. It could mean any of the following: TFs that are expressed in a certain cell 

type, TFs that are actively regulating genes in a cell type, TFs that define chromatin accessibility, TFs 

that are necessary to define the cell states, or TFs that were chosen by ENCODE for unknown reasons. 

The last is not meaningful as the TF selection might be biased towards the research interests of the 

investigators and the availability of ChIP antibodies. 

 

7. In Fig 3 numbers of TF, regions etc are shown. It would be more informative to show performance 
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metrics such as precision and recall than to show these numbers. For example, one could trivially 

show a method that always predicts all the TFs and all regions, but this would be meaningless. 

 

8. In the assessment of the quality of the predicted target regions it appears there is a component of 

DNA sequence analysis used in the definition of the “silver” standard. This benchmarking approach is 

highly problematic for several reasons. First, there is a degree of circularity between benchmark and 

analysis. An analysis method that aligns well with the use of motifs in the benchmark generation will 

tend do well. Second, this approach suggests that the TF binding sites that can be recognized to bind 

directly to DNA are of greater functional importance than the rest. The manuscript does not provide 

any evidence to support this claim. Third, the inability to make accurate predictions of TF binding 

based on sequence might be limited because current characterizations of DNA binding are not 

adequate. In this regard it might be helpful to contrast with approaches such as that proposed by 

Avsec, Žiga, et al. Nature Genetics, 2021. The most appropriate benchmarking comparison for this 

part is the ENCODE-DREAM in vivo Transcription Factor Binding Site Prediction Challenge 

https://www.synapse.org/#!Synapse:syn6131484/wiki/402026. This benchmark would be more 

objective and enable a direct comparison with the results obtained by the best performing DREAM 

challenge methods. 

 

9. In the evaluation of the TF target gene by knockdown experiment it would be helpful to provide 

more information, including the TF, the true TF-regulated gene set, the prediction and the summary 

result. In addition, if the TF binding has been assayed by ENCODE it would be of interest to compare 

the performance of SCENIC+ using motifs with TF ChIP-seq data. Some insights into this evaluation 

would also be of value, for example which types of TFs are well predicted and what aspects of 

SCENIC+ were most important in making these predictions. 

 

10. Although the paper does some GRN benchmarking, many of the benchmarks are not entirely 

convincing. It would be of interest to adapt some of the benchmarks proposed by Pratapa et al Nature 

Methods, 2020 to multomic data. 

 

11. One of the analyses shown by Pratepa et al relates to the number of stable states consistent with 

the gene regulatory networks. Can it be shown that the numbers of stable states derived from the 

networks presented in the manuscript are consistent with the observed biological systems? 

 

12. The melanoma phenotype switching is derived from an earlier scRNA-seq study by the same group 

and new scATAC-seq data for the same 10 melanoma cell lines were generated for the current study. 

Although the manuscript describes many TFs discovered by SCENIC+, many of these were already 

discovered and reported in the earlier study and the manuscript does not clearly demonstrate what 

was novel in the SCENIC+ finding and what was the important difference between the SCENIC+ 

findings and SCENIC. In addition, it would be helpful to include a comparison with methods such as 

chromVAR and Signac for this section. 

 

13. The analysis with CellOracle was not particularly informative as it did not make the case for 

SCENIC+, which seems to be topic of the manuscript. 

 

14. The section on conservation between human and mouse cortex also seems tangential to the main 

subject of the paper. The results presented in this section could reflect aspects of biology, or certain 

biases in the analysis that are conserved between human and mouse. Separating the two might 

require some deeper analysis, which would go beyond the scope of the current paper. 
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15. GRN velocity is a concept which might be worth expanding on. Related ideas and methods are 

reported by Ma et al, Cell, 2020 and ref 69 (Li et al). and it would be of interest to compare the results 

produced by the respective methods. The paper does not present algorithms that have been 

developed specifically for multiomic data latent space analysis (for example Gong et al, Genome 

Biology, 2021, Minoura et al. Cell Reports Methods, 2022; Lynch et al, Nature Methods, 2022; Lin et 

al. scJoint: Nature Biotech, 2022). As the pseudotime analysis depends on the latent space the 

trajectory inference, to what degree do the results of the GRN velocity change depend on these 

upstream processing steps? 

 

16. In the fly retina analysis of GRN velocity single cell ATAC-seq and RNA-seq data are not generated 

from the same cells using multimodal analysis. This seems problematic as there might be differences 

between the gene expression and the chromatin states of the cells which would be hidden by the 

matching procedure. Again, no comparison is made with other methods. It is not clear that the GRN 

velocity approach was important in this analysis, or whether similar conclusions could be reached 

using alternative methods. 

 

17. In the spatial GRN analysis, true multiomic data was once again not used. In this section GRNs are 

inferred then mapped onto spatial data. This section does seem to add much to the manuscript. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

González-Blas and colleagues propose a novel computational method (SCENIC+) for inference of 

enhancer-based gene regulatory networks (eGRNs) from multimodal (scRNA- and scATAC-seq) single 

cell sequencing. For this, they leverage expertise and previous methods from the own group such as 

the use of cisTopic for denoising sparse single cell ATAC-seq data, a meta-database of TF motifs (Motif 

Collection database/cisTargets), methods to characterize cis-regulatory regions (pyCisTarget & DEM) 

and association of TF to enhancers to genes (based on Boosting trees/Arboreto). These are all 

combined together as SCENIC+. Some of the individual components (DEM, Motif Collection database, 

Velocity) are novel. Some components were improved, i.e. cisTopic has a faster 

implementation/estimation algorithms. This is altogether a very important framework for inference of 

regulatory networks. A few recent competing methods (FigR, GRaNIE, Inferelator, scMega) provide 

equivalent core features (estimation eGRNs), while SCENIC+ includes additional aspects as methods 

for insilico perturbation and differentiation analysis. The method is evaluated in distinct data sets 

including ENCODE chromatin data (used for benchmarking), PMBC multimode data, melanoma cell 

lines, human/mouse cortex cells, fly eye-antennal disc and mammalian brain with mostly convincing 

results. 

 

The method is overall complex including many sub-methods and options. Some important details were 

missing, and descriptions of some methods were hard to follow. As a judge this as a method 

manuscript, focus could be given in method description/benchmarking, and less in the interesting but 

mostly anecdotal data analyses. For example, estimation of differentiation velocities and spatial 

mapping are interesting, but there is lack of methods details and rigorous evaluation. This makes it 

hard to conclude their value. Overall, this manuscript would benefit from focus on main contributions. 

 

1. The reported improvements on cisTopic are welcomed (efficient algorithm and additional model 
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selection approaches), but some important method descriptions are missing. For example, how is a 

final topic decided from the four available model selection criteria (lines 824-834 & Fig. S2b)? Authors 

should also give more details on how to choose the topic binarization (lines 843-851). For example, in 

which type of analysis "balanced region sets" are more desirable? Finally, it is unclear if topics are 

altogether used by SCENIC+, as analysis seen to focus on cell types/DARs. Further explanation and a 

table enumerating how these (and other main parameters /methodological choices) were set per data 

set would be helpful. 

 

2. pyCisTarget is rather complex part of SCENIC+. It consists of 3 main components: a novel TF motif 

db, methods for motif enrichment (DEM, homer and cisTarget) and a cisTarget database. 

 

2.1 The nature of cisTarget database is unclear and hard to follow. In my understanding, this is a 

matrix encoding region vs. motif enrichment scores. How are the regions defined? I Aren't this data 

set specific? Can regions derived in a data set (PBMCs) be used in other data (cortex cells)? Or do 

authors recommend using pre-defined SCREEN or whole genome regions? This should be clarified (and 

again choices for each analyzed data explained). 

 

2.2. Authors mention the detection of CRMs (or cluster of motifs) using Cluster-Buster (line 131), 

whoever scores seem to be based on individual motifs (see point 2.1 and figure 1d). This needs 

clarification. 

 

2.3 In their evaluation (Fig. 1F) CisTarget outperforms DEM. So, it is unclear why DEM is need in 

SCENIC+. 

 

2.4 The benchmarking of distinct motif data bases and representation is an interesting aspect (Fig. 1f 

and Sup. S3). Fig. 1F has strong results but underlying experiments are unclear. It is hard to follow 

some of the analysis in Sup. S3, as for example several of the terms [(u),(c),(p) in panel h) are not 

clearly defined. Since, this database is a SCENIC+ novel aspect, more details on the benchmarking are 

needed. 

 

3. Another major contribution of SCENIC+ is the creation of the eGRNs. Authors should formalize or 

schematized the description of eRegulon (line 1016-1022), which is unclear. Also, some important 

aspects (need for a specificity score - line 1037) is not justified in the manuscript. 

 

4. The extensive benchmarking (Fig. 3) is welcome, but some aspects are difficult to. What does the 

recovery of TFs (F3c & S5a) mean? Are these true positives? What is the set of positives here? What 

are “marker gene TFs” (line 209)? Altogether, CellOracle (or Pando according to fig. 3) does perform 

better in absolute TF numbers. The justification is based on lack of cell specificity of CellOracle, 

whoever shouldn’t the benchmarking approach account for cell specificity? True positives are only TFs 

predicted in the correct cellular context, i.e. cell type used for the ChIP-seq experiment? Authors 

should improve their benchmarking approach to account of cell specificity of TFs. 

 

5. Benchmarking results on TF-region, Region-Gene and TF-gene are mostly convincing. Authors 

should discuss however the best precision of Granie of the TF-region problem. It is also unclear why 

SCENIC is evaluate with Rho and Importance in figure 3f (and Rho is also not defined anywhere). This 

should be justified. Also, the interpretation of the NES vs. FC plots in panel 3g is unclear. Why has 

STAT5 a negative NES and HOXB9 a positive after their KO? Repressor TFs? This should be explained 

in the text. 
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6. The in-silico perturbation analysis is an interesting approach. Here, authors could reinforce the 

novelty of the proposed method in relation to CellOracle (linear vs. non-linear?). The need for several 

interactions needs to be better justified in the main text (predicted TF expression is used in 

interactions?). Also, can the model predict which TFs have best perturbation effects (or why only 

SOX10 and ZEB1 were chosen)? Could this approach be benchmarked more systematically by using 

the ENCODE data (explored in Fig. 3)? 

 

7. The mouse/human eGRN is neat but descriptive. It is unclear if any new finding comes from this 

analysis. 

 

8. The GRN velocity in an interesting (and novel) contribution. However, more details are need. For 

example, I miss how the trajectory analysis was performed in the oligodendrocytes data and how the 

sub-trajectories (“OPC to NFOL”, “NFOL Maturation” and NFOL to OL”) are defined. Authors need to 

describe this. Velocity fields of Olig2 and Bcl6 points towards the center of the OPC cluster. What does 

this mean? The drosophila eye analysis is more complete/convincing, possibly due to a better capture 

of cells at distinct differentiation stages. 

 

9.How is the differentiation force defined? Method (line 1716) describe the use of a “penalization 

curve”, but no further details are given. In the scheme (Fig. 6a), red curves anticipate the blue curves 

but, in the examples/real data (Fig. 6g), we also observe the opposite. How do the model deals with 

this? Are only positive values are considered? What would the negative vectors mean? Authors need to 

both formalize the method and include a benchmarking more like analysis of this novel methodology. 

 

10. The spatial analysis of eGRNs is interesting, but its value is unclear (besides visualization). For 

example, if one plots the cellular deconvolution results of the cell types with LHX7, SOX9 specific TF 

activity, would one not obtain similar results as shown in panel Fig. 7C? What novel information can be 

gained here? 

 

11. We were able to successfully install/run the method in linux. In a mac, we encountered issues with 

package dependencies (annoy package). 

 

 

 

 

Minor points: 

 

Line 66 - The statement that scATAC-seq is similar ChIP-seq accuracy is based on pre-print (23). 

Authors should tune this down. 

Line 73 - Authors should also cite previous works introducing some of these analyses, i.e. no reference 

to Cicero, which first explore peak-gene links in scATAC-seq. 

Line 103 - Mixture of HMMs have been previously explored for a similar problem. Please cite 

10.1093/bioinformatics/bti1001 ) (and discuss any relevant distinction). 

Line 104-108 – This phrase in complex and content rich (i.e. what is leading edge analysis?). Authors 

should improve this. 

Line 112 - From the method description I got the impression that GBMs are used to find relations (and 

Person is only used for finding signals), but the main text indicates correlation are also important. 

Please, clarify. 
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Line 197 – Are these “TF” ChIP-seq? 

Line 259 - How are TF ranked? By increasing or decreasing number of bindings? 

Line 998 –The phrase regarding TF-to-TF regulation is unclear. Please clarify. 

Line 1104 - The definition of archetypes is unclear here. 

Fig. 4e – Colors of the boxplot are difficult to discern. 

Supplement – Several links in the supplement pdf are not working. Please revise. 

Supplementary Figure 5 – What is R and L (after SCENIC + (C)). 

 

 

 

Reviewer #3: 

Remarks to the Author: 

Manuscript by Gonz.lez-Blas et al described a valuable computation tool for inferring enhancers and 

gene regulatory networks based on single cell multiomic datasets. The tool overall can be very useful 

for mining large scale single cell datasets and providing great insights on how cell types are regulated 

via binding of transcription factor and their targets. The database with curation of 30K+ motifs and 

motif-TF annotation is an incredible resource for the community. Overall, the authors did a great job 

of presenting this remarkable tool and showcase various interesting applications. On other hands, 

some improvements are necessarily to enhance usability of this tool and presentation of this 

manuscript. 

 

Here is list of major key points regarding the Manuscript 

• PycisTopic is proposed as a new tool for both enhancer discovery and co-accessibility of enhancers, 

which is also possible via other popular methods including ArchR. Since these early processing steps 

play a pivotal role in the final eGRN it would be useful to benchmark pycisTopic against current 

methods. Essentially an analysis like Figure 1f for enhancer discovery would be informative to the 

reader/user. 

• The illustration of SCENIC+ on PBMC data captures 40% of genes with a proximal enhancer that 

regulates expression. Recent studies have used HiC to look at the 3D chromatin organization for PBMC 

populations including Monocytes. Using the HiC data as an external validation for region-gene links 

should be done. 

• Limited correlation of HiC interactions in the 5 cell lines as shown in Figure 3f as well as an overall 

higher number of region-gene links could point towards more false-positive interactions being 

identified. How does SCENIC+ address the presence of noisy interactions in the eGRN building 

process? For example, do multiple models (including Gradient Boosting Machine regression) agree on 

region-to-gene importance or binary links? Comparison of different regression models to calculate TF-

to-gene and region-to-gene would be worthwhile. 

• It is unclear how scalable the method is to number of cells and number of clusters. It will be nice to 

present a complexity analysis and running time analysis. 

• It is unclear how sensitive this tool is to analyze fine resolution cell types. How many cluster-specific 

peaks are needed to identify cluster specific eRegulons? Some power analysis can be very helpful 

here. 

• The paper focused a lot on the confirmative analysis, showing previously categorized regulons, but 

very shy at presenting novel findings. I encourage the authors showcase a few, even without 

experimentally validation. 

• The tool cluster DNA motifs abased on PWM similarity. But single base difference in motifs can be 

critical in determining binding affinities and targets for paralogs within the same transcription factor 

family. How did the authors address such subtle differences? 
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Here is list of major key points regarding the Tutorial 

1. The tutorial is not hard to follow for the Pbmc example but can still be challenging to apply on new 

datasets. It would be nice to separate the tutorial into two key components: 1. Preprocessing steps, 

and 2. SCENIC+ modeling. Current tutorial covers extensively on preprocessing steps but does not 

provide enough depths for SCENIC+ modeling. 

2. Many users in the community already get used to tools like snapATAC/ArchR. It would be nice to 

build a convenient interface to interact with these tools. It would also be nice to provide support for 

commonly used file format, such as h5ad and Seurat objects, to make the tools easier to use. 

 

Minor points: 

Most figures are too packed. The eGRN plots such as Figure2g look cool, but it is difficult to interpret. 

It might not be worthwhile to show more than once. The authors need to pick and choose materials 

more carefully to present in the main figures and make sure all labels are legible. 
 

Author Rebuttal to Initial comments   

 

Reviewer #1: 

Remarks to the Author: 

The manuscript describes SCENIC+, a Python package for gene regulatory network analysis using single 

cell profiles of gene expression and chromatin accessibility. This multimodal data has the potential to 

deepen our understanding of gene regulation. The development of software analysis tools for this type of 

data will be of interest to the research community and the software makes use of broadly adopted data 

structures which will allow for integration with related Python packages.  

 

We thank the reviewer for critically assessing our manuscript. We have included additional benchmarking 

analyses in the revised version and better highlighted the novelty of this work. 

 

1. Overall, the paper shows many methods and results that are very similar to those presented in previous 

work by the same group. Much of the new work appears to be analysis which are suggestive of interesting 

biological findings, but without the necessary follow-up experiments to provide solid scientific evidence. 

The software development for this project seems to make some useful algorithms more readily available 

to the community. Nevertheless, by covering such as broad range of topics, given today’s high level of 
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activity in single cell algorithm development, the manuscript does not appear to be particularly innovative 

and convincing in any particular aspect. The core of the paper is on gene regulatory analysis using 

multimodal single cell data. In revisions of this manuscript the focus might be kept on this aspect, taking 

care to explicitly present the modeling assumptions along with unbiased evaluations of these assumptions, 

including sound benchmarking standards. It is unfortunate that many of the examples presented in the 

paper are not based on true multimodal data, but are generated using single cell RNA-seq and ATAC-seq 

data from separate experiments. This suggests there is no additional value in multiomic experiments 

instead of experiments on separate modalities. The manuscript might include a comment about the value 

(or not) of true multiomic data. 

 

We believe our manuscript introduces several novelties that can be of interest: 

1. SCENIC+ is among the first methods to derive eGRNs from single-cell multiome data. Note 

that only 2 other methods have been published in a journal (Pando and FigR), which we 

describe have shortcomings compared to SCENIC+. The other two methods we included in 

our benchmark (GRaNIE and CellOracle) are only available as a preprint without peer 

review. In addition, all four other methods have only been tested on one or two data sets, 

while in this work we apply SCENIC+ across species (human, mouse, fly) and tissues (e.g. 

brain, cancer, cell lines).  

2. We curated the largest collection of transcription factor motifs, with more than 40,000 

position weight matrices, covering more than 1500 human TFs. By clustering this collection 

with a new two-step clustering strategy, we derive sets of motifs per transcription factor. We 

then show that maintaining this diversity, by the use of hidden markov models, greatly 

outperforms the use of ‘archetype’ motifs (whereby each TF has only one consensus motif). 

We also make this entire collection freely available at 

https://resources.aertslab.org/cistarget/motif_collections/v10nr_clust_public/.  

3. We developed a new Python package for cisTopic (Bravo et al., Nat Methods 2019), that 

scales to very large data sets and contains a series of new functionalities. pycisTopic can also 

https://resources.aertslab.org/cistarget/motif_collections/v10nr_clust_public/
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be used separately to analyze scATAC-seq data. In this version of this manuscript, we 

compared pycisTopic against other state-of-the-art methods, namely ArchR and Signac. We 

show that pycisTopic is more robust to data sparsity and limited sample sizes, and that 

regulatory topics recapitulate better functional enhancers compared to the current standard, 

which relies on the calculation of Differentially Accessible Regions (DARs). 

4. We developed a new Python package for motif discovery, called pycisTarget, that allows the 

user to choose among three different motif enrichment methods, including the widely used 

Homer method. PycisTarget implements our cisTarget algorithm in Python for easy 

integration with the SCENIC+ workflow. In addition, we have developed a new algorithm, 

called Differentially Enriched Motifs (DEM), to identify motifs differentially enriched 

between sets of regions. We include now a case study to showcase DEM, in which we 

identify partner TFs of SOXE factors in melanoma, oligodendrocytes and astrocytes. 

5. While SCENIC+ reuses previously existing algorithms for TF-gene and region-gene 

inference, namely Arboreto, it includes novel regulon binarization, target prioritization and 

visualization approaches. Arboreto has been already shown to be the best performer for 

predicting TF-gene relationships, and in this version of the manuscript, we show that 

Arboreto is also the best approach to infer region-gene links compared to other regression 

methods. We showcase our new target prioritization strategy in Fig 3, which we believe will 

become a valuable asset to explore the regulatory genome and select enhancers for further 

testing. 

6. We have designed and performed the first benchmark for eGRN inference methods, which 

has been extensively expanded in this version. We believe this benchmark can serve as a 

baseline to benchmark new methods and new models that may include additional data for 

eGRN inference. 

7. We introduce the new concept of GRN velocity. To our knowledge, this is the first approach 

that exploits eGRNs and the lag between TF expression and expression of the target genes to 

predict the directionality of a cell in a differentiation trajectory. In this version we include a 
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comparison with other velocity methods. scVelo measures the ratio of spliced and unspliced 

mRNA of a gene, while MultiVelo integrates the accessibility around the gene locus in the 

model. Yet, none of these approaches incorporates TF input, and overall only provide global 

directionality values (one vector per cell), while GRN velocity assesses TF-specific 

directionality (one vector per cell and TF). We have included a comparison between our GRN 

velocity and these velocity methods in the eye disc case study to show that they provide 

different insights. In addition, this approach permits to identify Meis1 as a novel (and 

conserved) master regulator of oligodendrocyte differentiation. 

8. To our knowledge, this is the first study in which eGRNs inferred from single-cell multiomics 

data (in which not only genes, but also target regions and target genes can be compared) are 

compared across species. We found 60 TFs involved in cell-type specific eGRNs conserved 

between the species, out of which 8 have not been reported before. We believe this resource 

serves as a proof-of-concept study and could be further exploited to assess differential 

regulatory target conservation between TFs, or to prioritize conserved sequences to develop 

cell-type specific vectors. 

 

We agree that the question about using multimodal data as input for GRN inference, compared to 

matched scATAC-seq and scRNA-seq from the same sample is relevant for our work. We already 

provided SCENIC+ analysis of four ‘true’ multiome data sets (PBMC, mouse cortex, human cortex and 

human cerebellum) and three paired scATAC-seq and scRNA-seq data sets (ENCODE cell lines 

simulated data, melanoma cell lines, and Drosophila eye-antennal disc). We consider the possibility to use 

SCENIC+ on both multiome and paired data valuable for the community, since multiome data are not 

always available (and are sometimes of lower quality) compared to individually obtained modalities that 

can be paired.  

As suggested, we now provide additional comments about their respective values (Fig S7), as well as 

a new in-depth comparison between multiome and matched data. To specifically test whether eGRN 

inference is affected depending on whether data is derived from multiome experiments or paired data 

from independent experiments, we have now run SCENIC+ using as input our in-house multiome mouse 
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cortex data and using the two layers of the multiome as independent paired datasets from the same tissue. 

We evaluated four different strategies to perform the computational pairing of the ATAC and RNA 

modalities. We particularly tested the pairing methods from FigR (Matched-1), SCENIC+ (Matched-2) 

and ScoMAP (Matched-3). As control, we also created a data set with random pairing between cells (i.e., 

not taking cell types/states into account, named Random). Technically, FigR (Matched-1) relies on 

Seurat/Signac’s CCA integration, which allows cell pairing without the need of independently annotating 

the cells in each layer. SCENIC+ (Matched-2) makes use of the cell labelling to match cells of the same 

cell type between the layers. ScoMAP (Matched-3) uses the same approach as SCENIC+, but it allows 

mapping cells based on pseudotime/pseudospatial order within a cell type. We used this technique for the 

cortical layers and oligodendrocytes. When comparing the distances between paired cells across 

modalities, we observe that the three pairing methods result in pairing between close neighbors, in 

comparison with the random mapping (Fig R1.1).  
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Figure R1.1. Comparison of methods to pair independent scATAC-seq and scRNA-seq data sets. a. 

SCENIC+ gene based UMAP for the mouse cortex multiome data set (19,485 cells). b. SCENIC+ gene 

based UMAP showing 500 random pairs between cells. Blue and yellow represent the cells paired by 

their scATAC-seq and scRNA-seq profiles, respectively. c. Distribution of the distances between the 

paired cells in the PCA space. 

 

After the ATAC-RNA matching we ran SCENIC+ on the paired data sets and compared the predicted 

regulons/TFs, target genes, and target regions; and we tested whether the predicted networks could 

recover the different cell states. Using random pairing we found no regulons, showing that transcriptomes 

need to match with the corresponding underlying chromatin accessibility for correct eGRN inference. In 

terms of transcription factors, and after selecting high quality regulons (with at least 35 target genes and a 

correlation > 0.4 between the gene-based and region-based AUC values), we identified 73 TFs that were 

found either using the true multiome or any of the data sets computationally paired as input for SCENIC+ 

(Fig R1.2, Fig R1.3).  
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Figure R1.2. UpsetR plot showing the overlap between the TFs recovered using the true multiome or 

data paired with different methods as input for SCENIC+. 
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Overall, the different matching techniques recovered 73%-77% of the regulons inferred using the true 

multiome data, with most of the relevant cell-type specific TFs found by all the methods (Fig R1.3). 

Regulons uniquely found by one or a couple of the methods mostly correspond to general transcription 

factors, such as Nfya, Klf, or Sp factors.   

 

Figure R1.3. Comparison of TFs recovered using the true multiome or paired data as input for 

SCENIC+. Heatmap showing whether a TF is found across different types of input data (present: green; 

absent: red). Key cell type specific TFs are highlighted in bold, with the matching color of the cell type in 

which they are present (light pink: oligodendrocyte precursors, pink: oligodendrocytes, navy blue: 

excitatory neurons, green: microglia, astrocytes: purple, brown: inhibitory neurons). 

 

We next compared the predicted target regions and target genes between the true multiome and matched 

data as input for SCENIC+. Overall, we found a good correspondence between all approaches, with an 

average Jaccard index of 0.5 and 0.6 for the predicted target regions and target genes for shared TFs, 

respectively. While we found that some regulons also overlap with other regulons (such as Fli1, Runx1 

and Spi1), this is also the case when comparing multiome regulons, suggesting that their overlap is due to 

common targets rather than noise introduced from using the pairing data (Fig R1.4). 
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Figure R1.4. Comparison between target regions and genes when using true multiome or paired data 

as input for SCENIC+. Heatmap showing the overlap between different regulons inferred using different 

types of input data for SCENIC+. The top row shows the overlap between predicted target genes, while 

the bottom row shows the overlap for the predicted target regions. Columns and rows correspond to the 

shared TFs across the different input data. 

 

Lastly, to validate that the inferred eGRNs can recapitulate the different cell states in the mouse brain, we 

performed dimensionality reduction on the regulon AUC scores matrix. We found that regardless of using 

true multiome or matched data as input for SCENIC+, all the methods are able to cluster the cells by cell 

type (Fig R1.5). In Matched-2 and Matched-3, we used a virtual template of the cortex to map the 

different cell types, with 6,210 virtual cells (pixels, see Methods). We observe that even rare populations 

in this data set, like OPC and PVM (0.77% and 0.70% of the population, respectively) are clearly 

distinguishable when using SCENIC+ with these data sets as input, showing that SCENIC+ is able to 

infer bona fide eGRNs even from small populations.  
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Fig R1.5. eGRN-based dimensionality reduction using true multiome or paired data as input for 

SCENIC+. eGRN-based dimensionality reductions when using true multiome (Multiome, 19,485 cells), or 

paired data (Matched-1, 18,435 cells; Matched-2, 6,210 cells; Matched-3, 6,210 cells) colored by cell 

type are shown. 

 

Altogether, we find this analysis an important contribution to the revised manuscript, as it suggests that 

eGRN inference is as accurate when using true multiome or well paired data.  

Among the different pairing approaches we have tested, we did not observe drastic differences. 

Nevertheless, pairing of independent scATAC-seq and scRNA-seq data sets is not a trivial task, especially 
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in complex and/or variable tissues (e.g. tumors); and depends on data processing steps by the user. For 

pairing with SCENIC+ (Matched-2) and ScoMAP (Matched-3), cell type annotation is required in both 

layers; which is particularly challenging on the scATAC-seq data as features are regions rather than 

genes. We therefore disagree with the reviewer that this means that multiome data “is not needed”, since 

the matching challenge is de facto not needed with multiome data. However, provided a correct matching, 

we agree that paired independent data are as powerful to infer eGRNs.  

We include this analysis in Fig S7, and detailed explanations of the analysis in the methods section 

and in the results section “Validation and benchmark of SCENIC+ predictions using ENCODE data”. 

 

2. SCENIC+ provides a Python module, pycisTopic for inference of transcription factor (TF) binding 

sites from TF motif data. The module facilitates motif-based analysis using a compendium of motifs 

collected from a large number of individual motif resources along with algorithms for inferring TF 

binding using this collection. In particular, the suggested approach is based on Cluster Buster (Frith et al, 

Nucleic Acids Research, 2003). The Aerts lab has published multiple papers based on a similar strategy of 

collecting and integrating TF binding motifs, for example Janky et al. PLoS Comput. Biol., 2014, and the 

paper describing SCENIC (Aibar, Nature Methods, 2017). The area under recovery curve appears to be 

the same as presented in the first SCENIC paper. It seems the contribution in the current manuscript is 

mainly in the increased scale of the motif collection and perhaps the reimplementation of old software 

into a new Python package. A clearer description of what is novel in this work would be helpful.  

 

We thank the reviewer for the suggestion to clearly describe what is novel compared to our previously 

published methods such as iRegulon and SCENIC. It is correct that the motif enrichment step in 

SCENIC+ (called pycisTarget, not pycisTopic as stated by the reviewer) is based on the same statistic 

(Area Under the recovery Curve) as we used in iRegulon and SCENIC, since we find this to be a robust 

statistic, and re-inventing motif enrichment does not constitute the main novelty of SCENIC+.  

The pycisTarget package for motif discovery actually provides three motif enrichment approaches, 

namely cisTarget (Area Under the recovery Curve), Differentially Enriched Motifs (DEM, based on the 
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non-parametric Wilcoxon rank sum test to compare a foreground and background set of sequences), and 

Homer (interfacing with the Homer installation). Compared to the previously existing implementations of 

cisTarget in iRegulon and SCENIC, pycisTarget allows for multiprocessing of several region sets and 

streamlined usage within the SCENIC+ workflow. The introduction of DEM is useful for the discovery of 

partner TFs between close populations or different target regions of the same TF. We illustrate the 

functionality of DEM to identify partner TFs of SOXE factors in human melanoma, oligodendrocytes, 

and astrocytes. SOXE factors are key in these systems (SOX10 in melanoma and oligodendrocytes, and 

SOX9 in astrocytes, respectively), and despite binding the same motif, they bind different regions in the 

three cell types (Fig R2.1). As cisTarget uses as background other regions in the genome (or consensus 

peaks), motif enrichment analysis of SOXE cistromes in melanoma, oligodendrocytes and astrocytes with 

these methods mostly identifies highly enriched SOXE motifs (Fig R2.2), with NES 31.6, 22.31 and 

31.85, respectively. On the other hand, DEM allows to compare sets of regions in a pairwise manner, 

allowing to directly assess differences between the sets of SOXE target regions. DEM reveals NFI and 

HOX motifs on SOXE target regions in astrocytes, OLIG (E-box) in oligodendrocytes, and AP1, RUNX, 

TFAP2 and MITF motifs in melanoma, in agreement with literature (Minnoye et al., 2020) (Fig R2.3, 

R2.4). While other methods for eGRN inference from single cell multiomics data only rely on motif 

scanning approaches (which are prone to false positives; see comment 5), the implementation of both 

(complementary) strategies within SCENIC+ permits to identify overrepresented motifs in topics/DARs 

using the genome (cisTarget) or specific sets of regions (DEM), such as DARs in other cell types, as 

background; from which TF cistromes are inferred. We have added this analysis as Fig S5. 
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Fig R2.1. Overlap between regions in SOXE cistromes in melanoma, oligodendrocytes and astrocytes. 

 

Fig R2.2. cisTarget on SOX cistromes. Top 30 motifs identified by cisTarget using regions in the SOX 

cistromes inferred in melanoma, oligodendrocytes and astrocytes clustered using motifStack. Colors 

indicate the TF family of the motifs (in this case, SOX). 
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Fig R2.3. DEM on SOX cistromes. Top 30 motifs identified by DEM using regions in the SOX cistromes 

inferred in melanoma, oligodendrocytes, and astrocytes clustered using motifStack. Colors indicate the 

different TF families for the motifs. 
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Fig R2.4. Differential motif enrichment with DEM between SOXE regions in different cell types 

reveals cell-type specific partner TFs.  Ternary plot showing enrichment scores of motifs found in the 

melanoma, oligodendrocyte, and astrocyte SOX regions. Each corner represents a cell-type-specific SOX 

topic, dots represent enriched motifs, and axes represent average enrichment scores for each topic. The 

colors of the dots are used to indicate the TF family to which the motifs belong.  

 

The second novelty is the SCENIC+ motif collection, which the reviewer correctly refers to as an increase 

in scale. However, we believe that this is a profound novelty, since the motif collection and the motif-TF 

annotation determines (for any of the eGRN methods we benchmarked) which TFs can ultimately be 

identified. The SCENIC+ motif collection includes 5,450 new motifs compared to the previous version of 

the motif collection (SCENIC motif collection), and importantly, we have developed a new strategy to 

reduce the redundancy of the motif collection, that improves the performance of cisTarget and DEM (Fig 

R2.5). We resolve a long-standing question in the field, namely whether using one archetype motif per TF 

is sufficient.  

We ran cisTarget and DEM in peaks from 308 TF ChIP-seq tracks from ENCODE, using different motif 

collections: the previous cisTarget collection (SCENIC), and the new motif collection before clustering 
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(unclustered), using only archetypes for cluster scoring (archetype), and using all motif clusters for 

scoring (clustered). While there are no big differences between the unclustered collections, we found that 

our clustered collection, together with our (new) strategy to use all motifs per TF rather than one 

archetype per TF, results in a better recovery of the putative TF motifs. We believe that this motif 

database, as well as our motif enrichment approaches, are important contributions for the gene regulation 

field; and are an important aspect of the performance of SCENIC+. We have included this analysis in 

Figure S5. 

 

 

Fig R2.5. Comparison of motif enrichment approaches and databases. a. Recovery of TFs from 

ENCODE ChIP-seq data using different motif enrichment methods, namely Homer, pycisTarget and 

DEM; and databases. The unclustered databases includes all annotated motifs before clustering 

(singlets), the archetype databases use the consensus motifs of the clusters based on STAMP, and the 

clustered databases uses the motif clusters, scoring regions using all motifs in the cluster. SCENIC 

indicates that our previous motif collection (unclustered) was used. The x-axis shows the positions in 

which the TF targeted in the ChIP-seq experiment can be found, and the y-axis shows the cumulative 

number of TFs that are found in that position. b. Number of times the corresponding TF motif for the 

ChIP-seq track was recovered in the first position using different motif enrichment methods and motif 

collections. 
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3. Although the motif compendium might be a useful resource, the resulting motif compendium itself 

does not appear to have been made available online. Instead results of mappings to various selected 

regions of the genome are provided, which reduces the value of this work. In addition, the reported 

reimplementation of Cluster-Buster does not appear to be available as source code, but as some sort of 

undefined binary file. Perhaps there are other links to the motif collection and source code which were not 

clear on the website?  

 

Thank you for pointing this out. We have made the motif collection available at 

https://resources.aertslab.org/cistarget/motif_collections/. The source code for our cluster-buster 

implementation is available at https://github.com/ghuls/cluster-buster/tree/change_f4_output, as listed at 

the repository including the instructions to generate cisTarget databases 

(https://github.com/aertslab/create_cisTarget_databases). We have added these links in the manuscript 

and github pages. 

 

4. The third step of SCENIC+ is TF to target gene prediction, making use of chromatin accessibility data. 

This part seems important and would benefit from a better description. It appears that this part is also 

reliant on previous approaches developed in the Aerts lab but the description does not clearly specify the 

new developments. There is also work by other labs that do a similar type of analysis (for example Duren, 

Z. et al Proc. Natl. Acad. Sci. U. S. A, 2018). What are the advantages and disadvantages of the 

SCENIC+ approach relative to other methods that try to infer GRNs using gene expression and chromatin 

accessibility data? 

 

Reviewer 2 (see comment 4) had a similar remark regarding the description of this step, we have adapted 

the method section at line 1016-1025 from: 

“eGRN compilation: First TF-to-region-to-gene modules are generated by intersecting the binarized 

region-to-gene relationships with TF-to-region cistromes by region name. Next these modules are pruned 

by running GSEA, gsea_compute function from the GSEApy python package (v0.10.8), using the TF-to-

https://github.com/ghuls/cluster-buster/tree/change_f4_output
https://github.com/aertslab/create_cisTarget_databases
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gene importance scores, for all TFs and genes in the module, as ranking and genes of the module as gene 

set. The leading-edge genes along with the binarized regions linked to those genes are retained, 

generating eRegulons. This analysis is run separately for TF-to-gene and region-to-gene relationships 

with positive and negative correlation coefficients, for a total of four GSEA runs. By default, eRegulons 

with less than 10 predicted target genes or obtained from region-to-gene relationships with a negative 

correlation coefficient are discarded.” 

To: 

“eRegulon creation: We define an eRegulon as a TF together with its target regions and genes. To 

generate this, information from gene expression, region accessibility and motif enrichment are combined. 

For each TF, TF-region-gene triplets are generated by taking all regions that are enriched for a motif 

annotated to the TF and all genes linked to these regions, based on the binarized region-to-gene links 

(see “Calculating TF-gene and region-gene relationships”). However, we only want to include genes, 

and the regions linked to them, in the final eRegulon if they are significantly co-expressed with the TF. To 

determine this, we use Gene Set Enrichment Analysis (GSEA). Here, all genes are ranked based on the 

TF-gene importance scores and an enrichment analysis of the set of genes in the triplet compared to the 

overall ranking of the genes is computed, using the gsea_compute function from the GSEApy python 

package (v0.10.8). Finally, only the genes at the top of the ranking, known as the leading edge are 

retained in the final eRegulon. This analysis is run separately for TF-gene and region-to-gene 

relationships with positive and negative correlation coefficients, for a total of four GSEA runs. By default, 

eRegulons with less than 10 predicted target genes or obtained from region-to-gene relationships with a 

negative correlation coefficient are discarded.” 

Regarding the question on how SCENIC+ relates to other state-of-the-art methods: 

We include a supplementary note (Supplementary Note 2) and a table (Fig R4.1) comparing 

SCENIC+ with other state-of-the-art methods for inference of (enhancer) gene regulatory networks from 

single-cell data. PECA (Duren et al. (2017), Duren et al. (2020)) has not been included in the comparison 

as it uses paired bulk RNA-seq and DNAse-seq data. The PECA model co-optimizes the probabilities of 

TF binding, enhancer-gene interaction and gene expression using Expectation-maximization (EM) for 

parameter estimation. This EM step can be very resource intensive when applied to single cell data sets, 
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in which thousands of cells are profiled, compared to bulk (i.e. the initial PECA model was trained using 

25 samples). Compared to our large motif collection, the binding strength of a TF to a region is estimated 

in PECA based on motif scanning with 557 PWMs. In addition, PECA does not account for data sparsity 

as it is designed for bulk data.  

 

Figure R4.1. Table comparing state-of-the-art methods for GRN inference at single cell resolution. 

 

The inputs for the third step of SCENIC+ are the scRNA-seq count matrix, the TF cistromes derived from 

pycisTarget and the imputed accessibility matrix. Compared to other methods, our TF cistromes are 

derived using statistical motif enrichment using the SCENIC+ motif collection, instead of motif scanning 

approaches, that are prone to false positives (see comment 5). To account for the high sparsity of the 

scATAC-seq data, we use pycisTopic to perform drop-out imputation instead of modelling from the raw 

fragment matrix.  

To assess TF-gene (based on TF-gene expression) and region-gene (based on region accessibility and 

gene expression) relationships we use linear models and Gradient Boosting Machines (to account for non-

linear relationships), which have been the top performers in TF-gene inference benchmarks (Pratapa et al. 

2020). These steps are also performed in GRaNIE (only using linear models); however, GRaNIE uses as 

input the raw fragment matrix, resulting overall in less relationships being detected. FigR also uses the 

raw fragment matrix to infer enhancer-gene correlations, grouping regions into Domains Of Regulatory 

Chromatin (DORCs), that are smoothed over the cells a posteriori. TF-DORC relationships are assessed a 
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posteriori based on the correlation between the expression of the TF and the gene and the presence of the 

TF motif in the DORC regions. CellOracle on the other hand uses Cicero (Pliner et al., 2018) to link 

enhancers to genes, based only on co-accessibility (based on the raw counts matrix) between the enhancer 

and the promoter of the potential target gene, rather than using the actual gene expression. Pando co-

optimizes TF-enhancer-gene triplets using linear models, using the scATAC-seq raw counts matrix as 

well. 

We then use a leading-edge approach to determine the optimal cut-offs for binarizing the TF-region, TF-

gene and region-gene scores into regulons. For this, we perform GSEA using the TF-gene scores as 

rankings and the TF cistromes (converted into gene sets based on the enhancer-gene relationships) as 

gene sets and take the leading edge to form the regulon. Contrary, in CellOracle, FigR, and GRaNIE, the 

user must specify arbitrary thresholds to determine the regulons as a set. While a proof-of-concept of 

these steps have been shown in our previous work (TF-gene inference (Aibar et al., 2018), enhancer-gene 

inference (Bravo et al., 2020), eGRN assembly (Janssens et al., 2022)); we now provide a standalone 

package that streamlines the whole workflow and includes additional features for downstream processing. 

A key limitation of this strategy is that we discretize the continuous distributions that represent the TF-

region, region-gene, and TF-gene affinities, losing quantitative information. To solve this limitation, we 

have now added a new triplet scoring approach, in which TF-region, region-gene and TF-gene 

distributions can be queried and used to prioritize the best TF targets in a regulon. We further illustrate 

its application in Fig 3, and the new result section: “SCENIC+ prioritizes functional enhancers in 

ENCODE cell lines.”, and comment 8. 

 

5. The illustration of SCENIC+ on PBMC multiome data lacks a description of how the method adds 

insights into the system that would not be observed through other approaches. For example, the master 

regulators of B cells, T cells, dendritic cells and monocytes are identified by SCENIC+, Would these 

regulators not be identifiable by other tools such as chromVAR, Signac, or the original SCENIC 

software?  
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We provided such a comparison for the ENCODE cell line case study, where we investigated which TFs 

were identified by SCENIC+, CellOracle (Kamimoto et al.., 2020), GRaNIE (Kamal et al., 2021), FigR 

(Kartha et al., 2022), Pando (Fleck et al., 2022), and SCENIC (Van de Sande et al., 2020). Following the 

reviewer’s suggestion, we now expanded this comparison to the PBMC case study and included 

chromVAR (Schep et al., 2017) and Signac (Stuart et al. 2021) as additional baseline methods. Note, 

however, that chromVar and Signac do not predict eGRNs, and analyze only the scATAC-seq data, but 

we agree that it is interesting to test whether these methods can identify key TFs per cell type. 

To test whether other methods can identify the same TFs on PBMC data compared to SCENIC+ we re-

ran the analysis on the scATAC-seq part using ArchR and Signac, for both methods we assessed motif 

enrichment analysis using a standard differential test in differentially accessible regions (hypergeometric 

test; adjusted p-value < 0.01) and using the ChromVAR deviation enrichment test. Both procedures are 

detailed in the tutorials of ArchR and Signac. For ArchR, both motifs as well as ChIP-seq tracks were 

used as features. All methods can identify the same set of TFs as SCENIC+, however both ArchR and 

Signac find more TFs (Fig. R5.1).  

 

Figure R5.1. Comparison of TFs recovered using ChromVar and Signac. Heatmap showing whether a 

TF is found across different methods (present: green; absent: red). Signac and ArchR were run using 

different options. (1) DEM: Differentially Enriched Motifs or ChIP-seq tracks in differentially accessible 

regions, (2) ChromVAR deviations. 
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To test whether the extra TFs identified by Archr and/or Signac are relevant (since they may represent 

false positive predictions) we ran a Gene Ontology enrichment analysis on TFs identified by ArchR and 

Signac, on TFs found exclusively by Signac, or on TFs found by all methods including SCENIC+. Only 

the TFs identified by SCENIC+ (and the other methods), but not the extra TFs identified only by Signac 

and or ArchR, are enriched for terms related to immune cells (Fig. R5.2). From this we can conclude that 

the TFs identified by SCENIC+ can also be identified by Signac and/or Archr. However, Signac and 

ArchR find extra TFs which are most probably false positive predictions – this is somehow expected 

since these methods do not perform an integration with scRNA-seq data to verify the expression of the TF 

and the target genes. SCENIC+ is thus more stringent as it exploits TF and target gene expression (i.e. 

only TFs for which the accessibility of the target regions correlate significantly with the expression of the 

TF and its target genes are retained), and such filtering is not done in ArchR nor Signac. 

 

Figure R5.2. TFs found exclusively by Signac or ArchR are not enriched for immune related gene 

ontology terms. Gene ontology enrichment analysis using gprofiler on TFs found exclusively by Signac, 

Archr or all methods including SCENIC+. Top 10 enriched Human Protein Atlas and Human Phenotype 

terms are shown for each gene set.  

 

One of the key outputs of SCENIC+, next to the identification of master regulators of different cell types, 

is the accurate identification of the genomic target regions for these TFs. To test how SCENIC+ compares 
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to Signac and ArchR in this aspect we assessed precision, recall and F1-scores on cistromes obtained by 

all methods. For this, we collected as ground truth ChIP-seq data in cell lines that are relevant for the 

PBMC data (BLaER1; B cell precursor, GM08714; B lymphocyte, GM12878; B lymphocyte, GM12891; 

B lymphocyte, GM12892; B lymphocyte, HL-60; promyeloblast, K562; hematopoietic cancer and NB4; 

blood cancer). Both Signac (using the hypergeometic test) and SCENIC+ outperformed the other methods 

based on the F1-metric and both methods have the highest precision compared to other methods (Fig 

R14). Signac using the ChromVAR method has the highest recall, with Signac (using the hypergeometic 

test) and SCENIC+ ranking second (Fig R5.3). From this we conclude that SCENIC+ is able to identify 

master regulators of PBMCs, which are relevant and is able to identify target regions of these regulators 

with high accuracy. Other methods, like Signac and ArchR, are also able to do this but are more prone to 

false positive predictions, and this both on the aspect of finding relevant TFs and predicting target regions 

which are bound by the TFs in question.  

 

Figure R5.3. Precision, recall and F1-scores for predicting ChIP-seq data. Violin and jitter plot 

showing precision, recall and F1-scores for predicting ChIP-seq data based on cistromes obtained from 

SCENIC+, Signac and ArchR. Consensus peaks for which the ChIP-seq coverage was greater or equal to 

the 95th percentile of ChIP-seq coverage across all consensus peaks were considered as positive peaks 

for a certain ChIP-seq track. All ChIP-seq data the following cell lines from encode were used for this 

analysis: BLaER1, GM08714, GM12878, GM12891, GM12892, HL-60, K562 and NB4. The ChIP-seq 

track with the highest F1-score was used when more than one ChIP-seq track was present for a single 

TF. Signac and ArchR were run using different options. (1) DEM: Differentially Enriched Motifs or 

ChIP-seq tracks in differentially accessible regions, (2) ChromVAR deviations. x-axis is sorted by median 

F1-score, prediction or recall. Differences in mean were assessed using the two-tailed Mann-Whitney U 

test and p values were adjusted using the Benjamini-Hochberg procedure. y-axis is in log10 scale.  



 
 

 

34 
 

 

 

 

Given that Signac and ArchR solely depend on chromatin accessibility data, while SCENIC+ uses both 

chromatin accessibility data as well as gene expression data, we also wanted to compare the performance 

of SCENIC+ with other methods that rely on both modalities. For this, we also re-ran the PBMC analysis 

using CellOracle, FigR, Pando and GRaNIE. The analysis using GRaNIE (developed for bulk 

ATAC+RNA data) required too much memory (more than 2 TB) and therefore is not included (tested on 

a machine with 72 cores Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz and 2 TB of memory). As 

suggested by the reviewer, we also included SCENIC in this analysis. First, we assessed whether the other 

methods could recover the same TFs as SCENIC+. When testing whether TFs identified by SCENIC+ 

could also be recovered by other methods, Pando was the most similar (Fig. R5.4). Other methods miss 

important TFs, including PAX5 (not found by SCENIC and FigR), CEBPA (not found by SCENIC and 

CellOracle) and RUNX3 (not found by CellOracle) (Fig. R5.4). In this case Pando identified 136 extra 

TFs that were not identified by SCENIC+ (Fig. R5.5), these TFs are also enriched for immune related 

Gene Ontology terms (Fig. R5.6). So, in this case SCENIC+ might have missed some relevant TFs.  

 

Figure R5.4. Comparison of TFs recovered using different (e)GRN inference methods. Heatmap 

showing whether a TF is found across different e(GRN) inference methods (present: green; absent: red). 

Only TFs found by SCENIC+ are shown. 
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Figure R5.5. Comparison of TFs recovered using different (e)GRN inference methods. Heatmap 

showing whether a TF is found across different e(GRN) inference methods (present: green; absent: red). 

All found TFs are shown. 

 

Figure R5.6. Gene ontology enrichment analysis on TFs found exclusively by Pando and CellOracle. 

Gene ontology enrichment analysis using gprofiler on TFs found exclusively by Pando, CellOracle or all 

methods including SCENIC+. Top 10 enriched Human Protein Atlas and Human Phenotype terms are 

shown for each gene set. FigR is not included in the figure because no gene ontology terms were 

enriched. No significant GO terms were found for TFs found exclusively by SCENIC and FigR. 

 

Next, we assessed the cell type specificity of the predicted target genes (Pando, CellOracle, SCENIC and 

FigR) and target regions (Pando and CellOracle) of each TF identified by the different methods, 
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compared to SCENIC+. For this, we calculated AUC values for predicted target genes and regions using 

AUCell (Aibar et al., 2018) and visualized these values on heatmaps (Fig. R5.7). The AUC values 

obtained by Pando were most similar to the ones obtained by SCENIC+, the values obtained by FigR 

were almost random compared to SCENIC+ (Fig. R5.8).  

 

Figure R5.7. Comparison of cell type specificity of regulons inferred by different (e)GRN inference 

methods. Heatmap-dotplot showing scaled target gene AUC values using a color-scale and target region 

AUC values (if present) using dot-size scale. Regulons which were not recovered by one of the methods 

(compared to the regulons recovered by SCENIC+) are greyed out. 
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Figure R5.8. Comparison of AUC values of eRegulons inferred by different (e)GRN inference 

methods. Boxplot showing spearman correlation of target gene (red) and target region (blue) AUC 

values of eRegulons inferred by different (e)GRN inference methods.  

 

Next, we tested how SCENIC+ compares to other GRN inference methods that predict individual target 

regions for each TF (namely Pando and CellOracle) on the aspect of predicting accurate target regions. To 

this end, we assessed precision, recall and F1-scores on target regions obtained by all methods, using as 

ground truth ChIP-seq data in cell lines which are relevant for the PBMC data (BLaER1; B cell precursor, 
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GM08714; B lymphocyte, GM12878; B lymphocyte, GM12891; B lymphocyte, GM12892; B 

lymphocyte, HL-60; promyeloblast, K562; hematopoietic cancer and NB4; blood cancer). 

On average, SCENIC+ has an equal precision compared to Pando, but an order of magnitude higher than 

CellOracle. However, the recall of Pando is the lowest compared to SCENIC+ and CellOracle. Therefore, 

as measured by the F1-metric, SCENIC+ significantly outperforms Pando (Fig. R5.9).  

 

 

Figure R5.9. Comparison of the accuracy of target regions recovered per regulon by different eGRN 

inference methods. Violin and jitter plot showing maximum F1 score and corresponding precision and 

recall per transcription factor comparing the recovered target regions versus ChIP-seq data of the same 

transcription factor, the maximum is taken across all possible thresholds of the ChIP-seq data. P-values 

calculated using two-tailed Mann-Whitney U test.  

 

To further demonstrate this point, we visualized the ChIP-seq signal of some key PBMC related master 

regulators (BCL11A, CEBPB, PAX5 and EBF1 in GM12878) on the union of genomic regions identified 

by CellOracle, Pando and SCENIC+ (Fig. R5.10). From this, the predicted target regions of SCENIC+ are 

mostly located at the top of the ranking of the ChIP-seq coverage while the predicted target regions of 

Pando and CellOracle are either more located towards the bottom or they are very sparse (Fig. R5.10). As 

mentioned in comment 4, a key limitation to the SCENIC+ approach in the original submission was that 

quantitative information about TF-to-region, region-to-gene and TF-to-gene importance was lost by 

discretizing these continuous distributions. For this reason, we have now developed a new algorithm to 
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rank all the TF-region-gene triplets identified by SCENIC+. This ranking is defined as the aggregated 

ranking of TF-gene importance, region-to-gene importance and TF-region importance. In this context we 

define the TF-region importance, for a given TF-region pair, as the maximum ranked position of motif 

scores, for the region, over all motifs annotated to the TF. The TF-region (TF2R) importance recapitulates 

the ranking of ChIP-seq signal well, with the most highly ranked regions having a higher ChIP-seq signal 

compared to lower ranked regions (Fig. R5.10). Therefore, this TF2R score can be used by the user to 

adapt the precision-recall balance, which we believe is a valuable addition. This is further illustrated in 

comment 8.   

We have added these new analyses as Figure S9 and added the following lines to the manuscript 

“(…) to test whether the same conclusions can be drawn from a real single-cell multiome dataset, we also 

compared the results of SCENIC+, SCENIC, CellOracle, Pando and FigR on the PBMC data set. 

GRaNIE was not present in this comparison as it was not scalable to this larger dataset. The GRNs from 

all methods were able to recapitulate all biological cell states, except for the GRN from FigR (Fig S8a,c). 

SCENIC+ and Pando performed best in terms of identifying biologically relevant TFs, with Pando 

finding additional TFs compared to SCENIC+ on this data set (Fig S9f,h). On the other hand, SCENIC+ 

had a higher precision and recall in terms of identified target regions of these TFs (Fig S9j). Note that 

even when only scATAC-seq is used to predict TFs per cell type (e.g., ArchR, Signac), the majority of the 

known cell type specific TFs could still be identified, showing that motif discovery is a powerful means for 

cell type specific TF prediction (Fig S9e), however with a large amount of false positive predictions (Fig 

S9g,i).” 
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Figure R5.10. ChIP-seq coverage on predicted target regions in different methods. Coverage of 

BCL11A, CEBPB, PAX5 and EBF1 in GM12878 across the union of the target regions identified by 

CellOracle, Pando or SCENIC+ (y-axis), using 10 bins across the individual target regions (x-axis). y-

axis is sorted by the maximum ChIP-seq signal across the 10 bins. ChIP-seq coverage is scaled based on 

the 5th (min) and 95th (max) percentile across all consensus regions in the PBMC dataset. The binary 

heatmap shows whether a region is found (black bar) or not (white bar) by a certain method. On the right 

of each heatmap the TF to region (TF2R) ranking of SCENIC+ is shown, a lower ranking represents a 

higher likelihood that the region contains a motif of the TF, curve is smoothened by taking the moving 

average across the regions.  

 

6. In the validation of SCENIC+ on ENCODE data the first task presented is the prediction of regulatory 

TFs recovered by several methods. In the main text it would be good to define what recovering TFs 

means. It could mean any of the following: TFs that are expressed in a certain cell type, TFs that are 

actively regulating genes in a cell type, TFs that define chromatin accessibility, TFs that are necessary to 

define the cell states, or TFs that were chosen by ENCODE for unknown reasons. The last is not 

meaningful as the TF selection might be biased towards the research interests of the investigators and the 

availability of ChIP antibodies. 

 

We agree that the word “recovery” may be confusing here. In the original version we simply meant the 

number of TFs identified/found by each tool. We now replaced the following paragraph (lines 205 – 

211): 
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“We first assessed how many TFs were recovered by each method, and how many target regions and 

genes were predicted per TF (Fig 3c, S5a-e). SCENIC+ identifies 178 TFs across the eight cell lines (Fig 

S5, S6).” 

With: 

“(…) SCENIC+ identified regulons for 178 TFs (Fig 3b, S10). SCENIC, GRaNIE, FigR and Pando 

identified fewer regulons (for 108, 39, 71 and 157 TFs respectively). CellOracle identified regulons for 

more TFs (235). For each eRegulon, SCENIC+ predicts on average 471 target genes and 1,152 target 

regions (Fig 3b).” 

For each method we selected high quality regulons based on the default thresholds given in the tutorials 

of the tools. For SCENIC+, high quality regulons were selected based on the correlation between gene-

based regulon AUC and region-based regulon AUC (> 0.7). This resulted in 178 regulons, with a median 

of 437 genes and 774 regions per regulon. For CellOracle, we filtered links with the filter_links function 

using p=0.001, weight=’coef_abs’, threshold_number=2000. This resulted in 157 regulons, with a 

median of 49 genes and 50 regions per regulon. For Pando, we kept triplet with adjusted p-value < 0.01, 

resulting in 235 regulons, with a median of 43 genes and 42 regions per regulon. For FigR, we kept peak-

gene correlations with p-value < 0.05 and kept TF-DORC associations with abs(score) > 1, resulting in 

10,757 TF-gene pairs. This resulted in 71 regulons, with a median of 39 genes per regulon. For GRaNIE, 

we used 0.2 as FDR threshold to filter the eGRN. This resulted in 39 regulons, with a median of 176 

genes and 68 regions per regulon. For SCENIC, we found 108 regulons with a median of 322 genes. For 

all methods we used a search space of 150kb for inferring region-gene relationships and kept regulons 

with at least 25 target genes. 

We also refer to “recovery” of TFs related to Figure 3, panel d in the manuscript. Here, to assess TF 

recovery in the ENCODE cell lines, we ranked 309 TFs based on the number of peaks found by ChIP-seq 

in the Deeply Profiled Cell Lines. That is, TFs that are bound to DNA in the cell lines will be on the top 

of the ranking; while non-functional and not meaningful TFs that may have been chosen by ENCODE for 

unknown reasons will be located on the bottom on the ranking. To assess the recovery of TFs by the 

methods, we use the Area Under the Curve (AUC) on the top part of the ranking (Top 40 TFs). This 

approach enables us to distinguish methods by whether they mostly find meaningful TFs (hits on the top 
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of the ranking; i.e. TFs with a high number of binding sites in the cell lines of interest), or also irrelevant 

TFs (hits on the bottom of the ranking; i.e. TFs with a low number of binding sites in the cell lines of 

interest) (Fig R6.1a). We also observed that TFs on the bottom tend to be more broadly expressed/less 

cell type specific (such as NFYA, SP2, ELK1; with low Tau value), while TFs on the top of the ranking 

are more cell type specific (high Tau value) (Fig R6.1b). Importantly, at the top of the ranking we find 

key known TFs in the cell lines, such as CEBPA, HNF4A, FOXA2, EBF1, PAX5, SPI1, GATA1, 

GATA2, TEAD3, WT1, GRHL2; in agreement with literature. 

As a complementary approach independent of TF ChIP-seq and its availability, we ranked TFs based on 

their maximum LogFC among the cell lines. This resulted in a ranking with 374 TFs, in which top TFs 

are more differentially expressed among the cell lines (Fig R6.1c). In both approaches, SCENIC+, Pando 

and SCENIC recovered a large fraction (36%, 32% and 15%, respectively) of bound TFs/differentially 

expressed TFs; while GRaNIE and FigR recovered little TFs. For CellOracle, we observed a limited 

recovery of differentially expressed TFs, as well as of most bound TFs; however, many of the not 

meaningful TFs (profiled by ChIP-seq by ENCODE, but with little binding sites) were recovered. In fact, 

we observed that TFs recovered by CellOracle are less cell type specific (with lower Tau values), in 

contrast to other methods (Fig R6.1d). We have included the new analysis in Figure 3 and S11 and 

clarified the descriptions in the text and the methods section. 
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Fig R6.1. TF recovery performance by single-cell multiomics GRN inference methods. a. Cumulative 

TF recovery for each method using as x-axis TFs ranked based on the number of ChIP-seq peaks and 

AUC values per method using the top 40 TFs. b. GAM fitted Tau value across the TF ranking based on 

the number of ChIP-seq peaks. c. Cumulative TF recovery for each method using as x-axis TFs ranked 

based on the maximum LogFC across the cell lines and AUC values per method. d. Tau values 

distributions for the TFs recovered by each method.  
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7. In Fig 3 numbers of TF, regions etc are shown. It would be more informative to show performance 

metrics such as precision and recall than to show these numbers. For example, one could trivially show a 

method that always predicts all the TFs and all regions, but this would be meaningless. 

 

Agreed. Together with the descriptive statistics on the number of TFs, target regions and genes, we have 

calculated precision-recall values for the TF recovery, recovered target regions and recovered target 

genes. For calculating the precision and recall curves on TF recovery, we used the rankings based on 

number of binding sites per TF and LogFC of the TF expression as scores, and whether the regulon was 

found by a method or not as the labels. The results agree with our previous observations: SCENIC+, 

Pando and SCENIC show the highest PRAUC values, while CellOracle, FigR and GRaNIE show less 

agreement. CellOracle performs better in the TF ChIP-seq based recovery benchmark, as it includes some 

non-meaningful TFs at the end of the ranking (Fig R7.1). We have included this new analysis in Fig 

S11. 
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Fig R7.1. Assessing precision and recall on TF recovery by single-cell multiomics GRN inference 

methods. a. Precision-recall curves using TFs found by the different methods as labels and different 

thresholds in the TF ChIP-seq based ranking and AUC of the curves. b. Precision-recall curves using TF 

found by the different methods as labels and different thresholds in the LogFC TF expression based 

ranking and AUC of the curves. 

 

To calculate the precision and recall of the methods in predicting target regions, we have used three 

different standards: 1) Unibind peaks (optimal ChIP-seq peaks with TF motif), 2) ENCODE ChIP-seq 

coverage and 3) Enformer prediction scores (Avsec et al., 2021). For the latter two, we have used as 

threshold on the coverage or Enformer prediction score the point in which the F1 score (that depends on 

both recall and precision) is maximum and used that threshold to calculate the precision and recall of the 

methods. Overall, the three approaches agree on the results: SCENIC+ and GRaNIE show the highest 

precision-recall compared to Pando and CellOracle. FigR and SCENIC could not be included in this 

comparison as they do not provide TF target regions (Fig R7.2). Together with the TF recovery stats 
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above, this nicely summarizes the advantages and novelty of SCENIC+ compared to the previously 

existing methods: SCENIC+ is the only method that correctly identifies TFs (for this, only Pando 

achieves similar accuracy), while SCENIC+ also identifies correct enhancers (for this, Pando suffers from 

extremely low recall at the same precision threshold).  We have included these new analyses in Fig S13. 

We are particularly enthusiastic about the comparison with Enformer predictions, as this constitutes a 

state-of-the-art sequence-based method that serves as an independent analysis approach, and we therefore 

decided to include this in silico validation in a main figure (Fig 4).   

Finally, to assess the precision and recall of predicted target genes, we exploited TF perturbation data 

from ENCODE, using as threshold on the LogFC rankings the point in which the F1 score (that depends 

on both recall and precision) is maximum. Our results indicate that the best precision-recall is achieved by 

SCENIC+ and SCENIC (Fig 7.3). We have added these analyses in Fig 3g and S16. However, in this 

comparison we do not account for the downstream indirect effects of TF perturbation (i.e. variation of 

genes that are not direct targets of the perturbed TF but rather of a TF that is a target of the perturbed TF). 

We further described how we have tackled this situation in comment 9 (Fig R9.1, S16). 
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Fig R7.2. F1 score, precision and recall distributions of the predicted regions per TF using three 

different standards. Violin plots represent the F1 score (left), precision (middle), and recall (right) 

distributions of the predicted target regions per TF using different standards: ChIP-seq peaks with TF 

motifs (Unibind, top), ChIP-seq coverage (middle) and enformer predictions (bottom). GATA1, GATA2, 

HNF4A and STAT5A are indicated if the method has found the regulon. The numbers above or below the 
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violins indicate the number of TFs that have been found by the methods and are included in the 

standards. Pairwise wilcox-test p-values between distributions are shown on top of the violins. 

 

 

Fig R7.3. F1 score, precision and recall distributions of the predicted genes per TF using perturbation 

data. Violin plots represent the F1 score (left), precision (middle), and recall (right) distributions of the 

predicted target genes per TF compared to TF perturbation data. The numbers above or below the violins 

indicate the number of TFs that have been found by the methods and have been perturbed. 

 

8. In the assessment of the quality of the predicted target regions it appears there is a component of DNA 

sequence analysis used in the definition of the “silver” standard. This benchmarking approach is highly 

problematic for several reasons. First, there is a degree of circularity between benchmark and analysis. An 

analysis method that aligns well with the use of motifs in the benchmark generation will tend do well. 

Second, this approach suggests that the TF binding sites that can be recognized to bind directly to DNA 

are of greater functional importance than the rest. The manuscript does not provide any evidence to 

support this claim. Third, the inability to make accurate predictions of TF binding based on sequence 

might be limited because current characterizations of DNA binding are not adequate. In this regard it 

might be helpful to contrast with approaches such as that proposed by Avsec, Žiga, et al. Nature Genetics, 

2021. The most appropriate benchmarking comparison for this part is the ENCODE-DREAM in vivo 

Transcription Factor Binding Site Prediction Challenge 

https://www.synapse.org/#!Synapse:syn6131484/wiki/402026. This benchmark would be more objective 
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and enable a direct comparison with the results obtained by the best performing DREAM challenge 

methods. 

 

Thank you for these insightful suggestions. We agree that the “silver” standard used in this benchmarking 

analysis has a component of DNA sequence analysis. This is, the Unibind database (Puig et al., 2021) was 

used for the TF-target-region benchmark. This is a database containing target regions for a large number 

of TFs based on curated ChIP-seq data. This database only contains direct target regions of each TF, as 

obtained by filtering ChIP-seq peaks based on scores for an enriched position weight matrix of the TF. 

The latter is where the sequence analysis comes in. The worry of a degree of circularity is therefore 

(partially) valid, although we want to note that the PWMs used in Unibind do not 100% overlap with the 

PWMs used by any of the methods, also each of the PWMs are slightly modified using the DAMO 

package (Ruan et al., 2018) before they are used for selecting direct target regions. Next to this, the 

algorithm used by Unibind is different from the algorithms used by the GRN inference methods. 

Nevertheless, we think this concern is valid and we therefore added a new analysis where we used 

databases that do not use any sequence analysis (see below), as another “silver standard”.  

Regarding the comment whether TFs that directly bind DNA are of greater functional importance 

compared to TFs that bind DNA in an indirect manner, we actually do not make any statement. Clearly, 

the task of SCENIC+ and all the other eGRN inference methods in the benchmark is to predict genomic 

binding sites that are directly bound by the TF. In other words, the goal is to integrate scATAC-seq, 

scRNA-seq, and DNA sequence information. For this reason, we believe it is appropriate to benchmark 

against a database that contains direct binding sites for several TFs.  

Regarding the third suggestion, to compare the SCENIC+ predictions to predictions made by a deep 

learning model trained on sequence alone: we find this is a very interesting suggestion and therefore we 

added a new analysis where we compare SCENIC+ and other eGRN inference methods to 

Enformer predictions (Avsec et al., 2021, Fig S13, Fig 4).  

Finally, regarding the comment whether the “ENCODE-DREAM in vivo Transcription Factor Binding 

Site Prediction Challenge” represents the most appropriate ground truth: we do agree that it is important 

to use a standardized ground truth. However, the data used in this DREAM challenge, both the training 
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data (RNA-seq and DNA-seq data from ENCODE) as well as the ground truth data (ChIP-seq from 

ENCODE), is actually very similar to the data that we used here to benchmark SCENIC+. In the DREAM 

challenge, the RNA-seq and ATAC-seq data from the ENCODE cell lines is presented as “training data”, 

while the ChIP-seq data from ENCODE is considered as ground truth. This is also how we present our 

ENCODE case study and benchmark analysis. The difference is that the data we used to benchmark 

SCENIC+ is more recent (the DREAM challenge data is all from before 2017) and more extensive (it also 

contains Hi-C and RNA-seq after TF perturbation data). In addition, the DREAM challenge relies on the 

ability to make predictions on left out data. SCENIC+, nor the other GRN inference methods included in 

the benchmark, are designed to do this. These eGRN methods can only “filter”/rank data based on their 

likelihood of being a TF target region. For this reason, we decided to stick to our initial use of the more 

recent ENCODE data for benchmarking, and to include Enformer predictions as an independent 

validation. 

Below we describe the results of our new analyses that address these different comments.  

To assess the performance of the target region predictions of SCENIC+, GRaNIE, Pando and CellOracle 

based on ChIP-seq data, without the use of DNA sequence, we obtained all high-quality ChIP-seq 

datasets from ENCODE, performed on one of the deeply profiled cell lines used in our benchmark (i.e.  

MCF7, HepG2, PC3, GM12878, Panc1, IMR90, HCT116 and K562), these datasets were used to score 

the consensus peaks and these scores were used as ground truth scores. Similarly, all consensus peaks 

were scored using Enformer and scores related to the Enformer classes of the ChIP-seq datasets in the 

deeply profiled cell lines were used as ground truth. Next, we calculated precision, recall and the F1 

metric for each tool. For this, the ChIP-seq/Enformer scores were thresholded in such a way to obtain the 

highest F1 metric per TF for each tool.  

In these tasks, and in line with the analyses above, both SCENIC+ and GRaNIE performed the best both 

on precision as recall (Fig. R7.2). However, SCENIC+ recovered a larger number of TFs. The results 

obtained by using either Unibind, ChIP-seq or Enformer as ground truth are very similar and the 

conclusions are the same (Fig. R7.2). Indeed, the F1 scores obtained from ChIP-seq or Enformer are 

highly correlated (Fig. R8.1). These analyses are included in Fig S13. 
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Figure R8.1. Comparison of F1 scores obtained by comparing predicted target regions to Enformer 

and ChIP-seq. Scatter plot showing maximum F1 score across all possible thresholds of ChIP-seq 

coverage over all consensus peaks (x-axis) and all possible thresholds of Enformer scores over all 

consensus peaks (y-axis) for all TFs identified by SCENIC+, GRaNIE, Pando and CellOracle. Pearson 

correlation coefficients is shown on top.  

 

As an example, we visualized the ChIP-seq signal and Enformer score of two key HepG2 related master 

regulators (HNF1A and FOXA1) and two key K562 master regulators (GATA2 and STAT5A) on the 

union of genomic regions identified by GRaNIE, CellOracle, Pando and SCENIC+ (Fig. R8.2). The 

predicted target regions of SCENIC+ are mostly located at the top of the ranking of the Enformer score 

while the predicted target regions of GRaNIE, Pando and CellOracle are either more located towards the 

bottom or very sparse (Fig. R8.2). Also, GRaNIE yields predicted target regions that have a high ChIP-

seq signal but a low Enformer score. We speculate that this latter observation is due to the fact that 

Enformer makes use of gene expression and other data modalities to predict ChIP-seq signal. This might 

point to the fact that these regions are not functional enhancers, even though they are bound by the TF. 

The TF-region (TF2R) score of SCENIC+ recapitulates the ranking of Enformer scores well, with the 

most highly ranked regions having higher Enformer scores compared to lower ranked regions (Fig. R8.2).  

As mentioned in comment 5, our new TF-region score is used together with the TF-gene and region-gene 

score to rank each TF-region-gene triplet. This triplet score/ranking can be used to increase the precision 

of SCENIC+ (obviously resulting in a decreased recall) (Fig. R8.3). We have added an analysis very 

similar to this example as Figure 4 to the manuscript. 

In conclusion, we again find that Pando does not perform well for enhancer identification. Note also that 

GRaNIE, although it performs well for TF-region predictions, cannot compete with SCENIC+ to identify 
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TFs (see above), and is computationally highly inefficient, preventing its use on the PBMC case study (as 

it was designed for bulk data).  

 

Figure 8.2. Actual ChIP-seq coverage and ChIP-seq coverage predicted by Enformer on predicted 

target regions of different methods. Actual coverage (left) and Enformer predicted coverage (right) of 

HNF4A ChIP-seq in HepG2, FOXA1 ChIP-seq in HepG2, GATA2 ChIP-seq in K562 and STAT5A ChIP-

seq in K562 across the union of the target regions identified by GRaNIE, Pando, SCENIC+ and 

CellOracle, (y-axis), using 5 bins across the individual target regions (x-axis). Actual ChIP-seq coverage 

and Enformer predicted ChIP-seq coverage is scaled based on the 5th (min) and 95th (max) percentile 

(based on Enformer predicted ChIP-seq coverage) across all consensus regions in the DPCL dataset. The 

binary heatmap shows whether a region is found (black bar) or not (white bar) by a certain method. On 

the right of each heatmap the TF to region (TF2R) ranking of SCENIC+ is shown, a lower ranking 

represents a higher likelihood that the region contains a motif of the TF, curve is smoothened by taking 

the moving average across the regions. 
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Figure R8.3. Precision and recall in relationship to triplet score. Scatter plot showing average precision 

and recall of predicted target regions of eRegulons compared to ChIP-seq data. Precision and recall are 

shown for the top 10%, 20%, 40%, 60%, 80% and 100% (x-axis) of the eRegulon edges based on the 

triplet score.  

  

9. In the evaluation of the TF target gene by knockdown experiment it would be helpful to provide more 

information, including the TF, the true TF-regulated gene set, the prediction and the summary result. In 

addition, if the TF binding has been assayed by ENCODE it would be of interest to compare the 

performance of SCENIC+ using motifs with TF ChIP-seq data. Some insights into this evaluation would 

also be of value, for example which types of TFs are well predicted and what aspects of SCENIC+ were 

most important in making these predictions. 

 

Regarding the comment about TF-target gene evaluation, we have added an analysis where we evaluate 

the TF-gene relationships based on in silico TF perturbation predictions (as detailed the melanoma section 

of the manuscript). For this, we computed the predicted LogFC of gene expression upon perturbation and 

compared the predictions with the observed effects. Correlation between the observed and the predicted 

perturbation variation shows that SCENIC+ networks are the most accurate in predicting the perturbation 

effects, compared to other methods (Fig R9.1). As an illustration, we show the comparison between the 

predicted and observed effects upon GATA1 (activator) and ARID3A (repressor) perturbation, where we 
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can also predict effects for genes which are predicted to be indirectly targeted by the TF (in grey, after 5 

iterations). We provide a supplementary table (Table S1) indicating the observed LogFC in each 

perturbation compared to the predicted effect of the perturbation using the GRNs inferred by the 

methods. We have also added this new analysis to Fig S16 and state in the text: “To better account 

for indirect effects of the TF-knockdown experiment due to direct interactions between TFs (i.e. the 

perturbed TF regulates another TF, Fig S16d) or cooperativity (i.e. the TFs target the same genes, Fig 

S16e), we also performed in silico TF perturbations based on the GRNs inferred by the different methods 

(see Methods). While only a fraction of the variation in gene expression can be explained by any of the 

GRNs, eGRNs inferred by SCENIC+ agree the best with the experimental data (Fig S16f, Table S1).” 

 

Figure R9.1. Comparison between simulated perturbation effects and TF knockdown experiments from 

ENCODE. a. Spearman correlation between predicted LogFC with in silico TF perturbation for each 

method versus the observed LogFC changes upon TF perturbation. b. Comparison between predicted and 

observed LogFC changes upon GATA1 KD. Dots in red indicate genes in the GATA1 regulon. c. 

Comparison between predicted and observed LogFC changes upon ARID3A KD. Dots in red indicate 

genes in the ARID3A regulon, predicted as repressor.  

 

Regarding the comment about comparing SCENIC+ using ChIP-seq data and SCENIC+ using motifs, we 

have now implemented a new approach to score ChIP-seq bigwig files in order to build cisTarget 

rankings, available at https://github.com/aertslab/create_cisTarget_databases. This now provides the 

interesting option to use ChIP-seq tracks in the cistrome inference step, rather than (or next to) motifs. 

Using the ENCODE cell lines, we compared the performance of SCENIC+ in different settings, 
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concerning the cistrome inference step: 1) Using the motif collection, 2) Using ENCODE ChIP-seq tracks 

(on these cell lines) and 3) Combining information from both motifs and ChIP-seq tracks. We then 

assessed the quality of the GRNs based on the TFs identified, target regions and target genes, as in our 

previous benchmarks. Our results indicate that (as expected) the number of TFs identified when using 

only ChIP-seq tracks is lower, because it depends on the availability of ChIP-seq data for the TFs. 

Overall, the number of predicted target regions and genes is also lower compared to using motifs or 

compared to using a combination of motifs and ChIP-seq tracks (Fig R9.2, Fig R9.3). When validating 

the predicted target regions, we observed that the ChIP-seq track-based analysis has a slightly higher 

precision when using ChIP-seq and Unibind peaks as standard (ChIP-seq peaks with the TF motif), but a 

lower recall. However, when using the Enformer predictions as standard, the motif-based analyses have a 

slightly higher accuracy, likely because Enformer also uses the DNA sequence (Fig R9.4). Finally, for the 

evaluation of the target genes (TF perturbation data), the motif-based analyses result in a better recovery 

(Fig R9.5). Overall, using only ChIP-seq tracks results in sparser eGRNs, and we did not observe a 

substantial difference between using the motif databases on its own or using both motif and ChIP-seq data 

combined. 

We included these results in Figure S18. 

   

 

Fig R9.2. Descriptive statistics of eGRNs. Boxplot showing the number of genes per regulon (left), the 

number of target region per regulon (middle), and the number of high quality regulons (right) per 

approach. 
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Fig R9.3. Recovery of marker TFs across approaches. Cumulative TF recovery for each method using 

as x-axis TFs ranked based on the maximum LogFC across the cell lines and AUC values per method 

(left) and precision-recall curves (right). 
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Fig R9.4. F1 score, precision and recall distributions of the predicted regions per TF using three 

different standards. Violin plots represent the F1 score (left), precision (middle), and recall (right) 

distributions of the predicted target regions per TF using different standards: ChIP-seq peaks with TF 

motifs (Unibind, top), ChIP-seq coverage (middle) and enformer predictions (bottom). GATA1, GATA2, 

HNF4A and STAT5A are indicated if the method has found the regulon. The numbers above or below the 
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violins indicate the number of TFs that have been found by the methods and are included in the 

standards. Pairwise wilcox-test p-values between distributions are shown on top of the violins. 

 

 

 

Fig R9.5. F1 score, precision and recall distributions of the predicted genes per TF using perturbation 

data. Violin plots represent the F1 score (left), precision (middle), and recall (right) distributions of the 

predicted target regions per TF compared to TF perturbation data. The numbers above or below the 

violins indicate the number of TFs that have been found by the methods and have been perturbed. 

 

10. Although the paper does some GRN benchmarking, many of the benchmarks are not entirely 

convincing. It would be of interest to adapt some of the benchmarks proposed by Pratapa et al Nature 

Methods, 2020 to multomic data.  

 

To further strengthen our benchmarks, as we find this an important aspect of our work, we included 

several additional analyses: 

1. TF recovery evaluation: To define the key TFs that any method should ideally recover, we used 

two approaches: based on 1) the number of genomic regions bound by a TF (i.e. the more 

physical target regions a TF has, the more important it is) and 2) TF expression (i.e. if a TF is a 

marker gene in the cell line, it is likely important). The two approaches are complementary. The 

first approach can only be applied to TFs that have been profiled by ENCODE, while the second 
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may disregard general TFs. In both analyses, SCENIC+, Pando and SCENIC recovered the most 

relevant TFs. We observed that CellOracle tends to find more general TFs (with lower expression 

Tau values), likely because it infers GRNs on a cell type per cell type basis, without using other 

populations as background. This will result in the same patterns for general TF and marker TF in 

the cell type. On the other hand, GRaNIE finds few, but highly cell type specific TFs (with high 

expression Tau values). We describe the approaches in detail in comments 6, 7 and 8 and in Fig 3 

and S11 in the manuscript. 

2. Target region evaluation: To assess the quality of the predicted target regions we now use three 

different standards: 1) ChIP-seq peaks with the TF motif (Unibind), 2) ChIP-seq coverage (as in 

Pratapa et al.), and 3) Enformer predictions (Avsec et al., 2021). The three analyses showed that 

target regions predicted by SCENIC+ and GRaNIE achieve the best precision-recall. These 

analyses are further described in comments 7 and 8 and in Fig 3 and S13 in the manuscript. In 

addition, we now also included a comparison of the predicted target regions with STARR-seq 

enhancer reporter data, finding that SCENIC+ predictions have the highest activities, and likely 

represent functional enhancers (Fig R10.1, S13). 

 

Figure R10.1. Comparison of Enhancer activity on DPCL target regions identified by different 

tools. Violin plot showing distribution of maximum enhancer activity as measured using STARR-

seq data from ENCODE on regions in K562, HepG2, HCT116 and MCF7. Difference in mean is 
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assessed using two-tailed Mann-Whitney U test. P-values are adjusted using the Benjamini-

Hochberg procedure. The x-axis is sorted by the median average distance.  

 

3. Target gene evaluation: To assess the quality of the predicted target genes, we use TF 

perturbation data (as in Pratapa et al.). In our previous versions, we directly compared the 

variability of the predicted target genes upon perturbation. However, a key challenge of this 

analysis is that TF perturbation can lead to indirect downstream changes, that will be considered 

as false negatives in the regulon (i.e. genes that change but are not included in the regulon). To 

tackle this challenge, we performed in silico TF perturbations based on the GRNs inferred by all 

the methods over 5 iterations, allowing to model the indirect changes upon TF perturbation. This 

analysis shows that SCENIC+ GRNs can predict the effects of TF perturbation the best. These 

analyses are described in comment 7 and 9 (Fig S16).  

4. GRN-based cell state identification: Inspired by Pratapa et al., we now also assess the overall 

GRN quality based on whether regulon enrichment scores can recapitulate the different cell states 

(based on clustering and dimensionality reduction visualization; Fig 3 and Fig S8). In addition, 

we used Pratapa et al. approach to simulate cells from defined GRNs (BoolODE), finding that 

SCENIC+ GRN generated cells better resemble the observed states (Fig S22). We further 

describe these analyses in comment 11 (Fig R11.3, R11.4). 

 

11. One of the analyses shown by Pratapa et al relates to the number of stable states consistent with the 

gene regulatory networks. Can it be shown that the numbers of stable states derived from the networks 

presented in the manuscript are consistent with the observed biological systems? 

 

We appreciate this suggestion. To assess whether the predicted GRNs for each of the tools corresponds 

with the number of stable states in the biological data we performed two new analyses.  

First, we calculated AUC values based on predicted target genes and regions for each TF using the 

AUCell method (Aibar et al., 2018, Van de Sande et al., 2020) followed by dimensionality reduction 

based on either target gene or target region AUC values or the combination of both. This eGRN-based 
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dimensionality reduction was previously already included in SCENIC+, and the eGRN AUCell matrix 

had been used to generate the dimensionality reductions in all the test cases with SCENIC+. To now also 

compare this result with other methods, we performed this approach for multiple data sets (i.e. the 

ENCODE cell lines data, the PBMC data, and the melanoma cell line data), and assessed whether this 

type of dimensionality reduction can recapitulate the cell types/states that were identified based on gene 

expression (in case of PBMCs) or genotype (in case of the cell lines).  

For the ENCODE cell lines, we scored the predicted gene-based eGRNs with AUCell and then performed 

PCA to assess whether the two first PCs could recapitulate the different cell lines. We found that 

SCENIC+ was the most accurate method for this task, while CellOracle and Pando showed the lowest 

performance (Fig R11.1). We include this analysis as Figure 3c. 

 

 

Fig R11.1. Evaluation of the eGRN-based dimensionality reduction on ENCODE cell lines. PCA plots 

based on the AUC values calculated using the predicted eGRNs by each of the methods (left) and 

Adjusted Rand Index (ARI) values, calculated using the cell line used to generate each cell as ground-

truth. 

 

For the PBMC dataset, most methods were able to separate the main cell types based on the AUC values 

(Fig R11.2). Except for FigR for which the dimensionality reduction is very noisy and CellOracle which 

seems to over-cluster the data. We speculate that this latter observation can be explained by the fact that 
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CellOracle performs GRN inference per individual cell type and is therefore able to pick up slight 

variations within a cell type, while other methods do the inference on a whole dataset level. The analysis 

using GRaNIE required too much memory and therefore could not be included (tested on a machine with 

72 cores Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz and 2 TB of memory). Pando performed 

better on the PBMC data set compared to the ENCODE data set, which could be due to using a less 

stringent threshold on the network compared to the ENCODE data set (padj < 0.05 versus padj < 0.01). 

We added this analysis to the manuscript (Fig S8) and added the following line to the PBMC section of 

the manuscript: “tSNE dimensionality reduction on eRegulon enrichment scores is able to separate the 

main biological cell states, suggesting that the inferred eGRN recapitulates the cell states”. 

For the melanoma dataset, again most methods were able to separate the main cell types based on 

dimensionality reductions on the AUC values (Fig R11.3), except for GRaNIE for which the target gene 

AUC values are noisy, therefore also affecting the dimensionality reduction based on both target gene and 

region AUC values. FigR performs better on this dataset compared to the PBMC dataset. We added this 

analysis to the manuscript (Fig S8). 
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Figure R11.2. Comparison of dimensionality reductions based on eRegulon AUC scores for different 

methods in the PBMC and mm-line dataset. a. tSNE dimensionality reduction for target gene AUC, 

target region AUC and the combination of target gene and region AUC values, calculated using AUCell, 

for (e)Regulons identified by FigR, Pando, SCENIC, SCENIC+ and CellOralce in the PBMC dataset. b. 

PCA dimensionality reduction for target gene AUC, target region AUC and the combination of target 

gene and region AUC values, calculated usin AUCell, for (e)Regulons identified by GRaNIE, FigR, 

Pando, SCENIC, SCENIC+ and CellOracle in the MM-line dataset. c-d. Adjusted Rand Index (ARI) 

quantifying how well cell type are seperated based on the AUC-scores for the PBMC (c) and MM-line (d) 

datasets. 

 

Second, we tested whether the inferred GRN on its own is sufficient to recapitulate the main biological 

states of the biological system. For this, we converted the TF-TF edges obtained from the inferred GRNs 

of the different tools into a boolean network, which was consequently used to simulate gene expression 

matrices for 500 cells using BoolODE (Pratapa et al., 2020). Interestingly, by taking the top 25% of the 

edges of SCENIC+, based on the triplet score (see comment 4), BoolODE was able to generate the main 

stable melanoma cell states (Fig R11.3). Of note, these states are (at least in part) driven by copy number 

variation, nonetheless the network itself is able to discover these states. In this task SCENIC+ was the 

best performer, with on average a smaller distance between each simulated cell and its nearest real cell 

neighbors compared to other methods (Fig R11.4). CellOracle was not able to recapitulate the 

mesenchymal state while the simulated cells obtained from the networks inferred by FigR and GRaNIE 

were more scattered (Fig. R11.3, R11.4). Pando was excluded from this analysis because the runtime 

exceeded 48 hours on a machine with 72 cores (Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz) and 

2 TB of memory. The reason for this is that Pando has many genes with an excessively large number of 

TF as predicted regulators and BoolODE scales exponentially with this number. We have added this 

analysis to the manuscript (Fig S22) and added the following line to the melanoma section 

“Furthermore, a boolean model (Pratapa et al. 2020) using the top 25% of the TF-to-TF edges of the 

inferred network on its own was able to recapitulate the main melanoma cell states (Fig S22).” 
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Figure R11.3. PCA-dimensionality reduction of simulated cells by the boolODE method (Pratapa et al., 

2020) co-clustered with real cells for different eGRN inference methods. Boolean networks were 

generated from gene regulatory networks inferred from SCENIC+, CellOracle, FigR and GRaNIE. For 

SCENIC+ the top 10%, 25% and 50% of edges based on the triplet score were used. 500 cells were 

simulated using the boolODE method using a simulation time of 20 and the hill activation function. 

Simulated cells were co-embedded in PCA space with real cells after Harmony batch effect correction.  
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Figure R11.4. Distance between simulated cells and real cells. Violin and jitter plot of the average 

distance of each simulated cell to its three nearest neighbors in the first 2 principal components of PCA 

space. Difference in mean is assessed using two-tailed Mann-Whitney U test. And p-values are adjusted 

using the Benjamini-Hochberg procedure. x-axis is sorted by the median average distance.  

 

12. The melanoma phenotype switching is derived from an earlier scRNA-seq study by the same group 

and new scATAC-seq data for the same 10 melanoma cell lines were generated for the current study. 

Although the manuscript describes many TFs discovered by SCENIC+, many of these were already 

discovered and reported in the earlier study and the manuscript does not clearly demonstrate what was 

novel in the SCENIC+ finding and what was the important difference between the SCENIC+ findings and 

SCENIC. In addition, it would be helpful to include a comparison with methods such as chromVAR and 

Signac for this section. 

 

It is true that many TFs discovered by SCENIC+ were already described in previous publications (e.g. 

Wouters et al., 2020), which to us was reassuring. What is novel here, and what is the central to enhancer-

GRN (compared to classical GRN inference), is that now, for each of the predicted TFs, the genomic 

target regions of these TFs are identified. This was impossible using SCENIC. In addition, we provide 
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additional novelties in the manuscript: the identification of target genes is now improved, because they 

are linked to the enhancers; the eGRN allows for Boolean network simulations; the eGRN allows for the 

prediction of perturbations; and the eGRN allows for the prediction of trajectories (GRN velocity).  

In Fig S21e we also show that the predicted genomic regions (which was not possible with SCENIC) can 

be used for the inference of TF cooperativity (illustrated in the figure as the cooperativity between 

TFAP2A, RUNX3, MITF and SOX10). We show that these regions are highly enriched for ChIP-seq 

signal of corresponding TFs (Fig S21f).  

To further illustrate this point, we show below that regions that are predicted to be targeted by any TF 

have on average a higher enhancer activity as measured by STARR-seq (Mauduit et al, 2021) (Fig 

R12.1a; Fig S21i). Also, when we rank all TF-gene-region triplets by generating an aggregated ranking 

based on the TF-gene importance score, region-gene importance score and maximum TF-region ranking 

based motif score (maximum across all motifs annotated to that TF) and take the maximum score for each 

region, we show that this score correlates with the enhancer activity of that region (Fig R12.1b; Fig S21j). 

Thus, using the predictions from SCENIC+ it is possible to identify active enhancers in a biological 

system of interest. This is of interest to researchers wanting to perform massively enhancer reporter 

assays (MPRAs), as SCENIC+ can be used in this context to select regions with a higher likelihood of 

being active compared to random ATAC-seq peaks.  

We are aware that this conclusion is based on a relatively low sample size, for that reason we repeated 

this analysis in the Deeply Profiled cell lines from ENCODE, where additional STARR-seq data is 

available. We summarize these results in an extra figure that we will add to the manuscript (Figure 

4). 
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Figure R12.1. Comparison of STARR-seq signal in regions in eRegulons vs regions not in regulons 

and correlation between triplet score and STARR-seq signal. a. Scatter and jitter plot showing enhancer 

activity as measured by the STARR-seq method (Mauduit et al., 2021) in regions targeted by any of the 

regulons and regions targeted by None. b. Scatter plot comparing enhancer activity as measure by the 

STARR-seq method (y-axis) (Mauduit et al., 2021) to the minimum of the triplet score over all TFs 

targetting and genes targetted by the region (x-axis). Labels of the regions are according to the labels in 

(Mauduit et al., 2021). Difference in mean is assessed using two-tailed Mann-Whitney U test. And p-

values are adjusted using the Benjamini-Hochberg procedure. x-axis is sorted by the median average 

distance. 

 

To test whether chromVAR (through the ArchR package) and Signac can identify the same TFs as 

SCENIC+ on this melanoma case study we re-ran the analysis on the scATAC-seq part using both 

methods. We assessed motif enrichment analysis using a standard differential test in differentially 

accessible regions (hypergeometric test; adjusted p-value < 0.01) and using the ChromVAR deviation 

enrichment test. Both procedures are detailed in the tutorials of ArchR and Signac. For ArchR, both 

motifs as well as ChIP-seq tracks were used as features. All methods can indeed also identify the same set 

of TFs as SCENIC+, however both ArchR and Signac find more TFs (Fig. R12.2).  The extra TFs 

identified by Signac and ArchR have on average a lower expression compared to the TFs identified by 

SCENIC+ (Fig R12.3). These extra TFs probably represent false positives, due to the fact that Signac and 

Chromvar only make use of the scATAC-seq data, while SCENIC+ uses both scATAC-seq and scRNA-
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seq data. Due to the lack of a large amount of ChIP-seq data on these cell lines and the absence of 

indicative Gene Ontology terms we can, however, not test this further. 

 

Figure R12.2. Comparison of TFs recovered using ChromVar and Signac. Heatmap showing whether a 

TF is found across different methods (present: green; absent: red). Signac and ArchR were run using 

different options. (1) DEM: Differentially Enriched Motifs or ChIP-seq tracks in differentially accessible 

regions, (2) ChromVAR deviations. 
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Figure R12.3. Comparison of expression TFs found exclusively by Signac and ArchR. Boxplots 

showing distribution of the expression (log CPM) of TFs found by all methods including SCENIC+ 

(SCENIC+), by Signac using differentially enriched motifs but not SCENIC+ (Signac DEM), by Signac 

using ChromVAR deviations but not SCENIC+ (Signac ChromVar) or by ArchR using differentially 

enriched motifs or ChromVAR deviations but not SCENIC+ (ArchR motif DEM / ChromVar). Difference 

in mean is assessed using two-tailed Mann-Whitney U test. And p-values are adjusted using the 

Benjamini-Hochberg procedure. x-axis is sorted by the median average distance. 

 

We also compared SCENIC+ with other (e)GRN inference methods on the melanoma cell line dataset. 

We re-ran the melanoma cell line analysis using CellOracle, FigR, Pando, GRaNIE and SCENIC. First, 

we assessed whether the other methods could recover the same TFs as SCENIC+. When testing whether 

TFs identified by SCENIC+ could also be recovered by other methods, Pando was again the most similar 

(Fig. R12.4). Other methods miss important TFs, including SOX10 (not found by FigR), SOX6 and 

SOX5 (not found by FigR and CellOracle). GRaNIE only identifies MITF, SOX10 and SOX9 (Fig. 

R12.4). 
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Figure R12.4. Comparison of TFs recovered using different (e)GRN inference methods. Heatmap 

showing whether a TF is found across different e(GRN) inference methods (present: green; absent: red). 

Only TFs found by SCENIC+ are shown. 

 

Next, we wanted to assess the cell type specificity of the predicted target genes (Pando, CellOracle, 

SCENIC, FigR and GRaNIE) and target regions (Pando, CellOracle and GRaNIE) of each TF identified 

by the different methods, compared to SCENIC+. For this, we calculated AUC values for predicted target 

genes and regions using AUCell (Aibar et al., 2018; Van de Sande, 2020) and visualized these values on 

heatmaps (Fig. R12.5). The target gene AUC values of SCENIC and FigR are most similar to those of 

SCENIC+, while for Pando the target region AUC values are the most similar to SCENIC+ (Fig. R12.5). 

We added part of this analysis as supplementary figures (Fig S21) to the manuscript and added the 

following lines to the melanoma section: “FigR, CellOracle and GRaNIE could not identify many of 

these regulators (Fig S21h). More importantly, SCENIC+ now identifies the genomic target regions of 

these TFs, some of which have been previously shown that they function as active enhancers (Fig S21i-

j).” 
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Figure R12.5. Comparison of cell type specificity of regulons inferred by different (e)GRN inference 

methods. Heatmap-dotplot showing scaled target gene AUC values using a color-scale and target region 

AUC values (if present) using dot-size scale. Regulons which were not recovered by one of the methods 

(compared to the regulons recovered by SCENIC+) are greyed out. 
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Figure R12.6. Comparison of AUC values of eRegulons inferred by different (e)GRN inference 

methods. Boxplot showing spearman correlation coefficient of target gene (red) and target region (blue) 

AUC values of eRegulons inferred by different (e)GRN inference methods. 

 

13. The analysis with CellOracle was not particularly informative as it did not make the case for 

SCENIC+, which seems to be topic of the manuscript.  

 

The purpose of this analysis was to illustrate one of the downstream analyses that can be done using the 

output of SCENIC+. We believe that it does make the case for SCENIC+ in the sense that SCENIC+ is 
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able to identify the correct target genes of TFs, so that they can recapitulate the effects of TF-knockdown. 

We illustrated this for the knockdown of SOX10 in the manuscript. Also, this section shows that 

SCENIC+, using in silico perturbation analysis, is able to prioritize TFs for their ability to maintain a 

certain cell state (i.e. when you would knockdown this TF the state of the cell changes a lot). 

14. The section on conservation between human and mouse cortex also seems tangential to the main 

subject of the paper. The results presented in this section could reflect aspects of biology, or certain biases 

in the analysis that are conserved between human and mouse. Separating the two might require some 

deeper analysis, which would go beyond the scope of the current paper. 

 

Thank you for the critical assessment of this section. We consider this type of evaluation, using 

comparative genomics, to represent a more biological benchmark compared to the previous (statistical) 

benchmarks against other methods. We basically assess whether between two independent data sets, from 

different species/genomes and techniques (10x multiomics and SNARE-seq), SCENIC+ is able to identify 

the same cell types and TFs, and to further assess eGRN conservation (at the level of target regions and 

target genes). To our knowledge, this is the first time such study is done with eGRNs inferred from 

single-cell multiomics data, in which not only genes, but also target regions and target genes can be 

compared. In addition, we provide independent resources for mouse and human that can be explored at 

UCSC and SCope, which could be of interest for the neurobiology community. Furthermore, with the 

analysis of the mouse cortex, we also show SCENIC+’s applicability in the mouse genome, apart from 

human (several data sets) and fly (eye-antennal disc).  

First, we show that SCENIC+’s eGRN-based dimensionality reduction can identify the same cell types in 

both data sets (Fig 6). Second, we found that for approximately 50% of the TFs high quality regulons can 

be identified in both species (60 out of 125 and 142, respectively), and that orthologous regulons are 

enriched in the corresponding cell types. Of these, 52 have been described to be involved in the different 

cortex cell types, while the remaining 8 can be considered novel candidates. These include Smad3 in the 

upper cortical layers, Pparg and Bhlhe40 in L4, Etv5 and Nfat5 in the L5/6, Thrb and Pbx1 in L6 and 

Meis1 in oligodendrocytes. We describe this in the manuscript: “While 52 out of the 60 conserved TFs 

have been previously described to be important for the cell types of the cortex, the remaining 8 can be 
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considered novel candidates found by SCENIC+. These include Smad3 in the excitatory neurons of the 

upper cortical layers, Pparg and Bhlhe40 in L4 excitatory neurons, Etv5 and Nfat5 in L5/6 excitatory 

neurons, Thrb and Pbx1 in L6 excitatory neurons, and Meis1 in oligodendrocytes (Fig 6c, S23a-b).”  

As to whether these results reflect aspects of biology, or certain biases in the analysis we make the 

following statement in the manuscript: 

“To assess whether species-specific TFs are either not conserved or missed in one of the two analyses 

(i.e. due to data sparsity and/or the applied filters along the workflow) we converted the predicted target 

genes in the mouse regulons to human orthologs (based on ENSEMBL) and scored these mouse specific 

regulons in the human data set. For these regulons, we found high correlations of cell type specificity 

scores across species, with a median correlation of 0.79 (with 51 regulons having a correlation above 

0.6), indicating that these regulators are likely conserved, but missed in the human analysis. For 

example, while Pou3f1/POU3F1 and Fezf2/FEZF2, previously described regulators of L5 PT and L5/6 

neurons respectively56, were only found in the mouse analysis; the human-based mouse-regulons are 

enriched in the corresponding cell types in the human data set, matching with the expression of these TFs 

(Fig S23d).” 

With this analysis, we illustrate that while regulons with strong signals are identified in both cases, the 

quality of the technique used to generate the input data and the thresholds can have an impact on the 

regulons that can be identified with confidence, which we believe is of relevance for future users of the 

tool. We further elaborate on this topic in a new benchmark using the simulated data from the 

ENCODE cell lines where we evaluate the performance of SCENIC+ depending on the number of 

cells and coverage (Fig S19).  

We then further explore to what extent the network is conserved between species. This is, for both 

species, we identified target regions that are bound by orthologous TFs and assessed to what extent 

orthologues TFs target orthologous genes. Overall, we found little conservation, with only 28% and 6% 

of the target genes and regions conserved. Though it is difficult to assess whether this is due to technical 

reasons (e.g. data sparsity, technique) or biological (i.e. evolutionary turnover), we were able to prioritize 

which regulons are the most conserved, with the inhibitory neuron regulons as the most conserved 

overall. We identify 4,798 and 8,318 conserved TF-region and TF-gene relationships respectively. Given 
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the sparsity of direct TF-enhancer and TF-target gene relationships in the literature, the majority of these 

conserved interactions are novel. Importantly, in combination with our GRN velocity approach, we 

identify Meis1 as a key regulator of oligodendrocyte maturation, which we show is conserved between 

mouse and human. These observations are now described in the text. 

We believe this resource could be further exploited to assess differential regulatory target conservation 

between TFs, or to prioritize conserved sequences to develop cell-type specific vectors, and we now 

discuss these applications of single-cell eGRNs in the discussion. Nevertheless, in this study we focus on 

the validation/proof-of-concept of the tool and providing public resources for users to explore (and 

expand on) SCENIC+ insights, and the latter applications are out of the scope of this study. 

 

15. GRN velocity is a concept which might be worth expanding on. Related ideas and methods are 

reported by Ma et al, Cell, 2020 and ref 69 (Li et al). and it would be of interest to compare the results 

produced by the respective methods. The paper does not present algorithms that have been developed 

specifically for multiomic data latent space analysis (for example Gong et al, Genome Biology, 2021, 

Minoura et al. Cell Reports Methods, 2022; Lynch et al, Nature Methods, 2022; Lin et al. scJoint: Nature 

Biotech, 2022). As the pseudotime analysis depends on the latent space the trajectory inference, to what 

degree do the results of the GRN velocity change depend on these upstream processing steps?  

 

Thank you, we also find that eGRN-based prediction of cell state dynamics is novel and interesting. The 

approach we present here relies on pseudotime ordering performed using the eGRN enrichment in the 

cells inferred using single cell multiomics data. The methods proposed by the reviewer focus on the 

integration scRNA-seq and scATAC-seq in the same latent space [Cobolt (Gong et al., 2021), scMM 

(Minoura et al., 2022), MIRA (Lynch et al., 2022), scJoint (Lin et al., 2022)]; however, cells are not 

mapped in a one-to-one basis, and in the case of single-cell multiomics data, we would end up with two 

data points per cell. These approaches could be compared with other approaches for data integration such 

as CCA, and then used for data pairing using the FigR approach to mimic single-cell multiomics data (as 

we have shown in comment 1). Using CCA together with FigR’s cell pairing algorithm, we have shown 

that SCENIC+ results are comparable to those obtained using true multiomics data. We believe that these 
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methods could be compared with other algorithms to integrate independent single cell omics modalities; 

nevertheless, this is not the purpose of SCENIC+. 

GRN velocity describes the differences between the expression of a TF and the changes in its target 

regions and/or target genes. In Ma et al., the authors compare the lag between chromatin accessibility 

around a gene (e.g. gene activity) and the observed gene expression, without including TF information. 

Unfortunately, the code to reproduce the Ma et al. analysis is not available in the manuscript. Velocity 

methods on the other hand, such as scVelo, measure the lag between unspliced and spliced mRNAs per 

gene, without incorporating information of chromatin or regulating TFs. Recently, Li et al. presented 

Multivelo, which combines the two latter concepts. Multivelo uses the lag between chromatin 

accessibility around a gene, unspliced mRNA expression, and spliced mRNA to order the cells. To 

illustrate the conceptual differences between GRN velocity and to further assess whether our eGRN based 

pseudotime ordering agrees with velocity-based ordering, we have now included scVelo and MultiVelo 

analyses for the eye antennal disc data set (where developmental dynamics are most pronounced). While 

scVelo and MultiVelo return point values of directionality (one ‘pseudotime’ measurement per cell), 

GRN velocity provides one vector per cell and per TF, in which each value indicates the directionality to 

which the activation of a regulon pushes a cell (Fig R15.1). Importantly, we observe that both scVelo and 

MultiVelo correctly predict the differentiation path, including the branching event between 

photoreceptors and interommatidial cells.  
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Figure R15.1. Comparison between the outputs of our eGRN approach (directionality vectors per 

regulon, 8 regulon-specific vector maps are shown as example) and velocity approaches (global 

directionality vectors). 

 

 

Figure R15.2. scVelo velocity per gene. The first plot shows the unspliced versus spliced ratio, the 

second plot shows the velocity in each cell for that gene and the third plot shows the gene expression. 

There can be a lag between the splicing and the eGRN velocity, RNA velocity can be positive of negative 

in the cells where the eGRN velocity indicates TF activity, and velocity patterns can be random. 

 

While scVelo permits to visualize the velocity of each gene in a cell, these values do not always 

correspond to the eGRN velocity, as they are based on the splicing of the mRNA of the TF rather than the 

difference between TF expression and its target genes (Fig R15.2). For instance, while the velocities of 
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Optix and lz genes are indeed higher in the cells where the eGRN velocity predicts their TF activity; for 

Onecut and gl, scVelo velocity is higher in the cells right before the ones (in the differentiation trajectory) 

where we observe the strongest eGRN velocity. This may recapitulate the processing between TF 

expression and splicing prior to the activation of its target genes. In other cases, the velocity seems to 

have a rather random pattern (e.g. ey) or is negative (e.g. ato, sens), which indicates downregulation of 

splicing, in the cells where the eGRN velocity shows the strongest TF activity.  

As the reviewer suggests, the eGRN velocity depends on preprocessing steps, namely on having an 

accurate pseudotime order of the cells. In our study, we have used eGRN enrichment (AUCell values) to 

perform dimensionality reduction and pseudotime ordering, resulting in the expected ordering of the cells 

and cell types based on the previously known differentiation steps, and as validated with PAGA (Fig 

R15.3). We recommend the users to follow this approach. To illustrate the effect of the pseudotime order, 

we also inferred eGRN velocities using scVelo pseudotime, which are noisier, especially in the cell types 

anterior to the morphogenetic furrow (i.e. more mixing between pseudotime values between 

differentiation stages rather than a gradual increase, Fig R15.3). While the eGRN velocities follow similar 

trends, we observe more sparseness of the arrows when using the noisier velocity pseudotime (Fig 

R15.4). Altogether, while having an accurate pseudotime is required for the inference of accurate eGRN 

velocities, we provide a recommended workflow, using the eGRN-based pseudotime ordering, that we 

have tested both in unbranched (oligodendrocytes) and branched (eye disc) trajectories. More details on 

this approach are available in the tutorials at https://scenicplus.readthedocs.io/en/latest/ 

We have included these analyses in Fig 7 and Fig S28 and added following paragraph to the 

manuscript: 

“To assess whether velocity methods could give the same insights as eGRN velocity, we compared our 

approach with RNA velocity (based on the splicing of the mRNA of the TF, Fig S28a). For instance, while 

the RNA velocities of Optix and lz genes are indeed higher in the cells where the GRN velocity predicts 

their TF activity; for Onecut and gl, RNA velocity is higher earlier in differentiation trajectory compared 

to where the eGRN velocity is highest. This may recapitulate the processing between TF expression and 

splicing prior to the activation of its target genes. In other cases, RNA velocity patterns seem to have a 

rather random pattern (e.g. ey) or they are negative (e.g. ato, sens), which indicates downregulation of 

splicing, in the cells where the eGRN velocity shows the strongest TF activity. Importantly, we also 

https://scenicplus.readthedocs.io/en/latest/
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calculated eGRN velocities using the eGRN-based pseudotime and the RNA velocity pseudotime, finding 

that the latter results in sparser differentiation arrows (Fig S28b-d).” 

 

 

Fig R15.3. Differentiation trajectories and pseudotime ordering. a. PAGA transition graph between cell 

states along oligodendrocyte differentiation. b. PAGA transition graph between cell states along the eye 

disc differentiation. c. Eye disc UMAP colored by eGRN-based pseudotime. d. Eye disc UMAP colored by 

velocity based pseudotime.  
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Fig R15.4. Comparison between eGRN velocities inferred using the eGRN based pseudotime (top) and 

the velocity pseudotime (bottom). 

 

16. In the fly retina analysis of GRN velocity single cell ATAC-seq and RNA-seq data are not generated 

from the same cells using multimodal analysis. This seems problematic as there might be differences 

between the gene expression and the chromatin states of the cells which would be hidden by the matching 

procedure. Again, no comparison is made with other methods. It is not clear that the GRN velocity 

approach was important in this analysis, or whether similar conclusions could be reached using alternative 

methods. 
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To map the scATAC-seq and the scRNA-seq data, we used ScoMAP, which maps differentiating cell 

types based on the ranked pseudotime between the layers rather than projecting cells into a common space 

(by calculating gene activities from the scATAC-seq data) and matching neighbors. As a ranking based 

approach, the cells are assigned by order, rather than closest neighbors based on gene expression and gene 

activities, which tends to disregard the potential lag effects (because it requires the gene expression and 

gene accessibility patterns to be the closest for the mapping). We validated the mapping between the 

layers extensively in Bravo et al (2020) using enhancer activity data from Janelia Farm and stainings. In 

addition, MultiVelo, which uses both chromatin accessibility and gene expression, was able to 

unsupervisedly infer the differentiation trajectory from the paired data (Fig R15.1). 

As we describe in comment 15, eGRN velocity does provide complementary insights compared to scVelo 

and MultiVelo, as it indicates the lag between the expression of a TF and the activation of its target genes 

rather than splicing, or accessibility and splicing, of the gene. Both scVelo and MultiVelo focus in 

inferring the overall differentiation trajectory (as a unique vector map), while eGRN velocity measures 

the relevance of each TF to push cells in a certain direction. We further illustrate the conceptual 

differences in Fig R15.2, where we show that the velocities inferred by scVelo do not always agree with 

the eGRN velocity (i.e. there can be a lag between the splicing and the eGRN velocity, velocity can be 

positive of negative in the cells where the eGRN velocity indicates TF activity, and velocity patterns can 

be random). We have included these analyses in Fig 7 and Fig S28. 

 

17. In the spatial GRN analysis, true multiomic data was once again not used. In this section GRNs are 

inferred then mapped onto spatial data. This section does seem to add much to the manuscript. 

 

There may be a misunderstanding here, because these analyses did use true multiomic data, and as 

explained in comment 1, four of the seven case studies in our manuscript use true multiomic data. For the 

spatial GRN analysis we used the 10x single-cell RNA+ATAC multiome data set 

(https://www.10xgenomics.com/resources/datasets/frozen-human-healthy-brain-tissue-3-k-1-standard-1-

0-0) as well as our newly generated 10x single-cell RNA+ATAC multiome data of the mouse cortex. 

These data were used to infer eGRNs in the cerebellum and mouse cortex, respectively. eGRNs were then 

https://www.10xgenomics.com/resources/datasets/frozen-human-healthy-brain-tissue-3-k-1-standard-1-0-0
https://www.10xgenomics.com/resources/datasets/frozen-human-healthy-brain-tissue-3-k-1-standard-1-0-0


 
 

 

83 
 

 

 

mapped onto the spatial templates. While we believe this approach is interesting to visualize GRN 

enrichment in spatial templates, we have moved this figure and its description to supplement (Fig 

S24). 

Reviewer #2: 

Remarks to the Author: 

González-Blas and colleagues propose a novel computational method (SCENIC+) for inference of 

enhancer-based gene regulatory networks (eGRNs) from multimodal (scRNA- and scATAC-seq) single 

cell sequencing. For this, they leverage expertise and previous methods from the own group such as the 

use of cisTopic for denoising sparse single cell ATAC-seq data, a meta-database of TF motifs (Motif 

Collection database/cisTargets), methods to characterize cis-regulatory regions (pyCisTarget & DEM) 

and association of TF to enhancers to genes (based on Boosting trees/Arboreto). These are all combined 

together as SCENIC+. Some of the individual components (DEM, Motif Collection database, Velocity) 

are novel. Some components were improved, i.e. cisTopic has a faster implementation/estimation 

algorithms. This is altogether a very important framework for inference of regulatory networks. A few 

recent competing methods (FigR, GRaNIE, Inferelator, scMega) provide equivalent core features 

(estimation eGRNs), while SCENIC+ includes additional aspects as methods for in silico perturbation and 

differentiation analysis. The method is evaluated in distinct data sets including ENCODE chromatin data 

(used for benchmarking), PMBC multimode data, melanoma cell lines, human/mouse cortex cells, fly 

eye-antennal disc and mammalian brain with mostly convincing results.  

 

The method is overall complex including many sub-methods and options. Some important details were 

missing, and descriptions of some methods were hard to follow. As a judge this as a method manuscript, 

focus could be given in method description/benchmarking, and less in the interesting but mostly anecdotal 

data analyses. For example, estimation of differentiation velocities and spatial mapping are interesting, 

but there is lack of methods details and rigorous evaluation. This makes it hard to conclude their value. 

Overall, this manuscript would benefit from focus on main contributions.  
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We thank the reviewer for the positive assessment of our work and the useful suggestions to improve the 

manuscript and the usability of SCENIC+. We have improved the text and the descriptions of the method 

and the analyses performed. We include now several additional benchmarks, and better describe the 

relevance and novelties found through the analyses. 

 

1. The reported improvements on cisTopic are welcomed (efficient algorithm and additional model 

selection approaches), but some important method descriptions are missing. For example, how is a final 

topic decided from the four available model selection criteria (lines 824-834 & Fig. S2b)? Authors should 

also give more details on how to choose the topic binarization (lines 843-851). For example, in which 

type of analysis "balanced region sets" are more desirable? Finally, it is unclear if topics are altogether 

used by SCENIC+, as analysis seen to focus on cell types/DARs. Further explanation and a table 

enumerating how these (and other main parameters /methodological choices) were set per data set would 

be helpful.  

 

Thank you for the suggestion to improve the method descriptions. 

1) Regarding the selection of the best model in cisTopic (lines 824-834) we added the follow 

paragraph: 

“The best model (i.e. the one with the optimal number of topics) is the model with the smallest number of 

topics where coherence (Minmo_2011) and Log-likelihood are maximized and Arun_2010 and 

Cao_Juan_2009 are minimized.”  

2) Regarding topic binarization (lines 843-851) we have adapted the following paragraph: 

Original manuscript: “We have included several binarization methods (applicable for topic-region and 

cell-topic distributions): 'otsu' (Otsu, 1979)107, 'yen' (Yen et al., 1995)108, 'li' (Li & Lee, 1993)109, 

'aucell' (Van de Sande et al., 2020)20 or 'ntop' (Taking the top n regions per topic). Otsu and Yen's 

methods work well in topic-region distributions; however, for some downstream analyses, it may be 

convenient to use 'ntop' to have balanced region sets. By default, pycisTopic uses Otsu for binarization.” 
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Revised version: “We have included several binarization methods (applicable for topic-region and cell-

topic distributions): 'otsu' (Otsu, 1979)107, 'yen' (Yen et al., 1995)108, 'li' (Li & Lee, 1993)109, 'aucell' 

(Van de Sande et al., 2020)20 and 'ntop' (Taking the top n regions per topic). Otsu and Yen's methods 

work well for topic-region distributions; however, for some downstream analyses, it may be convenient to 

use 'ntop' to have balanced region sets (e.g. training of classification models). By default, pycisTopic uses 

Otsu for binarization. The reason for this is that Otsu, empirically, results in the largest number of 

regions per topic while limiting the amount of “noise” for motif enrichment analysis.” 

3) Regarding whether topics are used in the SCENIC+ analysis: yes, topics are used to run SCENIC+ by 

default (as is detailed in the methods section). To showcase the importance of using topics in SCENIC+, 

we now show that regulatory topics recapitulate better functional enhancers compared to the current 

standard, which relies on the calculation of Differentially Accessible Regions (DARs) (Fig 1d). To make 

this clearer we have added Table S5, enumerating the parameters used for each analysis including 

whether these parameters are default or not.  

 

2. pyCisTarget is rather complex part of SCENIC+. It consists of 3 main components: a novel TF motif 

db, methods for motif enrichment (DEM, homer and cisTarget) and a cisTarget database.  

 

2.1 The nature of cisTarget database is unclear and hard to follow. In my understanding, this is a 

matrix encoding region vs. motif enrichment scores. How are the regions defined? I Aren't this 

data set specific? Can regions derived in a data set (PBMCs) be used in other data (cortex cells)? 

Or do authors recommend using pre-defined SCREEN or whole genome regions? This should be 

clarified (and again choices for each analyzed data explained).  

 

We apologize that these details were missing from the Methods section. We now added more 

detailed descriptions of the cisTarget method and databases (Supplementary Note 1).  

1) The motif databases are indeed matrices encoding region versus motif (rankings or motifs 

scores, to use with cisTarget and DEM, respectively). As for the regions, there are two options. 
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These can be either dataset specific consensus peaks or a pre-defined set of regions (for example, 

we provide precomputed databases on the SCREEN regions). In the latter case, the predefined 

regions are intersected with dataset specific regions internally, however this approach usually 

results in the loss of certain regions that are not included in the SCREEN database. We certainly 

do not recommend using regions derived from a certain data set (e.g., PBMCs) in other systems 

(e.g., brain cortex).  

2) Regarding scoring and ranking: a score is obtained for each region and each motif by using 

Cluster-Buster (Frith et al., 2003) (i.e. these scores are not enrichment values, but log likelihood 

ratios obtained from the Hidden Markov Model). Next, a ranking is generated for each motif 

across all regions (i.e. the region with the highest score for a certain motif gets the value 0 for that 

motif, the second region the value 1 and so on). This rankings database is used by the cisTarget 

algorithm where an Area Under the recovery Curve (AUC) and normalized enrichment score 

(NES) is calculated (similar to gene set enrichment analysis) to assess how much a foreground set 

of regions is enriched in the top of a ranking (the AUC and NES are calculated for each motif). A 

NES is obtained for a certain motif in this algorithm when a significant subset of the input regions 

is located at the top of the ranking of that motif. 

Besides the rank database, we also keep a raw score database that is used in the DEM algorithm, 

where a Wilcoxon rank-sum test is used to compare the motif scores on a set of foreground 

regions to the scores on a set of background regions.  

In general, we recommend using dataset specific databases. That way the result is independent on 

how much the ATAC-seq peaks overlap with the SCREEN regions. Generating such a database 

requires a fair amount of resources, and we provide the necessary scripts and tutorials to generate 

them. For a faster analysis, we provide the precomputed SCREEN databases. 

These details are now included in the Methods section and Supplementary Note 1. 
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2.2. Authors mention the detection of CRMs (or cluster of motifs) using Cluster-Buster (line 

131), whoever scores seem to be based on individual motifs (see point 2.1 and figure 1d). This 

needs clarification.  

 

CRMs can be homotypic or heterotypic (Lifanov et al., 2003). It is correct that the CRM scores 

calculated in cisTarget represent homotypic CRMs, thus for each TF motif we calculate a CRM 

score. The reason they represent clusters is that the HMM detects clusters of motif instances 

within a given region (i.e., multiple binding sites for the same TF can be identified, and more 

instances yield higher log-likelihood scores). The HMM also has the advantage that multiple 

PWMs can be included as hidden states. In the original Cluster-Buster paper, this principle was 

used to insert PWMs from different TFs (to detect heterotypic CRMs). We exploit this principle 

to use multiple PWMs for the same TF (i.e., from the same motif cluster). We show in our motif 

benchmark analysis that this new idea yields a higher accuracy for motif enrichment, since the 

HMM can identify the optimal path through the background and PWM states, allowing for the 

identification of the best TF binding sites, using a pool of slightly different PWMs. 

We clarified this in Fig 1f and the Methods section. 

 

2.3 In their evaluation (Fig. 1F) CisTarget outperforms DEM. So, it is unclear why DEM is need 

in SCENIC+. 

 

The benchmark shown in Figure 1f is meant to identify enriched motifs from ChIP-seq regions. 

DEM is designed to identify differentially enriched regions between two different region sets. 

cisTarget uses the whole genome as background, whereas DEM requires to define a set of 

background regions. In this case, we used as background regions sampled from other ChIP-seq 

tracks (5,000 regions), which may not be ideal. While cisTarget works better in this setting, we 

now include a case study to showcase the use of DEM to identify differential partner TFs of 

SOXE factors in melanoma, oligodendrocytes, and astrocyte (Reviewer 1 – comment 2). In this 
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case study, cisTarget is only able to identify SOXE motif, while DEM identifies the motifs that 

are different between the different region sets. We believe that cisTarget and DEM are 

complementary approaches, and thus, we use them together in the SCENIC+ pipeline. We 

further describe this in Fig S5. 

 

2.4 The benchmarking of distinct motif databases and representation is an interesting aspect (Fig. 

1f and Sup. S3). Fig. 1F has strong results but underlying experiments are unclear. It is hard to 

follow some of the analysis in Sup. S3, as for example several of the terms [(u),(c),(p) in panel h) 

are not clearly defined. Since, this database is a SCENIC+ novel aspect, more details on the 

benchmarking are needed.  

 

Briefly, to benchmark the different motif enrichment techniques included in pycisTarget and the 

approaches to build databases, we assessed the recovery of target TFs using 309 ChIP-seq data 

sets from the Deeply Profiled Cell Lines collection from ENCODE (Table S4). These tracks have 

also been included in Unibind (Puig et al., 2021) and present the TF motif, showing that their 

quality is good enough to find the target TF motif back. Motif enrichment was performed using 

Homer, cisTarget and DEM. For the latter two, three different approaches for creating the motif 

databases were used: 1) generating a database without clustering the motif collection and only 

retaining annotated motifs (24,309 motifs, named as unclustered (u)), 2) generating a database 

using a single consensus motif (or archetype) for each of the STAMP motif clusters (named as 

archetype, (a)) and 3) generating a database by scoring regions using the ensemble of motifs in a 

cluster (names as clustered, (c)). In addition, since our motif collection contains licensed motifs 

from Transfac Pro, we also benchmarked cisTarget and DEM using a publicly shareable clustered 

collection (using all PWMs for scoring but removing the Transfac Pro motifs), finding equal TF 

recovery and comparable scores in regions, named as public (p)). Our results show that using 

cisTarget (or DEM) with the clustered collection (using all PWMs for scoring) recovers the 

highest number of target TF motifs in the top positions, followed by Homer. Note that DEM is 

meant to be used to compare foreground and background region sets, and in this analysis, we used 
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regions in other tracks as background. We found that scoring with archetypes performs worse 

compared to using all PWMs in the cluster, especially for clusters where there is more variability. 

Finally, we also compared the target regions (or cistromes) recovered by each approach with 

those reported by Unibind as ground truth, finding that both cisTarget and DEM have higher 

precision and recall compared to Homer (Fig S4). 

We have added to the legend of the supplementary figure the meaning of the abbreviations: 

unclustered (u), archetype (a) and clustered (c), public (p). 

 

3. Another major contribution of SCENIC+ is the creation of the eGRNs. Authors should formalize or 

schematized the description of eRegulon (line 1016-1022), which is unclear. Also, some important 

aspects (need for a specificity score - line 1037) is not justified in the manuscript.  

 

Regarding the description of an eRegulon we adapted line 1016-1025 from: 

“eGRN compilation: First TF-to-region-to-gene modules are generated by intersecting the binarized 

region-to-gene relationships with TF-to-region cistromes by region name. Next these modules are pruned 

by running GSEA, gsea_compute function from the GSEApy python package (v0.10.8), using the TF-to-

gene importance scores, for all TFs and genes in the module, as ranking and genes of the module as gene 

set. The leading-edge genes along with the binarized regions linked to those genes are retained, 

generating eRegulons. This analysis is run separately for TF-to-gene and region-to-gene relationships 

with positive and negative correlation coefficients, for a total of four GSEA runs. By default, eRegulons 

with less than 10 predicted target genes or obtained from region-to-gene relationships with a negative 

correlation coefficient are discarded.” 

To: 

“eRegulon creation: We define an eRegulon as a TF together with its target regions and genes. To 

generate this, information from gene expression, region accessibility and motif enrichment are combined. 

For each TF, TF-region-gene triplets are generated by taking all regions that are enriched for a motif 
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annotated to the TF and all genes linked to these regions, based on the binarized region-to-gene links 

(see “Calculating TF-gene and region-gene relationships”). However, we only want to include genes, 

and the regions linked to them, in the final eRegulon if they are significantly co-expressed with the TF. To 

determine this, we use Gene Set Enrichment Analysis (GSEA). Here, all genes are ranked based on the 

TF-gene importance scores and an enrichment analysis of the set of genes in the triplet compared to the 

overall ranking of the genes is computed, using the gsea_compute function from the GSEApy python 

package (v0.10.8). Finally, only the genes at the top of the ranking, known as the leading edge are 

retained in the final eRegulon. This analysis is run separately for TF-gene and region-to-gene 

relationships with positive and negative correlation coefficients, for a total of four GSEA runs. By default, 

eRegulons with less than 10 predicted target genes or obtained from region-to-gene relationships with a 

negative correlation coefficient are discarded.” 

The Regulon Specificity Score (RSS) is used to identify marker regulons that differentiate between 

clusters or cell types. We use the RSS for plotting regulon enrichment (as it normalizes the AUCell 

values) and to prioritize regulons per cell type (to select the most specific regulons for plotting, or to 

prioritize the differentiation velocities). We have added this explanation in the methods section. 

“(...) The Regulon Specificity Score (RSS) is used to identify marker regulons that differentiate between 

clusters or cell types. We use the RSS for plotting regulon enrichment (as it normalizes the AUCell 

values) and to prioritize regulons per cell type (to select the most specific regulons for plotting, or to 

prioritize the differentiation velocities).” 

 

4. The extensive benchmarking (Fig. 3) is welcome, but some aspects are difficult to. What does the 

recovery of TFs (F3c & S5a) mean? Are these true positives? What is the set of positives here? What are 

“marker gene TFs” (line 209)? Altogether, CellOracle (or Pando according to fig. 3) does perform better 

in absolute TF numbers. The justification is based on lack of cell specificity of CellOracle, whoever 

shouldn’t the benchmarking approach account for cell specificity? True positives are only TFs predicted 

in the correct cellular context, i.e. cell type used for the ChIP-seq experiment? Authors should improve 

their benchmarking approach to account of cell specificity of TFs.  
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Thank you for pointing out how we can improve the clarity of the benchmark results.  

1) Regarding the recovery of TFs (Fig 3c): 

We agree that the word “recovery” is confusing here. We meant the number of TFs identified/found by 

each tool. In other words, they are not the number of true positives, just the raw number of TFs (regulons) 

found. Finding a higher or lower number of TFs is not per se indicative for the performance of the tools. 

For this reason, we replaced the following paragraph (lines 205 – 211): 

“We first assessed how many TFs were recovered by each method, and how many target regions and 

genes were predicted per TF (Fig 3c, S5a-e). SCENIC+ identifies 178 TFs across the eight cell lines (Fig 

S5, S6).” 

With: 

“In this data set, SCENIC+ identified regulons for 178 TFs (Fig 3b, S10). SCENIC, GRaNIE, FigR and 

Pando identified fewer regulons (for 108, 39, 71 and 157 TFs respectively). CellOracle identified 

regulons for more TFs (235).” 

2) Regarding the question about marker gene TFs (line 209): with this we mean TFs that are significantly 

differentially expressed across cell types.  

3) Regarding the question about the performance based on the absolute number of TFs and the cell 

specificity of CellOracle’s predictions. As stated above (Reviewer 1 – Comment 6), the absolute number 

of TFs does not directly reflect the performance of the tool. We included these numbers to provide a 

notion to the reader on the number of TFs each tool can identify and to what extent these TFs are relevant. 

We noticed that CellOracle finds a large subset of TFs that are not found by any other tool (see Fig S11d-

f, S12). Most of these TFs are very general regulators (i.e. not cell type specific). For that reason, we 

included the explanation of the lack of cell type specificity of CellOracle. To make this clearer, we 

replaced the following paragraph: 

“The latter can be explained because CellOracle does not focus on cell type specific TFs, but also 

predicts broadly expressed TFs (e.g., GABPA, YY1, SP1), while the other methods, primarily SCENIC+ 



 
 

 

92 
 

 

 

and GRaNIE, predominantly predict cell type specific TFs (showing higher tau values for specificity) (Fig 

3d, S5e).” 

With: 

“CellOracle showed little recovery of differentially expressed TFs, while it recovers a large fraction of 

non-cell line specific TFs (e.g. GABPA, YY1, SP1). In contrast to other methods, CellOracle infers eGRNs 

per cluster rather than using other cells as background, which makes CellOracle less sensitive to pick up 

cell type specific signals, while being more sensitive to features that are ubiquitously present in all cells. 

Accordingly, TFs exclusively identified by CellOracle have the lowest cell line specificity scores (based 

on tau value, see Methods), while the other methods, primarily SCENIC+ and GRaNIE, predominantly 

predict cell type specific TFs (Fig S11e-f, S12). 

In conclusion, this part of the text was not really part of the benchmarking itself but more a summary 

stating what kind of TFs each tool is able to find. 

 

5.Benchmarking results on TF-region, Region-Gene and TF-gene are mostly convincing. Authors should 

discuss however the best precision of Granie of the TF-region problem. It is also unclear why SCENIC is 

evaluate with Rho and Importance in figure 3f (and Rho is also not defined anywhere). This should be 

justified. Also, the interpretation of the NES vs. FC plots in panel 3g is unclear. Why has STAT5 a 

negative NES and HOXB9 a positive after their KO? Repressor TFs? This should be explained in the 

text.  

 

Reviewer 1 also suggested to improve the benchmark analyses.  

a. We have now expanded the TF-region benchmark using different standards: 1) Regions from Unibind 

(ChIP-seq peaks with the TF motif present), 2) ChIP-seq peaks and 3) Enformer predictions (Avsec et al., 

2022) (Fig R5.1 and Fig S13). In the three comparisons both SCENIC+ and GRaNIE perform well, 

without significant differences in the F1 metric. While both methods can predict bona fide target regions, 

SCENIC+ predicts 3x more TFs (178 versus 39, Fig3). In addition, GRaNIE was designed for bulk 
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ATAC+RNA data, and not for single-cell data; consequently, it is highly inefficient and could not 

successfully be run on the PBMC data set. In the text we have added: “Overall, the predicted target 

regions of SCENIC+ and GRaNIE have the highest precision-recall, followed by Pando and CellOracle 

(Fig 3e, S13a-d). Nevertheless, SCENIC+ identifies three times more TFs than GRaNIE.” 

b. To infer region-gene links, we use both the correlation between the imputed accessibility of the target 

regions in the search space and the expression of the gene (rho) and the GBM importance to assess non-

linear relationships. While by default we use rho to classify region-gene interactions as positive or 

negative (keeping only positively correlated interactions) and the GBM scores to prune true interactions 

(using BASC for automatic thresholding), the user can also choose to use rho for pruning. We believe that 

it is of interest to show that both metrics correlate with Hi-C data, with the rho scores being even slightly 

more correlated (possibly due to modelling linear relationships). We removed the correlation-based 

evaluation from the main figure (still present in supplementary Fig S15 but using the label “spearman” 

instead of “rho”) because by default it is not used in SCENIC+ and we have added the following 

sentence to the manuscript: “Furthermore, we compared the performance of the region-gene inference 

models included in SCENIC+, namely Gradient Boosting Machines (GBMs), Random Forest (RF) and 

Spearman correlation, to seven other regression models (see Methods). We found that Spearman 

correlation, GBMs and RFs perform well, as previously observed in TF-gene inference benchmarks (Fig 

S15b,d,e).” 
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Fig R5.1. F1 score, precision and recall distributions of the predicted regions per TF using three 

different standards. Violin plots represent the F1 score (left), precision (middle), and recall (right) 

distributions of the predicted target regions per TF using different standards: ChIP-seq peaks with TF 

motifs (Unibind, top), ChIP-seq coverage (middle) and enformer predictions (bottom). GATA1, GATA2, 

HNF4A and STAT5A are indicated if the method has found the regulon. The numbers above or below the 
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violins indicate the number of TFs that have been found by the methods and are included in the 

standards. Pairwise wilcox-test p-values between distributions are shown on top of the violins. 

 

c. Regarding the TF knockdown benchmark: we observe that if a TF is a repressor (with a negative 

regulon, meaning that the TF expression is anticorrelated with target region accessibility and gene 

expression, e.g. HOXB9, ARID3A), the target genes are upregulated upon TF knock-down (with a 

positive NES). If the TF is an activator, upon knockdown the target genes are downregulated (e.g. 

STAT5A, GATA1). However, many of these TFs are targets of other TFs, thus the knockdown of one 

TFs will indirectly affect the expression of the target genes of downstream TFs. For instance, in Fig R5.2, 

we show that SCENIC+ predicts that STAT5A directly regulates the repressors ARID3A, BHLHE40, 

HOXB4 and HOXB9. STAT5A knockdown causes indeed the downregulation of these TFs (shown by 

TF LogFC), and therefore the target genes of these repressor TFs are upregulated (derepressed). While 

SCENIC+ predicts that STAT5A does not regulate GATA1 and GATA2, we observe that they share 

common target genes, which can explain the observed downregulation of their target genes (but not TF 

expression, as shown by TF LogFC). We have clarified this in the figure legend (Fig S16). 

 

Fig R5.2. TF knockdown perturbation and downstream effects. a. TF-gene (TF) network showing key 

regulators of K562. b. Example of the knockdown of STAT5A in K562 showing the GSEA -log10 adjusted 

p-value and NES of the key regulons in K562. The dots are colored by the LogFC of the TF expression. 

 

d. We have added a new analysis where we evaluate the predicted TF-gene relationships based on in 

silico TF perturbations (as detailed in the melanoma section of the manuscript). For this, we computed the 
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predicted LogFC of gene expression upon perturbation and compared the predictions with the observed 

effects. Correlation between the observed and the predicted perturbation variation shows that SCENIC+ 

networks are the most accurate in predicting the perturbation effects (Fig R5.3 and Fig S16). As an 

illustration, we show the comparison between the predicted and observed effects upon GATA1 (activator) 

and ARID3A (repressor) perturbation, where SCENIC+ can also predict indirect effects for downstream 

genes that are not predicted to be direct targets of the TF (in grey, after 5 iterations).  

 

Figure R5.3. Comparison between simulated perturbation effects and TF knockdown experiments from 

ENCODE. a. Spearman correlation between predicted LogFC with in silico TF perturbation for each 

method versus the observed LogFC changes upon TF perturbation. b. Comparison between predicted and 

observed LogFC changes upon GATA1 KD. Dots in red indicate genes in the GATA1 regulon. c. 

Comparison between predicted and observed LogFC changes upon ARID3A KD. Dots in red indicate 

genes in the ARID3A regulon, predicted as repressor.  

 

6. The in-silico perturbation analysis is an interesting approach. Here, authors could reinforce the novelty 

of the proposed method in relation to CellOracle (linear vs. non-linear?). The need for several interactions 

needs to be better justified in the main text (predicted TF expression is used in interactions?). Also, can 

the model predict which TFs have best perturbation effects (or why only SOX10 and ZEB1 were chosen)? 

Could this approach be benchmarked more systematically by using the ENCODE data (explored in Fig. 

3)?  
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Thank you for the appreciation of this section. The purpose of this analysis was to illustrate potential 

downstream analyses that can be done using the output of SCENIC+. Such analyses depend on the quality 

of the inferred eGRN, thus as eGRN inference improves, we expect that downstream applications become 

more performant. The method we used for the in silico TF perturbations is indeed not particularly novel 

compared to CellOracle, but we show that the SCENIC+ eGRNs are indeed well suited for perturbation 

simulations.  

To clarify the need for several interactions (we assume the reviewer means the need for several iterations 

of gene expression simulation) we adapted line 313 from: 

“To include indirect effects, we predict new gene expression values for several iterations.” 

To: 

“To account for indirect effects (i.e. TFs targeting other TFs), perturbed gene expression values are 

propagated over several iterations. Here, the predicted TF expression of the previous iteration is used to 

predict the gene expression matrix of the following iteration.” 

Regarding the question about which TFs have the best perturbation effects: yes this is possible, and this 

we show in Figure 5g. Here, we predicted the effect of knocking-out each TF in turn. In the heatmap we 

show the strength of each TF, as their ability to switch cells along the melanocytic-mesenchymal axis 

after their knock-out. The top 10 TFs for switching cells to the mesenchymal fate and the top 10 TFs for 

switching cells to the melanocytic fate are shown. SOX10 and ZEB1 were chosen as two examples for the 

“arrow-plots” (Figure 5f) because they were predicted to have very strong effects according to the screen 

described above. 

Regarding the question of benchmarking this technique more systematically based on ENCODE data, we 

assessed the correlation between the log Fold Change of real TF knockdowns versus the in silico 

predicted LogFC, as described in the previous comment (Fig R5.3). Regarding to this question we have 

added the following line to the manuscript: “This type of modeling can partially explain direct and 

indirect changes upon TF perturbation in the deeply profiled cell lines from ENCODE (Fig. S16f).” 
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7. The mouse/human eGRN is neat but descriptive. It is unclear if any new finding comes from this 

analysis. 

 

We agree that it is interesting to elaborate on the novelty of the findings in the human/mouse brain 

analysis. From a comparative genomics point of view, we consider the predictions that are shared 

between human and mouse, for corresponding cell types between the species, to be high-confidence 

findings. We now explain this in more detail in the text. 

1) 60 TFs are identified by SCENIC+ in both the human and mouse cortex; of these, 52 have been 

described to be involved in the different cortex cell types. The remaining 8 can be considered novel 

candidates. These include Smad3 in the upper cortical layers excitatory neurons, Pparg and Bhlhe40 in L4 

excitatory neurons, Etv5 and Nfat5 in L5/6 excitatory neurons, Thrb and Pbx1 in L6 excitatory neurons 

and Meis1 in oligodendrocytes.  

2) Besides these 60 TFs, we identify additional TFs that are identified by SCENIC+ in only one species, 

but after investigating the homologous regions and target genes, we conclude that these are likely also 

conserved in their function; this shows a novel approach to predict additional TF regulons that are not 

identified through the default settings. For example, while Pou3f1/POU3F1 and Fezf2/FEZF2, previously 

known regulators of L5 PT and L5/6 neurons respectively, were only found in the mouse analysis (10x 

multiomics); the human-based mouse regulons are enriched in the corresponding cell types in the human 

data set, matching with the TFs expression.  

3) For these conserved TFs, we identify 4,798 and 8,318 conserved TF-region and TF-gene relationships 

respectively. Given the sparsity of direct TF-enhancer and TF-target gene relationships in the literature, 

the majority of these conserved interactions are novel.  

4) We provide these eGRNs as resources for mouse and human that can be explored at UCSC and SCope, 

which could be of interest for the neurobiology community. To our knowledge, such a resource does not 

exist yet, and is thus also novel. 

5) In the analysis of oligodendrocyte differentiation with our GRN velocity approach, we identified Meis1 

as a novel regulator of oligodendrocyte differentiation. Meis1 has been previously described to be 



 
 

 

99 
 

 

 

involved in early neurogenesis and hematopoietic differentiation (Isogai et al., 2022), but not in 

oligodendrocyte maturation. In addition, we also find this TF conserved in the human cortex, with 20% of 

the target genes conserved between human and mouse.  

We have added more detailed descriptions of these novelties to the results and discussion sections of 

the manuscript. 

Besides the biological novelty of conserved eGRNs, we also find this case study important to illustrate 

that SCENIC+ works well on mouse data sets (the other case studies are either human or Drosophila). 

 

8. The GRN velocity in an interesting (and novel) contribution. However, more details are need. For 

example, I miss how the trajectory analysis was performed in the oligodendrocytes data and how the sub-

trajectories (“OPC to NFOL”, “NFOL Maturation” and NFOL to OL”) are defined. Authors need to 

describe this. Velocity fields of Olig2 and Bcl6 points towards the center of the OPC cluster. What does 

this mean? The drosophila eye analysis is more complete/convincing, possibly due to a better capture of 

cells at distinct differentiation stages. 

 

We provide a detailed tutorial of the analysis at: 

https://scenicplus.readthedocs.io/en/latest/Differentiation_tutorial_unbranched_RTD.html and better 

describe this in the methods section: “Oligodendrocyte cells (Oligodendrocytes Precursor Cells and 

oligodendrocytes) were subsetted from our in-house mouse cortex data set, resulting in 4,435 cells. The 

eRegulon AUC matrix was processed using Scanpy (v1.8.2) and the embedding-based pseudotime was 

derived using the diffmap and dpt functions. Differentiation arrows were inferred for cells above the 70% 

quantile in TF expression and default parameters. Prioritization of differentiation velocities was done 

using the Regulon Specificity Score (RSS) metric using arrow lengths in each cell for each regulon as 

input values.” (i.e. OPC to NFOL are the regulons that result in the longest arrows in OPC, NFOL 

maturation, in NFOL, and NFOL to OL in oligodendrocytes). 

With regards to the velocity vectors pointing towards the center OPC cluster, this is because arrows are 

only drawn where there are cells, and arrows can only point to other cells. Given that there are more cells 

https://scenicplus.readthedocs.io/en/latest/Differentiation_tutorial_unbranched_RTD.html
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at the center of the cluster compared to the border and given that all cells of this cluster have similar 

pseudotime values (rather than a gradual gradient) there is a higher likelihood that the arrows at the 

border will point towards the center, if both the TF and the target genes are expressed in the same cluster 

of cells. In the figures the average of several arrows is shown, making this bias even stronger while 

canceling out the, mostly random, arrows in the center of the cluster. On the other hand, if the TF is 

expressed in OPC, but target genes in NFOL, the arrows will point to the NFOL cluster. We illustrate this 

by showing the arrows per cell (without averaging), for Olig2 (OPC maintenance) and Sox10 (OPC to 

NFOL) (Fig R8.1). For Olig2 we observe strong velocities for the outer cells towards the center and 

random arrows in the middle, while for Sox10 all arrows point towards NFOL. We clarified this in the 

manuscript as follows: “(...) This revealed a set of TFs (Olig2, Bcl6 and Prrx1) that maintain OPC 

specification.” 

 

 

Figure R8.1. Oligodendrocyte differentiation UMAP colored by pseudotime, together with GRN 

velocity arrows (per cell (without averaging by neighbour), for 100 selected cells) for Olig2 and Sox10.  

9.How is the differentiation force defined? Method (line 1716) describe the use of a “penalization curve”, 

but no further details are given. In the scheme (Fig. 6a), red curves anticipate the blue curves but, in the 

examples/real data (Fig. 6g), we also observe the opposite. How do the model deals with this? Are only 

positive values are considered? What would the negative vectors mean? Authors need to both formalize 

the method and include a benchmarking more like analysis of this novel methodology.  

 

1) To answer the questions about method details, we improved the Methods section (see: “GRN velocity 

calculation”). The procedure works as follows. We first order a set of differentiating cells by pseudotime. 
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Next, for each TF, we fit a standardized generalized additive model (GAM) along the pseudotime axis, 

one for TF expression, and one for its target genes (or regions) AUC values, using pyGAM (v0.8.0). We 

then map each cell in a certain quantile of the GAM TF expression model with the cell in the same 

quantile of the GAM regulon AUC curve (posterior in the pseudotime axis). If there is no posterior cell in 

that quantile, the cell is mapped to itself. We define the differentiation force of a cell as the distance from 

the TF expression curve to its matching cell in the regulon AUC curve. We only consider positive 

interactions, as negative relationships would indicate that the target genes are expressed before the TF 

gene expression. While this could be the case for repressors, these curves tend to be noisier, as they can 

also depend on the presence of activators.  

When a dataset represents multiple differentiation paths, we apply the same strategy to each path, and 

then average the two (or more) arrows available for cells found in more than one path. In addition, since 

we standardize the data prior to fitting the GAM model, we introduce a penalization curve standardized 

on the whole data set. This will prevent that if a TF (or its target) is not present in the branch, false arrows 

will not be drawn if the TF is not expressed compared to the rest of the data set. For instance, in Fig R9.1 

we show the curves for svp(+). This TF is not expressed in the INT branch, however, because we 

standardize the gene expression values between 0 and 1 in each branch, we observe a peak in gene 

expression. The penalization curve (as a grey dotted line), which is scaled along all possible paths, does 

not agree with the TF expression path, and in those points where it disagrees the GRN velocity is set to 0 

as it represents an artifact. Importantly, GRN velocity is only inferred for those cells in which the TF 

expression is above a certain threshold (by default, above the 70% quantile, horizontal grey line). As the 

reviewer points out, there are some points where the blue curve precedes the red one, but only in those 

areas with low TF expression, which represent artifacts. In the case of multiple paths with overlapping 

cells, the final velocities are drawn as the sum of all the possible GRN velocities across the paths. We 

have improved the explanations of the GRN velocities approach in the methods section and 

formalized the method as suggested. 
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Fig R9.1. Representation of svp dynamics along the two paths in the eye disc differentiation. The grey 

horizontal line represents the TF expression threshold for arrows to be drawn. For cells below this threshold, 

the GRN velocity values are set to 0, as they correspond to cells with low TF expression. The grey dotted line 

represents the penalization curve, which is the GAM fitted curve drawn using the standardized data across all 

possible path for the cells in that path. Those points where the penalization and the TF expression curve 

disagree (by default, by 0.03 in the y-axis) are considered artifacts (i.e. the TF gene seems to be expressed 

even if there is no or low expression in the path, due to the standardization of the TF curve in that specific 

path). The red curve represent the GAM fitted curve using the standardized TF expression data (along the 

path), and the red curve represents the GAM fitted curve using the standardized AUCell values (along the 

path), which represent the enrichment of the target genes. 

2) Regarding the question about benchmarking GRN velocity: to our knowledge there is no other method 

that yields a TF-based differentiation force based on gene regulation. We have included a comparison of 

GRN velocity with RNA velocity and MultiVelo (Reviewer 1 – Comment 7, Fig 7, S28). To our 

knowledge, GRN velocity is the first approach that exploits eGRNs and the lag between TF expression 

and expression of the target genes to predict the directionality of a cell. RNA velocity (scVelo) measures 

the ratio of spliced and unspliced mRNA of a gene, while MultiVelo integrates the accessibility around 

the gene locus in the model. Yet, none of these approaches includes TF input, and overall only provide 

global directionality values (one vector per cell), while we can assess TF-specific directionality (one 

vector per cell and per TF). GRN velocity permits to identify key known drivers of oligodendrocyte and 
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eye disc differentiation, which is reassuring. For instance, upon knockdown of atonal (ato) in the eye disc, 

the morphogenetic furrow still forms, but no photoreceptors are generated (Jarman et al. 2019). GRN 

velocity predicts atonal to be key for the transition from morphogenetic furrow cells towards the 

generation of photoreceptors and interommatidial cells. On the other hand, in glass (gl) mutants, 

photoreceptor precursors are formed and begin neuronal differentiation, but they never express 

photoreceptor-specific markers (Moses et al., 1989). Accordingly, GRN velocity predicts glass to be key 

in the differentiation of early progenitors. Knockdown of lozenge (lz), a TF that GRN velocity predicts to 

be key to differentiate towards interommatidial cells, results in a smaller eye, with reduced pigmentation 

and lack of hairs possibly due to the lack of interommatidial pigment and bristle cells (Brehme and 

Demerec, 1942). With regards to oligodendrocyte differentiation, Zeb2 knockdown results in the lack of 

formation of mature oligodendrocytes, and the expression of progenitor related TFs such as Sox2 

(Quintes et al., 2016). Accordingly, GRN velocity predicts Zeb2 as a key driver of oligodendrocyte 

maturation. Note that GRN velocity also provided new insights, such as the identification of Meis1 as a 

novel (and conserved) master regulator of oligodendrocyte differentiation. These analyses are described 

in Fig 7. 

 

10. The spatial analysis of eGRNs is interesting, but its value is unclear (besides visualization). For 

example, if one plots the cellular deconvolution results of the cell types with LHX7, SOX9 specific TF 

activity, would one not obtain similar results as shown in panel Fig. 7C? What novel information can be 

gained here? 

 

Although we believe this approach is interesting to visualize GRN enrichment in spatial templates, we 

have moved this figure and its description to supplement (Fig S24) as it indeed does not add a lot of 

methodological (nor biological) novelty.  

 

11. We were able to successfully install/run the method in linux. In a mac, we encountered issues with 

package dependencies (annoy package).  
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We thank the reviewer for trying to install SCENIC+ and running the tool, this is highly appreciated. We 

are aware of the installation difficulties with the Annoy package, these are mostly compilation errors 

unrelated to SCENIC+. Also, SCENIC+ is designed to be run in a Linux environment and is untested in 

different systems. We adapted the Readme.md file of SCENIC+ accordingly.  

 

Minor points: 

Line 66 - The statement that scATAC-seq is similar ChIP-seq accuracy is based on pre-print (23). 

Authors should tune this down. 

We have removed this statement and now only say: “With single-cell chromatin accessibility data 

available, for example obtained by scATAC-seq, the accuracy of TF binding site predictions can be 

improved significantly23” 

 

Line 73 - Authors should also cite previous works introducing some of these analyses, i.e. no reference to 

Cicero, which first explore peak-gene links in scATAC-seq. 

We now cite Cicero in the text (Pliner et al. 2018). 

 

Line 103 - Mixture of HMMs have been previously explored for a similar problem. Please cite 

10.1093/bioinformatics/bti1001 ) (and discuss any relevant distinction). 

We added the following sentences: 

“Previous studies have shown that instead of one single consensus PWM per TF, using a mixture of two 

subclasses of PWMs yields better results (Hannenhalli et al., 2005). We hypothesized that making use of 

the information present in a large multitude of PWMs (per TF) would increase performance.” 
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Line 104-108 – This phrase in complex and content rich (i.e. what is leading edge analysis?). Authors 

should improve this.  

We have added a Supplementary Note 1, explaining the motif databases and motif enrichment 

approaches in detail. 

Also, we clarified the methods section by adapting line 956 from: 

“To obtain the target regions for each TF, the motif-based cistromes of motifs annotated to that TF are 

combined.” 

To: 

“To obtain the target regions for each motif (motif-based cistrome) the regions at the top of the ranking 

(leading edge) are retained. The top of the ranking is defined by an automated thresholding method which 

retains regions with a ranking below the rank at max, which is defined by the following formula: 

 

With: 

rccmotif:   the recovery curve of the motif of interest. 

μ(rccall motifs)  the average recovery curve over all motifs. 

SD(rccall motifs) the standard deviation of the recovery curve over all motifs. 

To obtain target region for each TF, the motif-based cistromes of motifs annotated to the TF are 

merged.” 

 

Line 112 - From the method description I got the impression that GBMs are used to find relations (and 

Person is only used for finding signals), but the main text indicates correlation are also important. Please, 

clarify. 

We revised this line as follows: 
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Original manuscript: 

“Region-to-gene (default up to 150kb from the transcription start site) and TF-to-gene relationships are 

inferred using Pearson correlation and a tree-based regression approach, namely Gradient Boosting 

Machines (GBMs), to assess both linear and non-linear relationships” 

Revised version: 

“Region-gene (default up to 150kb from the transcription start site) and TF-gene relationships are 

inferred using a tree-based regression approach, namely Gradient Boosting Machines (Moerman et al., 

2019). The direction of interaction (activating/repressing) is inferred using linear correlations.” 

 

 

Line 197 – Are these “TF” ChIP-seq?  

Correct, these are 309 high quality TF ChIP-seq experiments. We added the word “TF” when referring to 

TF ChIP-seq. 

 

Line 259 - How are TF ranked? By increasing or decreasing number of bindings? 

The TFs are ranked descending, i.e largest number of binding sites at the left side of the x-axis, smallest 

number of binding sites at the right side of the x-axis. We clarified the legend. 

 

Line 998 –The phrase regarding TF-to-TF regulation is unclear. Please clarify.  

The following sentence: 

“To infer autoregulation the TF-to-TF importance is set to the maximum importance score across genes 

for that TF added with the value of 1E-5.” 

has been replaced by: 
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“The TF itself is not included in the initial TF-gene relationship calculation (otherwise it would skew the 

importance scores of the other genes). Therefore, in order to be able to infer autoregulation (TFs 

regulating their own expression) the importance score of the TF itself is set to the maximum importance 

score across all genes added with an arbitrary small value of 1E-5, in order to put the TF at the top of its 

own ranking.” 

 

Line 1104 - The definition of archetypes is unclear here.  

The following piece of sentence: 

“We found that scoring with archetype performs worse compared to using all PWMs in the cluster, (...)” 

has been replaced with: 

“We found that scoring with a single average/consensus motif per cluster (i.e. archetype motif (Vierstra 

et al., 2020)) performs worse compared to using all PWMs in the cluster, (...)” 

 

Fig. 4e – Colors of the boxplot are difficult to discern. 

We changed the colors to more contrasting ones and added extra annotations to the figure (Fig 5e). 

 

Supplement – Several links in the supplement pdf are not working. Please revise.  

We have tested all the URLs included in the supplementary material (from Adobe Acrobat Pro), and all 

functioned correctly. We are happy to recheck this if the exact conflicting links can be provided. 

 

Supplementary Figure 5 – What is R and L (after SCENIC + (C)). 

“R” means Rho (i.e. region-gene links are assessed based on the correlation between the accessibility of 

the regions and the expression of the target genes), and “I” means Importance (i.e. region-gene links are 

assessed based on the GBM importance based on a model where the accessibility of the regions is used to 
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predict the gene expression). We have updated the legend to include the meaning of these 

abbreviations (Fig S17). 

 

Reviewer #3: 

Remarks to the Author: 

Manuscript by Gonz.lez-Blas et al described a valuable computation tool for inferring enhancers and gene 

regulatory networks based on single cell multiomic datasets. The tool overall can be very useful for 

mining large scale single cell datasets and providing great insights on how cell types are regulated via 

binding of transcription factor and their targets. The database with curation of 30K+ motifs and motif-TF 

annotation is an incredible resource for the community. Overall, the authors did a great job of presenting 

this remarkable tool and showcase various interesting applications. On other hands, some improvements 

are necessarily to enhance usability of this tool and presentation of this manuscript.  

 

We thank the reviewer for the positive assessment of our work and the useful suggestions to improve the 

manuscript and the usability of SCENIC+. 

 

Here is list of major key points regarding the Manuscript  

1. PycisTopic is proposed as a new tool for both enhancer discovery and co-accessibility of enhancers, 

which is also possible via other popular methods including ArchR. Since these early processing steps play 

a pivotal role in the final eGRN it would be useful to benchmark pycisTopic against current methods. 

Essentially an analysis like Figure 1f for enhancer discovery would be informative to the reader/user. 

Even though cisTopic has been benchmarked against other methods by us (Bravo et al., 2019) and by 

other groups (Chen et al., 2019), we agree that Signac and ArchR were not included in those benchmarks. 

Therefore, we have now compared pycisTopic against Signac and ArchR for two tasks: 1) cell type 

discovery and 2) enhancer discovery. For cell type discovery we simulated several scATAC-seq data sets 

from the Deeply Profiled Cell Lines, with different coverages (20K, 10K, and 3K fragments per cell) and 
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numbers of cells (25K, 10K, 1K, and 80 cells). While all methods perform well with large numbers of 

cells, their robustness is affected as the data set decreases in size (Fig R1.1, R1.2). ArchR and Signac are 

most affected, while pycisTopic is more robust. We also compared these in five of the datasets, namely 

PBMC, melanoma, human cerebellum, Drosophila eye-antennal disc and mouse brain. For PBMC, 

melanoma and human cerebellum all methods were able to identify the expected cell types (as defined 

from the scRNA-seq layer). In the Drosophila eye-antennal disc, a dynamic system in which most cells 

are undergoing differentiation in the eye or the antennal part, we noticed that while pycisTopic is able to 

group all cells by cell type, ArchR and Signac tend to cluster low coverage cells together rather than with 

their corresponding cell type (Fig R1.3, encircled). We then compared the capacity of the methods to 

correct the strong batch effects in the mouse brain data set (due to different preparation protocols). 

PycisTopic batch correction (which relies on using Harmony (Korsunsky et al., 2019) on the cell-topic 

distributions) resulted in cell clustering by cell type. Signac (based on the integrated LSI approach) was 

also able to cluster the cells by cell type; however, oligodendrocytes are still affected by the batch effect. 

For ArchR (based on harmony correction on the LSI components), batch effect correction results in the 

loss of resolution of the excitatory and inhibitory neurons subtypes, and is not strong enough to correct 

the batch effect of astrocytes (Fig R1.4). Altogether, pycisTopic provides the best integration of the 

samples, without losing the real biological signal. While the three methods tend to work well for large 

datasets with good coverage, pycisTopic is more robust to data sparsity, low numbers of cells and batch 

effects. 
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Fig R1.1 Adjusted Rand Index for pycisTopic, Signac and ArchR in simulated datasets with different 

coverage per cell (3K, 10K, or 20K fragments per cell) and number of cells, using as ground truth the 

bulk label from which cells were simulated. 
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Fig R1.2 UMAPs from pycisTopic, Signac and ArchR in simulated datasets with different coverage per 

cell (3K, 10K, or 20K fragments per cell) and number of cells, using as ground truth the bulk label 

from which cells were simulated. 

 

 

 

Fig R1.3 Dimensionality reduction from pycisTopic, Signac and ArchR in scATAC-seq datasets of 

PBMC, melanoma cell lines, cerebellum, and eye-antennal disc (EAD). The circle on the eye-antennal 

disc plots for Signac and ArchR correspond to low coverage cells that are intermixed instead of grouped 

with the corresponding cell type. 
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Fig R1.4 UMAPs from pycisTopic, Signac and ArchR in the 10x multiomics mouse cortex data set 

(scATAC-seq). For each method, dimensionality reduction was performed before batch correction per 

sample (uncorrected) and after (corrected). In each case, UMAPs are shown colored by cell type (left, as 

defined from the scRNA-seq layer) and sample (right). The different sample preparation protocols are 

indicated below, an extensively explained on the methods section.  

 

Next, we compared pycisTopic to Signac and ArchR regarding enhancer discovery. For this, we made use 

of genome-wide STARR-seq data (which measures enhancer activity) in HCT116, MCF7, K562 and 

HepG2 and assessed the enrichment of candidate enhancers identified by running pycisTopic, Signac and 

Archr on the simulated scATAC-seq data set from the Deeply Profiled Cell Lines (4k cells and 20k 

fragments per cell; see Fig 3). To define candidate enhancers, Signac and ArchR rely on Differentially 

Accessible Regions (DARs), while pycisTopic uses both DARs and topics (sets of co-accessible regions). 

Comparing the different sets of candidate enhancers, cell line specific topics from pycisTopic are the most 

highly enriched for STARR-seq activities in all cell lines except K562 (Fig R1.5). The enrichment for 

DARs varies across the four cell lines (Fig R1.5). We hypothesize that regulatory topics are more robust 

because they are derived from unsupervised clustering of the entire data set (using topic modelling), while 

DARs require defining foreground and background cells. For instance, if two cell types share accessible 
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regions, these will be allocated to an independent shared topic, while unique regions will be allocated to 

the putative unique and separate topics. When inferring DARs, and because most methods use as 

background all other cells that are assigned to other cell types, the shared regions will be classified as 

DARs because the signal in the background will be diluted. Altogether, regulatory topics recover the 

largest number of functional enhancers per cell type. We have included these analyses in Fig 1c and 

Fig S3.  

 

Fig R1.5. Recovery of activate enhancers using candidate enhancers identified by pycisTopic, Signac 

and ArchR. a. Recovery curves for top 5K Differentially Accessible Regions (DARs) identified by Signac, 

pycisTopic and ArchR and top 5K regions in the cell line specific topics identified by pycisTopic. 

Genome-wide STARR-seq in HCT116, MCF7, K562 and HepG2 is ranked in descending order (x-axis) 

when a region of the ranking is found in a region set an increasing step along the y-axis is taken. Dashed 

line represents the top 10% of the ranking. b. Barplots showing Area Under the recovery Curve (AUC) 

for top 5k Differentially Accessible Regions (DARs) identified by Signac, pycisTopic and ArchR and top 

5k cell line specific topics identified by pycisTopic up until 10% of the ranking. AUC value is scaled by 

dividing by the maximum possible AUC at 10% of the ranking. Promoter regions were excluded from the 

analysis. 
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2. The illustration of SCENIC+ on PBMC data captures 40% of genes with a proximal enhancer that 

regulates expression. Recent studies have used HiC to look at the 3D chromatin organization for PBMC 

populations including Monocytes. Using the HiC data as an external validation for region-gene links 

should be done. 

 

We thank the reviewer for the suggestion and agree that this statement in the manuscript could make use 

of some experimental validation using publicly available data. We were not able to find the high quality 

Hi-C dataset in monocytes as suggested by the reviewer. However, the Hi-C dataset on GM12878, that 

we also used for the benchmarking section, is suitable, given that GM12878 is supposed to be a B-

lymphocyte-like cell line.  

We first compared the number of regions linked to each gene as predicted by SCENIC+ and measured by 

Hi-C. SCENIC+ predicts that 90% of genes have between 1 and 10 enhancers while Hi-C predicts that 

60% of genes have between 1 and 10 enhancers (Fig R2.1). Next, we assessed the number of regions that 

are most likely regulating the most proximal gene (Fig R2.1 “nth. gene per region”). SCENIC+ predicts 

that 49% of enhancers are most likely, based on the region-to-gene importance score, to regulate the most 

proximal gene while Hi-C predicts that 76% of enhancers are most likely, based on the Hi-C score, to 

regulate the most proximal gene. Note that this number is slightly different from the number in the 

manuscript. Here, we look at the distribution of the rank, based on absolute distance for each region and 

gene with the highest region-to-gene score while in the manuscript we showed the distribution for all 

region-to-gene combinations. Based on this analysis we reasoned that only showing the distribution for 

the most likely region-to-gene links is more informative, therefore we adapted the panel and the numbers 

in the manuscript. Lastly, even though the percentages obtained from SCENIC+ predictions and Hi-C 

measurements are different the overall distributions are very similar (Fig R2.1).  

Secondly, we assessed the correlation between Hi-C scores and region-to-gene scores obtained from 

SCENIC+, for B-cell marker genes (Fold change > 1.5 and adjusted pvalue < 0.05). Similar to the 

conclusions in the benchmarking analysis, we observe a significantly higher correlation between Hi-C 

scores and region-to-gene scores compared to randomly shuffled region-gene pairs and this correlation is 

higher for the region-to-gene correlation coefficient than for the region-to-gene importance score. We 
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added this revised analysis as a supplemental figure (Fig S9c) and changed the following lines in the 

manuscript: 

 “9,347 (40 %) enhancers are predicted to regulate only the closest gene” is changed to “11,533 (49 %) 

enhancers are predicted to most likely regulate the most proximal gene, based on the region-to-gene 

importance score” 

We added the following sentence: “These distributions are similar to the distributions obtained from 

Hi-C data (Fig S9c).” 
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Figure R2.1. Comparison of region-gene links predicted by SCENIC+ and measured by Hi-C. Left: 

Distribution of the number of regions linked to each gene as predicted by SCENIC+ (top) and measured 

by Hi-C in GM12878 (bottom; using a minimum score of 10). Right: distribution of the rank, based on 

absolute distance, for each region and the gene with the highest region-to-gene SCENIC+ importance 

score (top) and the gene with the highest Hi-C score in GM12878 (bottom; using a minimum score of 10). 

 

 

Figure R2.2. Correlation of Hi-C score and SCENIC+ region-to-gene scores. Boxplots showing the 

distribution of Spearman correlation coefficients between Hi-C scores in GM12878 (with a minimum 

score of 10) and region-to-gene gradient boost importance score (GBM) and region-to-gene correlation 

coefficients (rho) as calculated by SCENIC+ for B-cell marker genes (. Random controls are obtained by 

shuffling the gradient boost importance scores (GBM_rnd) and correlation coefficients (rho_rnd). 

Difference in the mean to the random control is assessed using the Mann-Whitney U test. 

 

3. Limited correlation of HiC interactions in the 5 cell lines as shown in Figure 3f as well as an overall 

higher number of region-gene links could point towards more false-positive interactions being identified. 

How does SCENIC+ address the presence of noisy interactions in the eGRN building process? For 

example, do multiple models (including Gradient Boosting Machine regression) agree on region-to-gene 
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importance or binary links? Comparison of different regression models to calculate TF-to-gene and 

region-to-gene would be worthwhile. 

 

We agree with the reviewer that the combination of low correlation with Hi-C data and high number of 

region-gene links could suggest that a high number of false positives are being identified. However, we 

would like to comment that even though SCENIC+ has the largest number of region-to-gene links 

identified, compared to other eGRN inference methods, it still has the highest correlation with Hi-C 

scores compared to those other methods. In other words, at much higher recall, the number of false 

positives is still lower compared to other methods. It is known that HiC has limited sensitivity to identify 

specific enhancer-target interactions, particularly when the peaks are close to the target gene (Fiorillo et 

al., 2021), and therefore we expect a relatively high number of predicted interactions that are not 

confirmed by HiC data. 

Regarding the question on how SCENIC+ addresses the presence of noisy interactions in the eGRN 

building process, in the modeling this is addressed in two ways. First, only region-to-genes links that pass 

the GSEA step are retained (i.e. regions that are linked to genes that are significantly co-expressed with 

the TF). Second, multiple thresholding methods are used to binarize the region-to-gene links and the 

GSEA step is run separately for all these thresholds. These thresholds are all based on the rank of the 

region-to-gene scores and not on the actual values itself (i.e., by taking the top quantiles, top number of 

regions or using BASC (Hopfensitz et al., 2012)). The final eRegulon is obtained by merging the filtered 

links from all binarization methods. 

Regarding the question whether multiple models agree on the region-to-gene importance or binary links, 

calculating region-to-gene importance scores based on the accessibility vector of regions and the 

expression vector of genes across cells is novel and only possible because of the existence of single-cell 

multiome readouts. For this reason, this has not been benchmarked extensively and comparing multiple 

models is a relevant question. To do this, we calculated region-to-gene relationships using the models 

included in the SCENIC+ package (i.e. Spearman rank correlation, Genie3 (RF) and GRNBoost2 (GBM)) 

and compared this to all linear regression models implemented in scikit-learn (Pedregosa et al., 2011) 

(Elastic Net (ENET), Lasso, Support Vector Machine (SVM) with linear kernel, Ridge, Least-Angle 
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Regression (LARS), Stochastic Gradient Descent (SGD)). We compared the region-to-gene scores to Hi-

C data on IMR90, GM12878, HCT116, HepG2 and K562. The region-to-gene scores obtained using 

Spearman rank correlation is the highest followed by Genie3 and GRNBoost2 (Fig R3.1). By default, 

SCENIC+ makes use of a combination of GRNBoost2 (for the region-to-gene score) and Spearman rank 

correlation (to separate regions which negatively and positively correlate with gene expression). 

GRNBoost2 is preferred because its computational efficiency is significantly better compared to Genie3, 

with minimal loss of accuracy. Next, we compared the region-to-gene scores and the binarized 

relationships obtained by several regression models. Even though the scores obtained by the methods are 

very different (Fig R3.2a), the binarized region-to-gene relationships do not differ a lot (Fig R3.2b; 

minimal Jaccard index is 0.55).  

On the question of comparing different models for TF-to-gene relationships, contrary to calculating 

region-to-gene relationships, methods for calculating TF-to-gene relationships have been extensively 

benchmarked. The method used by SCENIC+, GRNBoost2, is one of the best methods in these studies 

(Pratapa et al., 2020; Moerman et al., 2019). 

These analyses are included in Fig S15. 

Figure R3.1. Correlation of Hi-C data with region-to-gene scores using several regression models. 

Boxplots showing the distribution of correlation between Hi-C scores and region-to-gene scores, for top 
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100 marker genes for each of the cell lines where Hi-C is available (IMR90, GM12878, HCT116, HepG2 

and K562) calculated using several regression models. The sklearn implementation (Pedregosa et al. 

2012) for all the models was used with default parameters, except for GBM and RF for which the 

parameters as described in Moerman et al. 2019 were used. Spearman: Spearman Rank Correlation 

coefficient, RF: Random Forrest regression (Genie3 (Moerman et al., 2019)), GBM: Gradient Boosting 

Machine regression (GRNBoost2 (Moerman et al., 2019)), ENET: Elastic Net, LASSO: Lasso regression, 

SVM: Support Vector Machine regression (using linear kernel), RIDGE: Ridge regression, LARS: Least-

Angle regression, SGD: Stochastic Gradient Descent regression. p-values on top of the boxplots are 

calculated using the two-sided Mann-Whitney U test testing the difference in mean between the 

distribution in the figure and the distribution of correlation coefficients obtained by shuffling the Hi-C 

scores. 

 

Figure R3.2. Comparison of region-to-gene scores and binarized links obtained from calculating 

region-to-gene relationships using several regression models. a. Clustered heatmap showing the 

correlation between region-to-gene scores obtained from several regression models. b. Clustered 

heatmap showing jaccard index of binarized region-to-gene links obtained from several regression 

models. 

 

4. It is unclear how scalable the method is to number of cells and number of clusters. It will be nice to 

present a complexity analysis and running time analysis.  
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To assess to what extend the number of cells and coverage impacts the running time of each of step, we 

simulated several scATAC-seq data sets from the Deeply Profiled Cell Lines, with different coverages 

(20K, 10K, and 3K fragments per cell) and numbers of cells (25K, 10K, 1K, and 80 cells). The minimum 

preprocessing steps with pycisTopic to run the SCENIC+ workflow are: topic modelling, dimensionality 

reduction (visualization), topic binarization (to perform motif enrichment for cistrome formation), drop-

out imputation, and DAR inference to perform motif enrichment for cistrome formation). The most time-

consuming step is the topic modelling, which increases with the number of cells and the coverage (as 

more assignments must be done per iteration). Note that the running time of this step also depends on the 

topic space that the user wants to explore (i.e. how many models are trained). We find that the number of 

topics per model does not affect the running time (i.e. running a model with 30 topics will take the same 

time as running a model with 50 topics), as we show in Fig 1b. The other steps (dimensionality reduction, 

topic binarization, imputation and DAR inference) are mostly affected by the number of cells, but not by 

the coverage (Fig R4.1, Fig R4.2). These analyses were run in an Intel(R) Xeon(R) Platinum 8360Y 

[IceLake], with 300gb memory and 20 cores. 

 

Fig R4.1 Time complexity of the preprocessing steps with pycisTopic using simulated datasets with 

different coverages and number of cells. a. Running time (as seconds) per step. The running time for the 

topic modelling corresponds to the average over topics. b. Running time per topic model as a function of 

the number of topics specified. 
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Fig R4.2. Time complexity of the preprocessing steps with pycisTopic as a function of the number of 

cells grouped by coverage. 

 

For pycisTarget, we observed that DEM tends to take longer than cisTarget on the same region sets. 

While the number of cells (especially comparing the data set with 80 cells versus the rest) and the 

coverage seem to have an effect, this is mostly related to the impact that the number of cells and coverage 

has on the number DARs and regions per topic (see comment 5). At all coverages we observe that the 

data set with 80 cells results in a lower recall of regions, and thus, shorter running times in pycisTarget 

(with both DEM and cisTarget). In the data sets ranging from 1K to 25K cells we did not observe 

significant differences in the number of regions per topic, while for DARs the data set with 1K regions 

resulted in slightly less recovered DARs compared to the 10K and 25K data sets. Note that the running 

time of this step will also multiply by the number of topics (topics) or cell types/clusters (DAR sets) 
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defined. These analyses were run in an Intel(R) Xeon(R) Platinum 8360Y [IceLake], with 300gb memory 

and 20 cores. 

 

Fig R4.3 Average running times per region set for cisTarget and DEM using topics and DARs versus 

number of cells. 
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Fig R4.4 Distributions of the number of regions per topic and DARs across data sets. 

 

To evaluate the run times of SCENIC+, we simulated scRNA-seq data with different coverages that were 

paired with the matching scATAC-seq data sets, with low (5K reads per cell), medium (20K reads per 

cell) and high (50K reads per cell) coverages. We observed that most of the steps scale with the number 

of cells (e.g. create object, filtering genes/regions, region-gene link inference, building AUCell ranking). 

The most time-consuming step is the inference of the TF-to-gene links, which can take up to 20 hrs for 

the largest high coverage data set. A potential solution to reduce the running time of this step is to only 

use TFs for which cistromes are available (although this would impede using the same links if changes 

are made in the motif enrichment/cistromes). Altogether, both the size of the data set and the 

quality/coverage of the data will have an impact in the overall running time of the tool. These analyses 

were run in an Intel(R) Xeon(R) Platinum 8360Y [IceLake], with 1000gb memory and 20 cores. We 

describe these analyses in Fig S6. 
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Fig R4.5. Time complexity of the SCENIC+ steps as a function of the number of cells grouped by 

coverage. 
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5.It is unclear how sensitive this tool is to analyze fine resolution cell types. How many cluster-specific 

peaks are needed to identify cluster specific eRegulons? Some power analysis can be very helpful here.  

 

Like our analyses performed under comment 4, we simulated single-cell multiomics datasets, using the 

ENCODE cell lines data, with different numbers of cells and coverages to assess the sensitivity of 

SCENIC+. Specifically, we simulated a low coverage data set, with 3K scATAC-seq fragments per cells 

and 5K scRNA-seq reads per cell; a medium coverage data set, with 10K scATAC-seq fragments per 

cells and 20K scRNA-seq reads per cell; and a high coverage data set with, with 20K scATAC-seq 

fragments per cells and 50K scRNA-seq reads per cell. From each of these data sets, we derived 4 data 

sets with different numbers of cells, 80, 1,000, 10,000 and 25,000 cells, respectively. We then compared 

the results using our benchmark data. 

Overall, we observe an increase in the identification of high-quality regulons (and an increase in the 

number of regions and genes per regulon) with an increase in coverage and increase in number of cells 

(Fig 5.1). There is however a strong difference between the results on the sample with low coverage (3K 

scATAC-seq fragments per cell and 5K scRNA-seq reads per cell) compared to all the rest. This is likely 

related to the sensitivity of pycisTopic on such low quality data (see comment 1). Overall, the data sets 

with 10K and 25K cells achieved similar results. 

 

Fig 5.1 Number of TFs for which SCENIC+ identified a high-quality regulon (left), number of genes 

per regulon (middle) and number of regions per regulon. 
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With regards to TF recovery, we observed a similar trend (i.e. increased TF recovery with increasing 

coverage and number of cells), especially in comparison to TF expression (Fig 5.2).  

With regards to TF target region predictions, we observed that precision is maintained, while recall varies 

depending on the coverage and the number of cells (using Unibind peaks as silver standard in Fig 5.3, 

results using Enformer and ChIP-seq peaks show similar results). For both middle and high coverage 

(10K/20K scATAC-seq fragments per cell and 25K/50K scRNA-seq reads per cell, respectively) results 

are similar.  

Regarding region-to-gene relationships, we find that both the number of cells and the coverage have an 

impact on the overall number of links (also related to the effect that coverage and sample size have on the 

number of regions in topics and DARs, see comment 4). However, in comparison to Hi-C data, we do not 

observe biases due to coverage (Fig 5.4).  

Finally, with regards to TF-to-gene inference we again observe an effect in quality due to the coverage 

and the number of cells, but again the analyses using middle and high coverage achieve very similar 

results (Fig 5.5). Altogether, we can conclude that SCENIC+ should best be avoided on samples with low 

coverage and low number of cells (80), while in all other conditions the results are robust given that data 

sets with 10K/25K cells and middle/high coverage achieve comparable results.  

We think this is an interesting parameter for SCENIC+ users and included this in the results and Fig 

S19. 
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Fig R5.2. TF recovery performance by SCENIC+ upon variations in coverage and sample size. 

Cumulative TF recovery for each method using as x-axis TFs ranked based on the number of ChIP-seq 

peaks and AUC values per method using the top 40 TFs (left) and cumulative TF recovery for each 

method using as x-axis TFs ranked based on the maximum LogFC across the cell lines and AUC values 

per method (right).  

 

 

 



 
 

 

129 
 

 

 

Fig R5.3. F1 score, precision and recall distributions of the predicted regions per TF using Unibind 

regions as standard. 

 

Fig R5.4. Number of region-gene links inferred (non-transparent links indicate that the links are 

included in the final eGRN) and boxplot showing the correlation with the Hi-C links for the top 100 

marker genes for each of the cell line where Hi-C is available (IMR90, GM12878, HCT116, HepG2 

and K562). 

Fig R5.5. F1 score, precision and recall distributions of the predicted genes per TF using perturbation 

data. Boxplots representing the F1 score (left), precision (middle), and recall (right) distributions of the 

predicted target genes per TF compared to TF perturbation data. 

6. The paper focused a lot on the confirmative analysis, showing previously categorized regulons, but 

very shy at presenting novel findings. I encourage the authors showcase a few, even without 

experimentally validation.  
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We thank the reviewer for this encouraging suggestion. We include below a summary of the novel 

biological insights that SCENIC+ provided through the case studies. These findings are now better 

described in the text, including: 

- In the cortex study we identified 60 TFs conserved between mouse and human. We now 

compared these with literature and found that 52/60 have been previously described to be 

involved in the different cortex cell types. The remaining 8 TFs can be considered novel, 

conserved regulators. These include Smad3 in the upper cortical layers, Pparg and Bhlhe40 in L4, 

Etv5 and Nfat5 in L5/6, Thrb and Pbx1 in L6 and Meis1 in oligodendrocytes. For these conserved 

TFs, we identify 4,798 and 8,318 conserved TF-region and TF-gene relationships, respectively. 

Given the sparsity of direct TF-enhancer and TF-gene relationships in the literature, the majority 

of these conserved interactions are novel.  

- In the PBMC study, SCENIC+ identified 63 key regulators, 62,011 TF-gene and 146,583 TF-

region interactions. Through different benchmark analyses and comparison with other tools, we 

found that SCENIC+ GRN is the most complete and accurate network compared to other 

methods. In addition, we show that SCENIC+ can be used to explore TF cooperativity. 

- In the melanoma case study, SCENIC+ identified 42 high quality activators. This resulted in the 

most comprehensive GRN for melanoma to date, including 13,691 and 28,819 TF-gene and TF-

region interactions, respectively. By simulating TF perturbations using this network, SCENIC+ 

identified potential novel regulators of EMT in melanoma, namely MXI1 and ZNF487, which is 

now added more explicitly to the text. 

- In the eye-antennal disc, we identified Cut (ct) as a transcriptional repressor acting in the outer 

antennal ring (Fig S27). Among its target genes, we found several eye disc progenitor TFs, such 

as ey, eya, Optix and toy, among others. This suggests that ct is necessary for the development of 

the antenna by inhibiting the eye fate, and that has indeed been shown by genetics (Wang et al. 

2012); however, it was not known that Cut works by directly repressing these master TFs for eye 

development. 

- In the analysis of oligodendrocyte differentiation with our GRN velocity approach, we 

identified Meis1 as a novel regulator of oligodendrocyte differentiation. Meis1 has been 

previously described to be involved in early neurogenesis and hematopoietic 
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differentiation (Isogai et al., 2022), but not in oligodendrocyte maturation. As previously 

mentioned, we also found this TF conserved in the human cortex, with 20% of the target 

genes conserved between human and mouse.  

- In the cerebellum data set, we identify a novel TF of granule cells, EMX1. EMX1 has been 

previously shown to have an effect in the size and morphology of the cerebellum and 

hippocampus, but to our knowledge, has not been linked before as a key regulator of granule cells 

(Kobeissy et al., 2016). 

 

7. The tool cluster DNA motifs abased on PWM similarity. But single base difference in motifs can be 

critical in determining binding affinities and targets for paralogs within the same transcription factor 

family. How did the authors address such subtle differences?  

We agree that this is a challenging problem that all tools for predicting TF binding sites based on PWMs 

face. A similar (or even worse) problem exists for paralog TFs for which there are no (or not very clear) 

differences in their motifs. We discuss how this can lead to ambiguous predictions in cases where the 

expression of the TF is exactly anticorrelated (Supplementary Note 3). Yet another challenge is that the 

same TF can often have multiple PWMs that are not all exactly the same. SCENIC+ addresses this 

problem in two ways. First, the motif collection is clustered based on PWM similarity, as the reviewer 

states in the question. However, the two-step clustering strategy that is used (i.e. Leiden clustering on 

PWM similarities calculated using TomTom followed by STAMP clustering), together with the 

magnitude of the motif collection, often result in separate cluster for motifs which are different only in 

small ways (for example, cluster 193.3 and cluster 193.2 both contain E-box motifs however the 

consensus sequence of the motifs in cluster 193.3 is CAGCTG while it is CATATG in 193.2; or cluster 

169.2, cluster 119.7, 117.2  that all contain GATA motifs with different consensus sequences 

respectively: GATAA, GAT and GATAACGATC). Second, for each cluster all TF annotations, both 

based on orthology and direct experimental evidence, are retained for all motifs within a cluster. Based on 

the expression of these TFs SCENIC+ is able to identify the correct TF along with the correct target 

regions (i.e. the regions for which the target genes are significantly co-expressed with the TF).  
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We illustrate this for the paralogs GATA1 and GATA3. Regions enriched for a subset of motifs annotated 

to these TFs highly overlap, all these motifs have the consensus sequence GATA or GATAA (Fig R7.1. 

top cluster of motifs). Next to this there is another subset of motifs that show little overlap, these motifs 

have very distinct consensus sequences (GAT, GATCTTATC, GATAACAA, GATAAGGA) or are 

dimer motifs (Fig R7.1 bottom cluster of motifs). The motifs of GATA1 and GATA3 are not clearly 

distinct (Fig R7.1) and therefore there is a large overlap of the regions enriched for motifs annotated to 

these TFs (average Jaccard index of 0.12). However, the expression of these two TFs is very distinct, with 

GATA1 expressed in K562 and GATA3 in MCF7. For this reason, SCENIC+ is able to distinguish 

regions bound by either GATA1 or GATA3. The Jaccard index of GATA1 and GATA3 predicted target 

regions is therefore only 0.02. 
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Fig R7.1. Overlap of regions enriched for GATA1 and GATA3 motifs. Heatmap showing Jaccard index 

of regions, in the Deeply Profiled Cell Lines, enriched for motifs annotated to GATA1 and GATA3 motifs. 

Color on the left indicates whether a motif is annotated for GATA1, GATA3 or both. 

To conclude, SCENIC+ relies strongly on gene expression to separate the target regions of paralog TFs. 

A limitation to this approach is that separating the target regions of paralog TFs that are co-expressed is 

more difficult. However, the latter might still be possible if the motifs annotated to these paralog TFs are 

clearly distinct (this is often rare).  

 

Fig R7.2. Gene expression of GATA1 and GATA3 in Deeply Profiled Cell Lines. UMAP of Deeply 

Profiled Cell Lines colored by the expression of GATA1 (red) and GATA3 (green). 

 

Here is list of major key points regarding the Tutorial 

1. The tutorial is not hard to follow for the Pbmc example but can still be challenging to apply on new 

datasets. It would be nice to separate the tutorial into two key components: 1. Preprocessing steps, and 2. 
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SCENIC+ modeling. Current tutorial covers extensively on preprocessing steps but does not provide 

enough depths for SCENIC+ modeling.  

We want to thank the reviewer for checking out the tutorial. The feedback is well appreciated; therefore, 

we adapted the tutorial as suggested. It is now split into two parts with more extensive documentation 

on the SCENIC+ modeling part. The new tutorial is available in the following link: 

https://scenicplus.readthedocs.io/en/development/pbmc_multiome_tutorial.html. We also include detailed 

step-by-step tutorials for the human cerebellum data sets at: 

https://pycistopic.readthedocs.io/en/latest/Single_sample_workflow-RTD.html, 

https://pycistarget.readthedocs.io/en/latest/pycistarget_scenic%2B_human_brain.html, and 

https://scenicplus.readthedocs.io/en/latest/Scenicplus_step_by_step-RTD.html.  

  

2. Many users in the community already get used to tools like snapATAC/ArchR. It would be nice to 

build a convenient interface to interact with these tools. It would also be nice to provide support for 

commonly used file format, such as h5ad and Seurat objects, to make the tools easier to use.  

 

We strongly agree with these points.  

On the point to provide an interface to data objects obtained from tools like snapATAC, ArchR or R the 

version of cisTopic we added the following two sections to the frequently asked questions (FAQ) 

page of the pycisTopic read the docs (https://pycistopic.readthedocs.io/en/latest/faqs.html).  

1. “I have a cisTopic analysis in R, can I still use pycisTopic/SCENIC+?” 

2. “I have an analysis with another tool (e.g. Signac/ArchR), can I still use pycisTopic/SCENIC+?” 

On the point to provide support to commonly used file formats. We are currently working on 

converting our codebase to be able to support MuData (https://github.com/scverse/mudata) as the 

main data object. Currently, we implemented functions to export the cisTopic, cisTarget and SCENIC+ 

analysis to MuData. See following GitHub commits for more information: 

For pycisTopic: 

https://scenicplus.readthedocs.io/en/development/pbmc_multiome_tutorial.html
https://pycistopic.readthedocs.io/en/latest/Single_sample_workflow-RTD.html
https://pycistarget.readthedocs.io/en/latest/pycistarget_scenic%2B_human_brain.html
https://scenicplus.readthedocs.io/en/latest/Scenicplus_step_by_step-RTD.html
https://pycistopic.readthedocs.io/en/latest/faqs.html
https://github.com/scverse/mudata
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https://github.com/aertslab/pycisTopic/commit/00563281c445482ea9fadbca0b245d7144c5304a 

https://github.com/aertslab/pycisTopic/commit/4ab13e352d363bd6ee16dbf183f469b929000e1d 

For pycistarget: 

https://github.com/aertslab/pycistarget/commit/c8485f1637c7812394ba8aeeb01e96c8dd788d35 

https://github.com/aertslab/pycistarget/commit/dbf1d4a0b31aa5164889e396fffe1562948b59f5 

For SCENIC+: 

https://github.com/aertslab/pycistarget/commit/dbf1d4a0b31aa5164889e396fffe1562948b59f5 

We are currently still working to convert internal functions (as opposed to only the output) to this format. 

In this context we also want to comment that the input into SCENIC+ is already an h5ad data format for 

the gene expression side of the data. Also, we already provide functions to export to the loom file format, 

to UCSC genome browser compatible formats and to Cytoscape compatible formats.  

 

Minor points: 

Most figures are too packed. The eGRN plots such as Figure2g look cool, but it is difficult to interpret. It 

might not be worthwhile to show more than once. The authors need to pick and choose materials more 

carefully to present in the main figures and make sure all labels are legible. 

We have better selected the materials shown in the PBMC, ENCODE cell lines benchmark and 

GRN velocity figures, thus emphasizing more the key points. We have made sure that all main and 

supplementary figures are clearly legible. 

 

 

 

 

Decision Letter, first revision: 

 

https://github.com/aertslab/pycisTopic/commit/00563281c445482ea9fadbca0b245d7144c5304a
https://github.com/aertslab/pycisTopic/commit/4ab13e352d363bd6ee16dbf183f469b929000e1d
https://github.com/aertslab/pycistarget/commit/c8485f1637c7812394ba8aeeb01e96c8dd788d35
https://github.com/aertslab/pycistarget/commit/dbf1d4a0b31aa5164889e396fffe1562948b59f5
https://github.com/aertslab/pycistarget/commit/dbf1d4a0b31aa5164889e396fffe1562948b59f5
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Our ref: NMETH-A50180A 

 

16th Mar 2023 

 

Dear Dr. Aerts, 

 

Thank you for submitting your revised manuscript "SCENIC+: single-cell multiomic inference of 

enhancers and gene regulatory networks" (NMETH-A50180A). It has now been seen by the original 

referees and their comments are below. The reviewers find that the paper has improved in revision, 

and therefore we'll be happy in principle to publish it in Nature Methods, pending minor revisions to 

satisfy the referees' final requests and to comply with our editorial and formatting guidelines. 

 

We are now performing detailed checks on your paper and will send you a checklist detailing our 

editorial and formatting requirements in about a week. Please do not upload the final materials and 

make any revisions until you receive this additional information from us. 

 

TRANSPARENT PEER REVIEW 

Nature Methods offers a transparent peer review option for new original research manuscripts 

submitted from 17th February 2021. We encourage increased transparency in peer review by 

publishing the reviewer comments, author rebuttal letters and editorial decision letters if the authors 

agree. Such peer review material is made available as a supplementary peer review file. Please state 

in the cover letter ‘I wish to participate in transparent peer review’ if you want to opt in, or 

‘I do not wish to participate in transparent peer review’ if you don’t. Failure to state your 

preference will result in delays in accepting your manuscript for publication. 

 

Please note: we allow redactions to authors’ rebuttal and reviewer comments in the interest of 

confidentiality. If you are concerned about the release of confidential data, please let us know 

specifically what information you would like to have removed. Please note that we cannot incorporate 

redactions for any other reasons. Reviewer names will be published in the peer review files if the 

reviewer signed the comments to authors, or if reviewers explicitly agree to release their name. For 

more information, please refer to our <a href="https://www.nature.com/documents/nr-transparent-

peer-review.pdf" target="new">FAQ page</a>. 

 

ORCID 

IMPORTANT: Non-corresponding authors do not have to link their ORCIDs but are encouraged to do 

so. Please note that it will not be possible to add/modify ORCIDs at proof. Thus, please let your co-

authors know that if they wish to have their ORCID added to the paper they must follow the procedure 

described in the following link prior to acceptance: 

https://www.springernature.com/gp/researchers/orcid/orcid-for-nature-research 

 

Thank you again for your interest in Nature Methods. Please do not hesitate to contact me if you have 

any questions. We will be in touch again soon. 

 

Sincerely, 

 

Lin Tang, PhD 

Senior Editor 

Nature Methods 
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Reviewer #1 (Remarks to the Author): 

 

The revised manuscript contains several new analyses that convincingly demonstrate the good 

performance of SCENIC+ on several metrics. The descriptions of the methods and results are much 

clearer. New biological findings from the eGRN velocity analysis demonstrate the utility of the method. 

While benchmarking of GRNs is complicated by a lack of gold standards the combination of functional 

assays does provide convincing evidence that SCENIC+ is performing better than the tested 

alternatives. 

The authors have done an excellent work in addressing the questions and I think the paper has been 

greatly improved. 

 

Some minor points remain to be addressed: 

 

1. The motif database and integration methods are significant contributions. There seems to be a 

difference in the motif data provided for download and numbers reported in Fig R4.1 etc. There are 

10,250 motifs available for download in v10nr_clust_public/singletons and 49,054 in Fig R4.1 or 

12,932 clusters. Maybe this is related to the Transfac motifs? Clearer organization of files and better 

descriptions would be helpful. For example, the documentation could link the processing to what is in 

the directories, saying something like “we did x analysis resulting in n motifs which can be found in y 

directory.” 

 

2. There seems to be a mix-up in terminology, are the lowest ranking triplets the best or the worst? 

352 The best triplets are those with the lowest aggregated ranking (Fig 4a). 

359 the top 10% triplets indeed have a significantly higher ChIP-seq signal, compared to regions 

360 of lower-ranked triplets, and this is also true for Enformer predictions (Fig 4b). 

 

3. In the discussion section: 

840 Another challenge is the validation of enhancer-gene 

841 relationships, for which we used ENCODE Hi-C data, which has a limited resolution of 5kb. 

842 Indeed, often more than one candidate enhancer is present within 5kb. Comparison with higher 

843 resolution data sets such as microC or promoter Capture Hi-C, when these techniques 

844 become more widely applied, may provide a better standard for this task. 

 

Whether or not Hi-C or related data can resolve this issue is a controversial, see the introduction in 

Zuin et al. "Nonlinear control of transcription through enhancer–promoter Interactions." Nature 

604.7906 (2022): 571-577.” 

 

4. There are several recent papers related to gene regulation analysis using single cell multiome data, 

including the ones below. A careful check of recent publications to create a complete list would be 

appropriate. 

 

789 The combination of both layers of information, namely TF binding sites and 

790 gene expression, at single-cell resolution, then lead to the concept of enhancer-driven-GRN 

791 (eGRN)3,24,47–50. 



 
 

 

138 
 

 

 

 

Duren, Zhana, et al. "Regulatory analysis of single cell multiome gene expression and chromatin 

accessibility data with scREG." Genome biology 23.1 (2022): 1-19. 

 

Lynch, Allen W., et al. "MIRA: Joint regulatory modeling of multimodal expression and chromatin 

accessibility in single cells." Nature Methods 19.9 (2022): 1097-1108. 

 

Persad, Sitara, et al. "SEACells: Inference of transcriptional and epigenomic cellular states from 

single-cell genomics data." bioRxiv (2022): 2022-04. 

 

Tian, Yijun, Alex Soupir, and Liang Wang. "Multiomic single cell sequencing identified regulatory 

elements in prostate cells." Cancer Research 82.12_Supplement (2022): 782-782. 

 

5. Typo: 

485 melanoma lines. a. Principal Component Analysis (PCA) projection of 936 pseudo mutliome cells 

based 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

Authors provide now an extensively revised version of the manuscript describing SCENIC+. The 

method description and benchmarking part have greatly improved. Methodological choices are well 

motivated and individual components of this complex framework are well described. Altogether, I am 

mostly satisfied with the authors responses. However, a few additional questions remain open and 

should be addressed (see below). 

 

While I judged the methodological contributions, benchmarking and velocity analysis to be very 

strong, the manuscript is still long, complex and diverse. Authors are encouraged to focus on the 

strongest contributions of this work. 

 

Major points 

 

Results from Fig. S9i indicate that Signac has better F1 accuracy. This should be described in the main 

text. It would be also interesting to compare the results from CellOracle and Pandos with frameworks 

using only scATAC-seq data (Signac and archR). Panels S9i and S9j. It would be really important to 

the readership to understand in which cases scATAC-seq is enough or when multimodal data (scRNA-

scATAC-seq) is relevant. This important aspects should be strengthened in the text. 

 

Line 759 - The "TF expression threshold" is a very important parameter for the velocity analysis, as 

this indicates, which cells have velocity vectors. The manuscript text does not indicate how this 

important parameter defined. There is only a description in the reply letter (70% top quantile). Is this 

parameter used in all studies showed here? What happens if larger or smaller values are selected? 

 

 

Minor points 

 

Line 114 - "DEM is more sensitive for comparing 115 sets of regions with similar motif content (Fig 
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S5)." I could not see DEM evalution in S5. This is maybe in S4? Please clarify 

 

Line 124 - Authors could provide intervals of running times in the text. Exact running times are not 

easy to read from plots. 

 

Line 125 - "Importantly, we found that eGRN inference with SCENIC+ is as accurate when using 

multiome or well-paired scATAC-seq and scRNA-seq in the same tissue". Consider rephrasing. This 

analysis does not shown accuracy but rather that prediction are equivalent when sub-sampling is 

done. 

 

Line 187 - "and accurate genomic target regions of these regulators," Authors should also consider re-

writing as accuracy is not extensively explored in this section of the manuscript. 

 

Line 229/Fig. 3C - Please display individual ARI values at the figure panels. 

 

This text and panels in lines 310-318 do not go together. The text mentions results from panels S8-

S9, while S19 was introduced a few lines before. I would expect supplement panels to be introduced in 

order. Also. some passages in the text do not correspond to the results. "On the other hand, SCENIC+ 

had a higher precision and 314 recall in terms of identified target regions of these TFs". Plot is S9j 

shown that SCENIC has a better recall but is not the method with highest precision. 

 

Line 383 - Predictions on 4E-F are nice, but only computational. Authors could validate these (or 

consider including these results in the supplement only). 

 

Line 680 - The velocity fields from some factors in figure 7b look odd. Maybe using a distinct 2-

dimensional map (PCA or diffusion maps as in SCENIC tutorial instead of UMAP) would make the 2D 

visualization better. UMAPs are not suitable for representation of differentiation trajectories. 

 

 

 

 

 

 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

The manuscript has substantially improved with better presentation, and the tutorial is now a lot 

easier to follow. The reviewers have addressed most of my concerns. 

 

One remaining concern is, for benchmark purpose, the authors test on datasets with max 25K cells. 

More recent multiome datasets can be substantially bigger than that, and it is still unclear how 

scalable this method is. The authors reported the running time, but did not comment on memory 

usage. The manuscript mentioned it is tested on machines with 300, and 1000 gb memory. It will be 

nice if the authors can provide estimate of the amount of memory needed based on the 

size/complexity of the input datasets, and provide the guidance. 
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Minor comments: 

Figure 1f: Please list total of ChIP-Seq datasets used in the benchmark. 

Figure 2d: Please order the cell types to reflect their similarities. It is good to see that similarities of 

cell types based on UMAP reflect the similarities based on TF motif enrichment. 

Figure 2g: Ebf1 ChIP-Seq signal is low. The authors may explain why this is a particularly convincing 

EBF binding site? 
  

 

Author Rebuttal, first revision: 

 

 Reviewer #1 (Remarks to the Author): 

 

The revised manuscript contains several new analyses that convincingly demonstrate the good 

performance of SCENIC+ on several metrics. The descriptions of the methods and results are 

much clearer. New biological findings from the eGRN velocity analysis demonstrate the utility of 

the method.  

While benchmarking of GRNs is complicated by a lack of gold standards the combination of 

functional assays does provide convincing evidence that SCENIC+ is performing better than the 

tested alternatives. 

The authors have done an excellent work in addressing the questions and I think the paper has 

been greatly improved. 

 

We thank the reviewer for the constructive feedback and are happy to read that he/she is of the 

opinion that the work has been greatly improved. 

 

Some minor points remain to be addressed: 

 

1. The motif database and integration methods are significant contributions. There seems to be 

a difference in the motif data provided for download and numbers reported in Fig R4.1 etc. 

There are 10,250 motifs available for download in v10nr_clust_public/singletons and 49,054 in 

Fig R4.1 or 12,932 clusters. Maybe this is related to the Transfac motifs? Clearer organization 

of files and better descriptions would be helpful. For example, the documentation could link the 

processing to what is in the directories, saying something like “we did x analysis resulting in n 

motifs which can be found in y directory.” 

 

We provide a schematic of the workflow in Fig S2. Briefly, we first pool all the motifs across 29 

collections, which results in a total of 49,504 motifs. We then merge identical motifs across 

collections, resulting in 32,765 motifs. Before clustering, we removed desso and factorbook 

motifs, as they are derived from Deep Learning models and do not have direct annotations, and 
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motifs with IC < 5, resulting in 22,476 motifs. 1,265 of these motifs are dimers and are not 

included in the clustering step as well as 9,685 singlets, that were not similar enough to any 

motif. After clustering the remaining motifs, we obtained 1,985 clusters (containing at least 2 

motifs). In total this results in 12,932 files. However, as Transfac Pro motifs are licensed, 

clusters (or singlets) solely formed by Transfac Pro motifs cannot be shared, resulting in 10,250 

files that form part of the ‘public’ motif collection. Nevertheless, in the cases where the cluster is 

formed by additional non-Transfac Pro motifs, we keep the sharable motifs and the annotations 

of the Transfac Pro motif/s to the cluster. 

Note that we provide precomputed databases in which the 12,932 files are used, since this does 

not require to share the licensed motifs. In addition, we show in the manuscript that the public 

motif collection achieves similar results compared to the full motif collection. 

At https://resources.aertslab.org/cistarget/motif_collections/v10nr_clust_public/ we provide  a 

total of 10,250 files (singlets, dimers and cluster) that can be publicly shared from the motif 

collection. In each file, all motifs forming part of the cluster are provided. Across all the clusters, 

a total of 17,995 motifs are provided (after removal of 4,481 Transfac Pro motifs)   

At https://resources.aertslab.org/cistarget/databases/ we provide the precomputed databases 

for mouse, human and fly, in which scores/rankings for the 12,932 files are provided. 

We have included descriptions regarding this topic on the website, see 

https://resources.aertslab.org/cistarget/motif_collections/. 

 

https://resources.aertslab.org/cistarget/motif_collections/v10nr_clust_public/
https://resources.aertslab.org/cistarget/databases/
https://resources.aertslab.org/cistarget/motif_collections/
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Figure R1. SCENIC+ motif collection clustering approach. 

 

2. There seems to be a mix-up in terminology, are the lowest ranking triplets the best or the 

worst? 

 

352 The best triplets are those with the lowest aggregated ranking (Fig 4a).  

359 the top 10% triplets indeed have a significantly higher ChIP-seq signal, compared to 

regions 

360 of lower-ranked triplets, and this is also true for Enformer predictions (Fig 4b). 

 

We apologize for the confusion in terminology. The triplets are ranked from best to worst. For 

this reason, the ones with the lowest numerical value are the best triplets. We adapted the 

manuscript and now refer to the best triplets as the ones on the top of the ranking or as triplets 

that are more highly ranked.  

 

 

3. In the discussion section:  

840 Another challenge is the validation of enhancer-gene 

841 relationships, for which we used ENCODE Hi-C data, which has a limited resolution of    

5kb. 

842 Indeed, often more than one candidate enhancer is present within 5kb. Comparison with 

higher 

843 resolution data sets such as microC or promoter Capture Hi-C, when these techniques 

844 become more widely applied, may provide a better standard for this task. 

 

Whether or not Hi-C or related data can resolve this issue is a controversial, see the introduction 

in Zuin et al. "Nonlinear control of transcription through enhancer–promoter Interactions." Nature 

604.7906 (2022): 571-577.” 

 

We agree with the reviewer’s comment and added the following line to the manuscript: “Hi-C 

has a limited resolution and the relationship between physical enhancer-promoter distance and 

gene expression is still unclear and warrants further research.” Where we also refer to the 

relevant literature. 

  

 

4. There are several recent papers related to gene regulation analysis using single cell multiome 

data, including the ones below. A careful check of recent publications to create a complete list 
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would be appropriate. 

 

789 The combination of both layers of information, namely TF binding sites and 

790 gene expression, at single-cell resolution, then lead to the concept of enhancer-driven-GRN 

791 (eGRN)3,24,47–50. 

 

Duren, Zhana, et al. "Regulatory analysis of single cell multiome gene expression and chromatin 

accessibility data with scREG." Genome biology 23.1 (2022): 1-19. 

 

Lynch, Allen W., et al. "MIRA: Joint regulatory modeling of multimodal expression and chromatin 

accessibility in single cells." Nature Methods 19.9 (2022): 1097-1108. 

 

Persad, Sitara, et al. "SEACells: Inference of transcriptional and epigenomic cellular states from 

single-cell genomics data." bioRxiv (2022): 2022-04. 

 

Tian, Yijun, Alex Soupir, and Liang Wang. "Multiomic single cell sequencing identified regulatory 

elements in prostate cells." Cancer Research 82.12_Supplement (2022): 782-782. 

 

We agree with the reviewer that creating a complete overview would be interesting. However, 

due to limitations on the number of references we can include in the manuscript this is not 

possible. Furthermore, we are of the opinion that we do cite the most important prior works.   

 

Notwithstanding this, we did screen recent publications and below is a comprehensive list of 

publications related to multiomics gene regulatory network inference: 

• https://doi.org/10.1093/nargab/lqac023 

• https://doi.org/10.1101/2022.12.15.520582  
https://doi.org/10.1038/s41540-020-00148-4 

• https://doi.org/10.1186/s13073-021-00908-9 

• https://www.genome.org/cgi/doi/10.1101/gr.271080.120. 

• https://doi.org/10.1126/sciadv.abl7393 

• https://doi.org/10.1101/2022.06.15.496239 

• https://doi.org/10.1038/s41467-023-36559-0 

• https://doi.org/10.1093/bib/bbad011 

• https://doi.org/10.12688/f1000research.130530.1 

• https://doi.org/10.1093/bioadv/vbad003 

• https://doi.org/10.1101/2023.02.03.527081  

• https://doi.org/10.1016/j.cell.2021.07.039 

• https://doi.org/10.1093/bioinformatics/btac117  

• https://doi.org/10.1038/s41593-021-01002-4 

https://doi.org/10.1093/nargab/lqac023
https://doi.org/10.1101/2022.12.15.520582
https://doi.org/10.1038/s41540-020-00148-4
https://doi.org/10.1186/s13073-021-00908-9
https://www.genome.org/cgi/doi/10.1101/gr.271080.120
https://doi.org/10.1126/sciadv.abl7393
https://doi.org/10.1101/2022.06.15.496239
https://doi.org/10.1038/s41467-023-36559-0
https://doi.org/10.1093/bib/bbad011
https://doi.org/10.12688/f1000research.130530.1
https://doi.org/10.1093/bioadv/vbad003
https://doi.org/10.1101/2023.02.03.527081
https://doi.org/10.1016/j.cell.2021.07.039
https://doi.org/10.1093/bioinformatics/btac117
https://doi.org/10.1038/s41593-021-01002-4
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• https://doi.org/10.1038/s41587-022-01284-4 

• https://doi.org/10.1101/2022.07.25.501350 

• https://doi.org/10.1101/2022.08.10.503335 

• https://doi.org/10.1038/s41592-022-01595-z  
 

 

5. Typo:  

485 melanoma lines. a. Principal Component Analysis (PCA) projection of 936 pseudo mutliome 

cells based 

We fixed the typo. 

 

Reviewer #2 (Remarks to the Author): 

 

Authors provide now an extensively revised version of the manuscript describing SCENIC+. The 

method description and benchmarking part have greatly improved. Methodological choices are 

well motivated and individual components of this complex framework are well described. 

Altogether, I am mostly satisfied with the authors responses. However, a few additional 

questions remain open and should be addressed (see below).  

 

While I judged the methodological contributions, benchmarking and velocity analysis to be very 

strong, the manuscript is still long, complex and diverse. Authors are encouraged to focus on 

the strongest contributions of this work.  

 

We thank the reviewer for the constructive feedback and are happy to read that he/she is of the 

opinion that the work has greatly improved. We shortened the manuscript and made all sections 

less complex. The diversity of this work is one of its strong suites, describing the variety of 

analysis that can be done and research questions that can be answered using SCENIC+. 

 

 

Major points  

 

Results from Fig. S9i indicate that Signac has better F1 accuracy. This should be described in 

the main text. It would be also interesting to compare the results from CellOracle and 

Pandos with frameworks using only scATAC-seq data (Signac and archR). Panels S9i and 

S9j. It would be really important to the readership to understand in which cases scATAC-

seq is enough or when multimodal data (scRNA-scATAC-seq) is relevant. This important 

aspects should be strengthened in the text. 

 

https://doi.org/10.1038/s41587-022-01284-4
https://doi.org/10.1101/2022.07.25.501350
https://doi.org/10.1101/2022.08.10.503335
https://doi.org/10.1038/s41592-022-01595-z
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We want to clarify that the difference between the F1-metric of SCENIC+ and Signac is non-

significant in this analysis (p-value equal to 0.89), so they perform equally well on this task. It 

would indeed be interesting to compare the results from other tools, like CellOracle and Pando, 

to tools using only scATAC-seq data, like Signac and ArchR. However, we believe this goes 

beyond the scope of this manuscript, which is not focused on benchmarking all available 

methods. 

 

We adapted the following paragraph, see underlined additions: 

 

“Note that even when only scATAC-seq is used to identify TFs per cell type (e.g., ArchR, 

Signac), the majority of known cell type specific TFs could still be recovered with accurate target 

region predictions (Extended Data Fig. 7g, h), showing that motif discovery is a powerful means 

for cell type specific TF prediction. However, using scATAC-seq alone resulted in large amounts 

of false positive TF predictions, representing TFs that are not expressed in the cell type but 

have a similar motif (Extended Data Fig. 7i).” 

 

The last sentence stresses the importance of the additional information provided by gene 

expression data.  

 

Line 759 - The "TF expression threshold" is a very important parameter for the velocity analysis, 

as this indicates, which cells have velocity vectors. The manuscript text does not indicate how 

this important parameter defined. There is only a description in the reply letter (70% top 

quantile). Is this parameter used in all studies showed here? What happens if larger or smaller 

values are selected?  

 

We agree that the TF expression threshold is an important parameter in the velocity analysis. In 

all analyses, as detailed in the methods section, we use the same threshold (70% top quantile). 

This parameter indicates that only for cells above the 70% quantile (or as specified by the user) 

of the TF expression curve, velocity vectors will be calculated. When this parameter is set too 

low, the differentiation potential will be calculated for cells in which the TF is not or lowly 

expressed, adding noise to the analysis. We set the value by default to the 70% quantile 

because, below this threshold, for most of the cells, the expression of targets seems to precede 

gene expression, which given the low expression of the TF, we interpret as noise (Fig. R2). 

When this parameter is set to high, the differentiation potential may be disregarded for cells in 

which the TF is already expressed, although not to maximum levels, which can mask the 

dynamics between TF expression and target activation. 
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Figure R2. Representation of svp dynamics along the two branches of the eye-antennal disc 

differentiation. The grey horizontal line represents the TF expression threshold. 

 

Minor points 

 

Line 114 - "DEM is more sensitive for comparing 115 sets of regions with similar motif content 

(Fig S5)." I could not see DEM evalution in S5. This is maybe in S4? Please clarify 

Figure S5 is in fact the correct figure. In this figure we illustrate that the Differentially Enriched 

Motifs (DEM) analysis can be used to analyze differences in regions with very similar motif 

content. In the figure we use the example of SOXE target regions in different cell types: 

melanoma, astrocytes and oligodendrocytes. cisTarget, which uses all consensus peaks in the 

genome as background, is only able to detect enrichment for SOX-motifs but not for their co-

factors (see panel b). On the other hand, DEM, which uses the SOXE target regions of the two 

other cell types as background, is able to detect enrichment for other motifs besides SOX (see 
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panel c). These other motifs represent cell type specific co-factors. For that reason, we stated 

that DEM is more sensitive compared to cisTarget to detect these extra motifs. To avoid 

confusion we adapted the sentence, see underlined change: 

 

“Both the cisTarget and DEM algorithm outperform Homer (Fig. 1f, Extended Data Fig. 2d), with 

the DEM algorithm enabling detection of differential motifs in sets of regions with similar motif 

content (Extended Data Fig. 2i-j).” 

 

Line 124 - Authors could provide intervals of running times in the text. Exact running times are 

not easy to read from plots. 

 

We now summarize the results of this analysis as follows in the text: “The overall running time 

and memory of the workflow ranges from 1 hour and 21Gb to 44 hours and 461Gb for the 

smallest and largest tested dataset (Extended Data Fig. 3).” 

 

 

Line 125 - "Importantly, we found that eGRN inference with SCENIC+ is as accurate when using 

multiome or well-paired scATAC-seq and scRNA-seq in the same tissue". Consider rephrasing. 

This analysis does not shown accuracy but rather that prediction are equivalent when sub-

sampling is done 

.  

Thank you for this suggestion, the word “accurate” was indeed not well suited. This analysis is 

not showcased in the final article version due to limitations on the amount of material that can 

be accommodated. 

 

Line 187 - "and accurate genomic target regions of these regulators," Authors should also 

consider re-writing as accuracy is not extensively explored in this section of the manuscript.  

 

Agreed. We removed the word “accurate”. 

 

Line 229/Fig. 3C - Please display individual ARI values at the figure panels.  

 

We have added the individual ARI values to the figure. 
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This text and panels in lines 310-318 do not go together. The text mentions results from panels 

S8-S9, while S19 was introduced a few lines before. I would expect supplement panels to be 

introduced in order. Also. some passages in the text do not correspond to the results. "On the 

other hand, SCENIC+ had a higher precision and 314 recall in terms of identified target regions 

of these TFs". Plot is S9j shown that SCENIC has a better recall but is not the method with 

highest precision.  

 

We agree that the panels should follow the order in the text. We now introduce the 

supplementary figures in order: 

 

“Finally, to test whether the same conclusions can be drawn from a real single-cell multiome 

data set we repeated the benchmark analyses on the PBMC data (Extended Data Fig. 7). 

GRaNIE is not present in this benchmark as it was developed for bulk data sets and did not 

scale to this larger (10K cells) data set. GRNs from all methods were able to recapitulate all 

biological cell states, except the GRN inferred by FigR (Extended Data Fig. 7d). SCENIC+ and 

Pando performed best in terms of identifying biologically relevant TFs, with Pando finding 

additional TFs compared to SCENIC+ (Extended Data Fig. 7e, j). SCENIC+ had the highest 

precision and recall in terms of target region predictions (Extended Data Fig. 7f). Note that even 

when only scATAC-seq is used to identify TFs per cell type (e.g., ArchR44, Signac45), the 

majority of known cell type specific TFs could still be recovered with accurate target region 

predictions (Extended Data Fig. 7g, h), showing that motif discovery is a powerful means for cell 

type specific TF prediction. However, using scATAC-seq alone resulted large amounts of false 

positive TF predictions, representing TFs that are not expressed in the cell type but have a 

similar motif (Extended Data Fig. 7i).” 

 

For Supplementary Fig. 7f, we would like to comment that the difference between CellOracle 

and SCENIC+ in terms of precision is not significantly different (p-value of 0.94). In other words, 

both SCENIC+ and CellOracle are in fact the two methods with the highest precision in this 

analysis. 

 

Line 383 - Predictions on 4E-F are nice, but only computational. Authors could validate these (or 

consider including these results in the supplement only).  

 

We want to comment that panel e of this figure already has some experimental validation. That 

is SCENIC+ predicts a specific region to be bound by HNF4A, FOXA2 and CEBPB and in this 

panel we show that this region indeed has high ChIP-seq signal for those TFs. Experimentally 

validating the in silico saturation mutagenesis shown in panel f would be very interesting but is 
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however beyond the scope of this paper. This panel also serves as a validation, although a 

computational one, showing that the predictions of an independent computational tool 

(Enformer) agree, to a certain extent, with the predictions of SCENIC+. We removed the panel 

from the manuscript due to space constraints.  

 

Line 680 - The velocity fields from some factors in figure 7b look odd. Maybe using a distinct 2-

dimensional map (PCA or diffusion maps as in SCENIC tutorial instead of UMAP) would make 

the 2D visualization better. UMAPs are not suitable for representation of differentiation 

trajectories. 

 

We favor to use the UMAP representation for consistency (as it is the same one used in Fig. 5 

as well), and we find it clearer compared to PCA or diffusion maps. Using PCA, we observed 

that most PCs, except the first, are affected by the sample of origin (Fig. R3). On the diffusion 

map representation for this data, cells tend to be on top of each other (especially towards OL), 

which makes it hard to visualize the arrows (Fig. R3, R4). Overall, the conclusions are the same 

despite the dimensionality reduction approach used. 

 

Figure R3. Diffusion map and PCA representation of the oligodendrocyte differentiation data set. 
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Figure R4. Differentiation arrows on UMAP, PCA and diffusion map projections. 

 

Reviewer #3 (Remarks to the Author): 

 

The manuscript has substantially improved with better presentation, and the tutorial is now a lot 

easier to follow. The reviewers have addressed most of my concerns.  

 

We thank the reviewer for the constructive feedback and are happy to read that the presentation 

and tutorials have improved. 

 

One remaining concern is, for benchmark purpose, the authors test on datasets with max 25K 

cells. More recent multiome datasets can be substantially bigger than that, and it is still unclear 

how scalable this method is. The authors reported the running time, but did not comment on 

memory usage. The manuscript mentioned it is tested on machines with 300, and 1000 gb 

memory. It will be nice if the authors can provide estimate of the amount of memory needed 

based on the size/complexity of the input datasets, and provide the guidance. 
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Thank you for the suggestion. We have measured the maximum memory peak in the three 

steps of the workflow (minimum steps) for the simulated data sets. Overall, we see that memory 

usage increases exponentially with the number of cells (Fig. R5).  

 

 

Figure R5. Maximum memory usage in the minimum steps of the workflow upon different 

numbers of cells and coverage.  

 

We have summarized the results of this analysis as: 

“The overall running time and memory of the workflow ranges from 1 hour and 21Gb to 44 hours 

and 461Gb for the smallest and largest tested dataset (Extended Data Fig. 3).” 

 

 

Minor comments: 

Figure 1f: Please list total of ChIP-Seq datasets used in the benchmark.  

In total, we used 309 ChIP-seq data sets. We have added this information to the figure legend. 

These exact data sets used are listed in Supplementary Table 4. 

 

Figure 2d: Please order the cell types to reflect their similarities. It is good to see that similarities 

of cell types based on UMAP reflect the similarities based on TF motif enrichment.  

 

We have reordered the cells based on their similarities of averaged target region and gene AUC 

values (Fig. R6), the same values as were used to generate the tSNE. We thank the reviewer 

for this suggestion as the plot indeed is more informative with this change. 
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Figure. R6. Dendrogram based on Euclidian distance between cell types based on averaged 

target gene and target region AUC. 

 

 

Figure 2g: Ebf1 ChIP-Seq signal is low. The authors may explain why this is a particularly 

convincing EBF binding site? 

 

We agree that the EBF1 ChIP-seq signal is low for the predicted target region. This might 

represent a false positive prediction from SCENIC+, even though there is some signal. To 

improve the clarity of this panel we have now added boxes indicating called peaks on the ChIP-

seq signal. Indeed, the predicted EBF1 target region is not called as a peak. In conclusion, this 

is not the most convincing EBF1 target region. However, we think this panel is still useful to 

illustrate the output from SCENIC+ highlighting that many, but not all, predicted target regions of 

SCENIC+ have ChIP-seq signal for the corresponding TFs. 

In this context we adapted the text, see underlined addition: 
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“In particular, for B cells SCENIC+ suggests cooperativity between EBF1(+), PAX5(+) and 

POU2F2/AF1(+) (Fig. 2e), with a strong overlap of most of their predicted target enhancers with 

EBF1, PAX5 and POU2F2 ChIP-seq data (Fig. 2f-g).” 

 

Final Decision Letter: 

 

6th Jun 2023 

 

 

Dear Professor Aerts, 

 

I am pleased to inform you that your Article, "SCENIC+: single-cell multiomic inference of enhancers 

and gene regulatory networks", has now been accepted for publication in Nature Methods. Your paper 

is tentatively scheduled for publication in our September print issue, and will be published online prior 

to that. The received and accepted dates will be 19th Aug 2022 and 6th Jun 2023. This note is 

intended to let you know what to expect from us over the next month or so, and to let you know 

where to address any further questions. 

 

Acceptance is conditional on the data in the manuscript not being published elsewhere, or announced 

in the print or electronic media, until the embargo/publication date. These restrictions are not 

intended to deter you from presenting your data at academic meetings and conferences, but any 

enquiries from the media about papers not yet scheduled for publication should be referred to us. 

 

Once your paper is typeset, you will receive an email with a link to choose the appropriate publishing 

options for your paper and our Author Services team will be in touch regarding any additional 

information that may be required. 

 

Please note that <i>Nature Methods</i> is a Transformative Journal (TJ). Authors may publish their 

research with us through the traditional subscription access route or make their paper immediately 

open access through payment of an article-processing charge (APC). Authors will not be required to 

make a final decision about access to their article until it has been accepted. <a 

href="https://www.springernature.com/gp/open-research/transformative-journals"> Find out more 

about Transformative Journals</a> 

 

Authors may need to take specific actions to achieve <a 

href="https://www.springernature.com/gp/open-research/funding/policy-compliance-

faqs"> compliance</a> with funder and institutional open access mandates. If your research 

is supported by a funder that requires immediate open access (e.g. according to <a 

href="https://www.springernature.com/gp/open-research/plan-s-compliance">Plan S principles</a>) 

then you should select the gold OA route, and we will direct you to the compliant route where 

possible. For authors selecting the subscription publication route, the journal’s standard licensing 

terms will need to be accepted, including <a href="https://www.springernature.com/gp/open-

research/policies/journal-policies">self-archiving policies</a>. Those licensing terms will supersede 

any other terms that the author or any third party may assert apply to any version of the manuscript. 

 

You will not receive your proofs until the publishing agreement has been received through our system. 
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If you have any questions about our publishing options, costs, Open Access requirements, or our legal 

forms, please contact ASJournals@springernature.com 

 

Your paper will now be copyedited to ensure that it conforms to Nature Methods style. Once proofs are 

generated, they will be sent to you electronically and you will be asked to send a corrected version 

within 24 hours. It is extremely important that you let us know now whether you will be difficult to 

contact over the next month. If this is the case, we ask that you send us the contact information 

(email, phone and fax) of someone who will be able to check the proofs and deal with any last-minute 

problems. 

 

If, when you receive your proof, you cannot meet the deadline, please inform us at 

rjsproduction@springernature.com immediately. 

 

Once your manuscript is typeset and you have completed the appropriate grant of rights, you will 

receive a link to your electronic proof via email with a request to make any corrections within 48 

hours. If, when you receive your proof, you cannot meet this deadline, please inform us at 

rjsproduction@springernature.com immediately. 

 

Once your paper has been scheduled for online publication, the Nature press office will be in touch to 

confirm the details. 

 

If you have posted a preprint on any preprint server, please ensure that the preprint details are 

updated with a publication reference, including the DOI and a URL to the published version of the 

article on the journal website. 

 

Content is published online weekly on Mondays and Thursdays, and the embargo is set at 16:00 

London time (GMT)/11:00 am US Eastern time (EST) on the day of publication. If you need to know 

the exact publication date or when the news embargo will be lifted, please contact our press office 

after you have submitted your proof corrections. Now is the time to inform your Public Relations or 

Press Office about your paper, as they might be interested in promoting its publication. This will allow 

them time to prepare an accurate and satisfactory press release. Include your manuscript tracking 

number NMETH-A50180B and the name of the journal, which they will need when they contact our 

office. 

 

About one week before your paper is published online, we shall be distributing a press release to news 

organizations worldwide, which may include details of your work. We are happy for your institution or 

funding agency to prepare its own press release, but it must mention the embargo date and Nature 

Methods. Our Press Office will contact you closer to the time of publication, but if you or your Press 

Office have any inquiries in the meantime, please contact press@nature.com. 

 

To assist our authors in disseminating their research to the broader community, our SharedIt initiative 

provides you with a unique shareable link that will allow anyone (with or without a subscription) to 

read the published article. Recipients of the link with a subscription will also be able to download and 

print the PDF. 

As soon as your article is published, you will receive an automated email with your shareable link. 
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You can now use a single sign-on for all your accounts, view the status of all your manuscript 

submissions and reviews, access usage statistics for your published articles and download a record of 

your refereeing activity for the Nature journals. 

 

Nature Portfolio journals <a href="https://www.nature.com/nature-research/editorial-

policies/reporting-standards#protocols" target="new">encourage authors to share their step-by-step 

experimental protocols</a> on a protocol sharing platform of their choice. Nature Portfolio 's Protocol 

Exchange is a free-to-use and open resource for protocols; protocols deposited in Protocol Exchange 

are citable and can be linked from the published article. More details can found at <a 

href="https://www.nature.com/protocolexchange/about" 

target="new">www.nature.com/protocolexchange/about</a>. 

 

Please note that you and any of your coauthors will be able to order reprints and single copies of the 

issue containing your article through Nature Portfolio 's reprint website, which is located at 

http://www.nature.com/reprints/author-reprints.html. If there are any questions about reprints please 

send an email to author-reprints@nature.com and someone will assist you. 

 

Please feel free to contact me if you have questions about any of these points. Thank you very much 

for publishing your paper at Nature Methods! 

 

Best regards, 

 

 

Lin Tang, PhD 

Senior Editor 

Nature Methods 

 

  

 

 


