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Dear Jing,

Thank you for your letter detailing how you would respond to the reviewer concerns regarding your
Article, "D-LMBmap: A fully automated deep learning pipeline for whole-brain profiling of neural
circuitry". We have decided to invite you to revise your manuscript as you have outlined, before we

reach a final decision on publication.

Please do not hesitate to contact me if you have any questions or would like to discuss these revisions
further.

Please make sure documented code and test data are available for referee testing upon revision.

When revising your paper:
* include a point-by-point response to the reviewers and to any editorial suggestions

* please underline/highlight any additions to the text or areas with other significant changes to facilitate
review of the revised manuscript

* address the points listed described below to conform to our open science requirements
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* ensure it complies with our general format requirements as set out in our guide to authors at
www.nature.com/naturemethods

* resubmit all the necessary files electronically by using the link below to access your home page

[Redacted] This URL links to your confidential home page and associated information about manuscripts
you may have submitted, or that you are reviewing for us. If you wish to forward this email to co-
authors, please delete the link to your homepage.

We hope to receive your revised paper within three months. If you cannot send it within this time,
please let us know. In this event, we will still be happy to reconsider your paper at a later date so long as
nothing similar has been accepted for publication at Nature Methods or published elsewhere.

OPEN SCIENCE REQUIREMENTS

REPORTING SUMMARY AND EDITORIAL POLICY CHECKLISTS
When revising your manuscript, please update your reporting summary and editorial policy checklists.

Reporting summary: https://www.nature.com/documents/nr-reporting-summary.zip
Editorial policy checklist: https://www.nature.com/documents/nr-editorial-policy-checklist.zip

If your paper includes custom software, we also ask you to complete a supplemental reporting
summary.

Software supplement: https://www.nature.com/documents/nr-software-policy.pdf

Please submit these with your revised manuscript. They will be available to reviewers to aid in their
evaluation if the paper is re-reviewed. If you have any questions about the checklist, please see
http://www.nature.com/authors/policies/availability.html or contact me.

Please note that these forms are dynamic ‘smart pdfs’ and must therefore be downloaded and
completed in Adobe Reader. We will then flatten them for ease of use by the reviewers. If you would
like to reference the guidance text as you complete the template, please access these flattened versions
at http://www.nature.com/authors/policies/availability.html.
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DATA AVAILABILITY

Please include a “Data availability” subsection in the Online Methods. This section should inform readers
about the availability of the data used to support the conclusions of your study, including accession
codes to public repositories, references to source data that may be published alongside the paper,
unique identifiers such as URLs to data repository entries, or data set DOls, and any other statement
about data availability. At a minimum, you should include the following statement: “The data that
support the findings of this study are available from the corresponding author upon request”, describing
which data is available upon request and mentioning any restrictions on availability. If DOIs are
provided, please include these in the Reference list (authors, title, publisher (repository name),
identifier, year). For more guidance on how to write this section please see:
http://www.nature.com/authors/policies/data/data-availability-statements-data-citations.pdf

CODE AVAILABILITY

Please include a “Code Availability” subsection in the Online Methods which details how your custom
code is made available. Only in rare cases (where code is not central to the main conclusions of the
paper) is the statement “available upon request” allowed (and reasons should be specified).

We request that you deposit code in a DOI-minting repository such as Zenodo, Gigantum or Code Ocean
and cite the DOI in the Reference list. We also request that you use code versioning and provide a
license.

For more information on our code sharing policy and requirements, please see:
https://www.nature.com/nature-research/editorial-policies/reporting-standards#availability-of-
computer-code

MATERIALS AVAILABILITY
As a condition of publication in Nature Methods, authors are required to make unique materials
promptly available to others without undue qualifications.

Authors reporting new chemical compounds must provide chemical structure, synthesis and
characterization details. Authors reporting mutant strains and cell lines are strongly encouraged to use
established public repositories.

More details about our materials availability policy can be found at https://www.nature.com/nature-

portfolio/editorial-policies/reporting-standards#availability-of-materials

ORCID
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Nature Methods is committed to improving transparency in authorship. As part of our efforts in this
direction, we are now requesting that all authors identified as ‘corresponding author’ on published
papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on
the Manuscript Tracking System (MTS), prior to acceptance. This applies to primary research papers
only. ORCID helps the scientific community achieve unambiguous attribution of all scholarly
contributions. You can create and link your ORCID from the home page of the MTS by clicking on
‘Modify my Springer Nature account’. For more information please visit please visit <a
href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>.

Please do not hesitate to contact me if you have any questions or would like to discuss these revisions
further. We look forward to seeing the revised manuscript and thank you for the opportunity to
consider your work.

Sincerely,
Rita

Rita Strack, Ph.D.
Senior Editor
Nature Methods

Reviewers' Comments:

Reviewer #1:

Remarks to the Author:

In this manuscript, Li et al. report a fully automated deep learning pipeline called D-LMBmap, which is
used for computational processing of light sheet-based 3D microscopic images and generating whole-
brain axonal projection maps. This work breaks new ground and reports an impressive single workflow
to achieve accurate brain registration, structural segmentation, axonal segmentation, and
guantification. The authors present solid and convincing evidence demonstrating the advantages of D-
LMBmap compared to several other current brain mapping tools, such as SeBRe, BIRDS, mBrainAligner,
etc. Based on my experience of brain mapping for over a decade, the D-LMPmap may be one of the
most powerful informatics tools to accelerate the generation of a whole-brain 3D connectome. Because
lightsheet and other 3D microscopic imaging technologies have been adopted by numerous
laboratories, the D-LMPmap will be an extremely valuable tool for these labs to map anatomical and
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behavioral data. Overall, the manuscript is very well written and figures carefully constructed. With all of
these considerations, | strongly support its publication in Nature Methods.

| have only one major comment about the registration component. | am very impressed by the
registration accuracy as described in the manuscript. However, based on my personal experience and
knowledge, all current automated registration algorithms (including mBrainAligner described in the
manuscript and the Allen Institute’s registration algorithm) suffer a major shortcoming. Their
registration for large brain structures, such as the cerebral cortex, hippocampus, striatum, etc, is
reasonable, but their accuracy for registration of smaller structures, such as individual thalamic or
hypothalamic nuclei, is not ideal. This issue has been a long-standing problem affecting accuracy of
large-scale anatomical data annotation and analysis. In comparison with classic neuroanatomical studies
using Nissl or other cytoarchitectonic features for registration, all of these automated registration
programs, including Allen CCF3, mBrainAligner and the D-LMBmap described here, use autofluorescence
channel for registration. In my view, without cytoarchitectonic features, the registration accuracy for
small structures will not be sufficient. | hope the authors can address this question in their revision. For
example, in Figure 5, can the authors provide ground truth to demonstrate registration accuracy for
small structures in thalamus, hypothalamus, and brainstem?

Additionally, because | anticipate that this program will be adopted by numerous labs, please make sure
the code deposited in Github is useable.

Reviewer #2:

Remarks to the Author:

Zhongyu Li et al. developed D-LMBmap, an end-to-end package providing an integrated workflow
containing three learning-based modules for whole-brain connectivity mapping. This paper is refreshing
for researchers in this field and provides a new tool for projection connectivity research. However, as
described in the paper, most of them are the transfer and application of existing Al methods, which lack
enough originality. It would be a good job if the author could continue to polish the paper and add more
rich results to demonstrate the practicability of the method.

1. It is suggested that authors adopt more careful and rigorous comments on some "first" or similar
statements in the manuscript.

i. The authors claimed that “To the best of our knowledge, this is the first learning-based whole mouse
brain registration framework which can achieve rigid, affine and deformation transformation in an end-
to-end deep neural network.” [Line 378-380] Different groups have studied learning-based methods for
whole brain registration. The following literature is recommended :

Qu, L., Li, Y., Xie, P. et al. Cross-modal coherent registration of whole mouse brains. Nat Methods 19,
111-118 (2022). https://doi.org/10.1038/s41592-021-01334-w
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Ni, H., Feng, Z., Guan, Y. et al. DeepMapi: a Fully Automatic Registration Method for Mesoscopic
Optical Brain Images Using Convolutional Neural Networks. Neuroinform 19, 267-284 (2021).
https://doi.org/10.1007/s12021-020-09483-7

ii. The authors claimed that “current 3D brain registration methods heavily rely on the brain outline
without a specific focus on the alignment of individual brain regions”. [Line 69-71] Brain region
registration technology has been developed for many years, and it has long been a consensus in the field
that only the outer contour of the brain region can not achieve accurate registration. So, there are a lot
of approaches that are focused on the registration of individual brain areas.

Qu, L., Li, Y., Xie, P. et al. Cross-modal coherent registration of whole mouse brains. Nat Methods 19,
111-118 (2022).

Ni, H., Tan, C., Feng, Z. et al. A Robust Image Registration Interface for Large Volume Brain Atlas. Sci
Rep 10, 2139 (2020).

Jiang, X., Ma, J., Xiao, G., et al. A review of multimodal image matching: Methods and applications,
Information Fusion, 73, 22-71 (2021).

iii. In Line 105, “The three main modules—axon segmentation, brain region segmentation, and whole
brain registration—are based on novel deep-learning neural network algorithms”. Does the term
"Novel" refer to the author's novel approach, or does it mean the introduction of the latest algorithm? If
it is the latter, it is recommended to add relevant references. If it is the former, the idea of using
automatically generated labels to train neural networks for axon segmentation has been previously
reported. The segmentation framework used by the author is based on the existing nn-Unet without any
innovation or improvement in the architecture. Therefore, this module is not innovative for deep
learning algorithms.

Huang Q, Chen Y, Liu S, et al. Weakly supervised learning of 3d deep network for neuron
reconstruction[J]. Frontiers in Neuroanatomy, 2020, 14: 38.

Chen W, Liu M, Du H, et al. Deep-Learning-Based Automated Neuron Reconstruction From 3D
Microscopy Images Using Synthetic Training Images[J]. IEEE Transactions on Medical Imaging, 2021,
41(5): 1031-1042.

Chen X, Zhang C, Zhao J, et al. Weakly Supervised Neuron Reconstruction From Optical Microscopy
Images With Morphological Priors[J]. IEEE Transactions on Medical Imaging, 2021, 40(11): 3205-3216.

2. Axon segmentation

a) Is the purpose of axon segmentation for projection axon density calculation or further axon tracing?
At present, due to the rapid development of high-resolution whole-brain imaging technology, the
research of neuroscience has not only focused on finding out which are axon signals (segmentation), but
also needs to skeletonize them, judge their connection relationship, and finally realize the axon tracing.
In this case, segmentation is the easiest first step. In particular, the latest HD-fMOST (Zhong et al. 2021,
Nat Methods) had shown that a large range of complex neural fibers was accurately identified by
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traditional algorithms due to the high-definition image quality. As the most difficult analytical task, axon
tracing has not yet been solved, and it is also the focus of most current axon analysis methods.

b) The axons are distributed in the whole brain. The labeling effect of virus labels, autofluorescence
background of local brain tissue, and distribution characteristics of axons themselves may affect the
quality and features of the final axon images. Can the expanded training set in this paper cover all the
axon features in the whole brain? Can simple axon training sets be used to achieve accurate
segmentation of complex and dense axons? -- This will affect the application of the method, and |
suggest that the author add relevant validation experiments to demonstrate it.

c) It is recommended that the author supplement the evaluation of the integrity of the segmented axon.
The Dice coefficient in Fig2 was only about 0.7, indicating that the degree of signal extraction was
limited. Although cIDice reached 0.9, as an index to measure topological similarity, it is not appropriate
to use clDice for evaluation on the premise that the integrity of extracted axons cannot be guaranteed.
In addition, according to "the quantitative evaluation of six sample cubes" [Line 200-202], the precision
rate was 0.8 and the Dice coefficient was 0.7, then the recall rate can be calculated as only about 0.6.
Does it mean that about 40% of the axons were not recognized?

d) The main difficulty in axon segmentation or identification is the low signal intensity and the signal-to-
noise ratio of the target object, which may further lead to specific problems such as discontinuity of the
segmented axon. | suggest adding enlarged views to show the segmented axon details. Extended Data
Movie 2 appears to show some unrecognized axons.

e) The Dice index and Precision index of this paper are far better than the TrailMap method. TrailMap
used expert annotated data to conduct model training and prediction based on, while D-LMBMap used
automatically generated training data. | suggest that the authors supplement the corresponding ablation
experiments to reveal the mechanism behind the improvement.

f) In extended data table 1, the author gives the data set used for axon segmentation. There are 3 data
sets with low resolution, it is difficult to ensure that a single axon can be distinguished -- does it limit the
application scenarios of the method? Adding a discussion about it will be good.

g) During the automatic generation of training samples, about 40 axon cubes were selected for some
data and about 90 for others. In addition, the number of artifact blocks is also not fixed. How to
determine these numbers? Is it a random selection within the whole brain? If not, on what basis?

3. Brain region segmentation and registration
a) The idea of style transfer is very clever, and it is indeed promising to solve the problem due to the big
style difference between the data to be registered and the reference map like CCF, which affects the
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registration quality. As stated in the paper, the premise of the smooth application is that "in which the
image appearance is converted into a reference image style without losing its original content" [Line
226-227]. However, it can be seen from Extended data fig.4 that the structure information and gray
value information of the transferred brain and the original brain is very different. The gray value
difference in the original brain has specific biological significance, while some gray values were directly
reversed after the transfer. Is there a biological or mathematical explanation behind this mapping
mechanism, and how to verify it without losing the original content?

b) Before registration, the author down-sampled the whole brain data set to 320*456*528 pixels
(extended data table 4), which belonged to the test data with low resolution. Allen CCF currently
provides the data with 10-micron resolution. | wonder how well the method has been tested on this
level of data.

c) As far as we know, it works well to calculate Dice and so on for large brain regions. Can you
supplement registration results of smaller nuclei (lateral habenular, etc.), and even consider using
reference sites to calculate distance deviations directly?

4. Software
a) The software is difficult to install and lacks dependency packages. Could you please provide more
detailed instructions for the convenience of users?

b) The software is not stable enough and sometimes encounters crashes. It is suggested to further
optimize the software for better promotion and use.

Reviewer #3:

Remarks to the Author:

A. The authors present an integrated pipeline for automated analysis of mesoscale projection mapping
from whole-brain light microscopic imaging data of different modalities. The work is based on putting
together deep net based modules for axon segmentation and brain/atlas registration.

B. The primary claim to originality is that this is the first time such an integrated pipeline has been
presented, and also that individual modules in this pipeline are new. This claim is difficult to sustain.

First, the primary focus of the paper is on the brain/atlas registration problem, but the methods
presented by the authors are neither of very high quality (they only segment the brain into 6
compartments - compare this with the 500-1000 compartments in current mouse brain atlases). Leaving
aside the comparisons with other methods, such a segmentation is of very little value for modern
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mesoscale projection analysis from a biological significance perspective. Besides, the multimodal/cross
contrast brain/atlas registration problem addressed by the authors through the style-transfer and GANS
approaches has already been addressed satisfactorily in previous publications (e.g. both learned
contrast maps and treatment of damaged/distorted sections of the brain are addressed in
https://doi.org/10.1007/978-3-030-33226-6_18 ).

Second, segmentation of axons in brain images is a large subject and goes well beyond the few
references considered by the authors (consider the DIADEM challenge and many associated papers).
Even in the context of mesoscale projection mapping there have been multiple relevant works, including
the original AIBS publications on mesoscale connectivity maps of the mouse brain. The authors posit
that the primary difficulty lies in the laborious process of manually segmenting of proofreading
individual axons under a sufficient variety of circumstances. This is true, but the solution offered by the
authors (reliance on human labeling of image cubes containing/not containing axons, followed by a set
of classical machine vision approaches including thresholding, morphological operations etc) fails to
reach the biologically relevant bar of providing ground truth guarantees on the individually traced
neurite fragments. While the specific technique presented by the authors for axon segmentation may or
may not correspond to previous approaches (it is difficult to judge because the authors do not
comprehensively review this large literature), there is no demonstration of biological ground truthing
(which necessarily requires a validation set of manually labelled axons across a spectrum of brain
regions). Thus it is difficult to conclude that there has been a true methodological advance here, as
opposed to yet another technique added to a large variety of techniques already brought to bear on this
problem.

Third the authors do not show recognition of one of the primary issues that plague the analysis of
mesoscale projections, namely the analysis of the injection sites themselves. The key problem with this
kind of projection mapping and associated analysis is that injections are difficult to control (thus they
have widely varying sizes and seldom cover the brain in a uniform manner), thus the projection maps
derived from such injections have necessarily to be subjected to careful deconvoution analysis. This is
still an open problem without satisfactory solutions, perhaps only to be addressed by combining with
single-neuron data (of which there is a growing volume today). Genetic constructs seldom label a
spatially well-localized set of somata, so any automated pipeline for mesoscale projection analysis worth
its salt must address thorny issue. The manuscript shows no evidence that this has been considered.

As such, the novelty of both the modules and the integrated approach is modest, and of uncertain
biological relevance. If the authors consider that the software pipeline integration is the key story here
this paper might better be directed towards a software journal.

Author Rebuttal to Initial comments
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NMETH-AS0696A Response to Reviwers

We thank reviewers for their appreciation about the significance and quality of
our work, and for their helpful suggestions. We have performed a number of
new experiments, data analyses, and amended the manuscripitto address their
critiques. As a result, the paper and the whole D-LMBmap pipeline have been
improved beyond the original submission.

All revised sections in the text are indicated by red-coloured font. The
detailed point-by-point responses are provided below (reviewers’ critiques are
copied in blue).

Reviewers' Comments:
Reviewer #1:
Remarks to the Author:

In this manuscript, Li et al. report a fully automated deep leaming pipeline called
D-LMBmap, which is used for compultational processing of light sheet-based
3D microscopic images and generating whole-brain axonal projection maps.
This work breaks new ground and reporfs an impressive single workflow lo
achieve accurate brain registration, structural segmentation, axonal
segmentation, and quantification. The authors present solid and convincing
evidence demonstrating the advantages of D-LMBmap compared ta several
other current brain mapping tools, such as SeBRe, BIRDS, mBrainAligner, etc.
Based on my experience of brain mapping for over a decade, the D-LMPmap
may be one of the most powerful informatics tools to accelerate the generation
of a whole-brain 30 connectome. Because lightsheet and other 3D microscopic
imaging technologies have been adopted by numerous laboratories, the D-
LMPmap will be an extremely valuable tool for these labs to map anatomical
and behavioral data. Overall, the manuscript is very well written and figures
carefully constructed. With all of these considerations, | strongly support its
publication in Nature Methods.

! have only one major comment about the registralion component. | am very
impressed by the registration accuracy as described in the manuscript.
However, based on my personal experience and knowledge, alf current
automated registration algorithms (including mBrainAligner described in the
manuscript and the Allen Inslitute’s registration algorithm) suffer a major
shortcoming. Their registration for large brain structures, such as the cerebral
cortex, hippocampus, strialum, etc, is reasonable, but their accuracy for
registration of smaller structures, such as individual thalamic or hypothalamic
nuclei, is not ideal. This issue has been a long-standing problem affecting
accuracy of large-scale anatomical data annotation and analysis. In
comparison with classic neuroanatomical studies using Nissl or other
cytoarchitectonic features for registration, all of these automated registration
programs, including Allen CCF3, mBrainAligner and the D-LMBmap described
here, use autoffuorescence channel for registration. In my view, without
cytoarchitectonic features, the registration accuracy for small structures will not
be sufficient. | hope the authors can address this question in their revision. For
example, in Figure 5, can the authors provide ground truth to demonsirate
registration accuracy for small structures in thalamus, hypothalamus, and
brainstem?

10
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NMETH-AS0696A Response to Reviwers

We sincerely thank the reviewer for his/her great appreciation of the novelty,
significance and quality of our study, and their helpful suggestions.

We agree with the reviewer that accurate registration of small brain
regions is challenging and there is great room for improvement on this issue.
Indeed, for many small brain structures, images taken by autofluorescence
channels without cytoarchitectonic labelling may not provide sufficient
information because the anatomical definitions of these structures are based
on their cyloarchitectonic features. Nevertheless, we took on this challenge and
first tested how well D-LMBmap performs on the whole brain registration of
small brain structures that have detectable features under autofluorescence
imaging. We generated the ground truth of small region registration by manually
annotating several small brain structures in the thalamus, hypothalamus, and
brainsten to facilitate the walidation, including habenular (Hb),
mammillothalamic tract (mit), anterior commissure temporal limb (act),
fasciculus retroflexus (fr) and interpeduncular nucleus (IPN).

We generated the quantitative whole-brain registration results of these
five small brain regions using the automated pipeline in D-LMBmap, and
compared them with related registration solutions. D-LMBmap can outperform
other methods in all five small brain regions. As presented in the new Figure
4D, D-LMBmap achieves a median Dice score from 0.60 to 0.85 for individual
small brain regions, and an average median Dice score of 0.76. Compared with
other methods, D-LMBmap achieves about 35% higher Dice score in small
brain region registration.

MNext, we asked, when doing small structure registration, how close D-
LMBmap automated pipeline was to achieving results comparable to its pipeline
that incorporated training data from manual segmentation (Extended Data Fig.
16B). As presented in the new Extended Data Fig. 16C, when trained with data
generated by user delineation, D-LMBmap achieves a median Dice score from
0.80 to 0.94 for individual small brain regions, and an average median Dice
score of 0.86. This data demonstrates that users can also further improve the
results by using manually segmented regions of interest for training constraints.
More importantly, unlike existed method using manual delineated brain regions
directly on the experimental (testing) brains!, once D-LMBmap finished the
training of the deep registration model from the manually delineated brain
regions, it can still achieve accurate small structure whole-brain registration on
the testing brains without further manual inputs (Figure R1). Thus, D-LMBmap
stands out as the optimal method for registering small brain structures with
detectable features under the autoflucrescence channel.

But for small brain structures without detectable features under
autofluorescence channel, it is extremely difficult, if not impossible to validate
their registration results simply because even experts cannot generate
manually annotated ground truth without visible features. And as the reviewer
pointed out, this is the limitation faced by all the registration methods using
autoflucrescence channels. However, our multi-constraint strategy achieves
great multi-regional alignment optimization, which was shown in the Extended
Data Fig. 17A, that adding individual regional constraints enhances the
registration of other major brain regions. Due to its ability to achieve robust

2
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NMETH-AS0696A Response to Reviwers

deformation optimization and multi-regional alignment optimization, we propose
that D-LMBmap can enhance the registration results of small brain structures
without detectable features by leveraging regional constraints from adjacent
structures with detectable features or user input based on other channels. We
tested this hypothesis by generating a confusion matrix, which is presented in
the new Extended Data Fig. 17B, showing that adding individual constraints of
small brain structures greatly improves the reqgistration of other small brain
structures.

In summary, our newly added data demonstrate that D-LMBmap is the
best method for accurately and efficiently registering small brain structures with
detectable features under the autofluorescence channel. D-LMBmap also
provides a new strategy and the pipeline for optimising the accuracy of small
brain structures without detectable features under the autofluorescence.
Besides our automated pipeline, users could also either add a scant amount of
manually segmented constraints or constraints from channels with
cytearchitectonic features during training to generate whole-brain registration
of small structures more precisely.

D-LMBmap training and testing for whole-brain registration

i A . i

Brain region sagmaniation Multi-consirain and mulli-scale
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Figure R1. Schematic drawings of the pipelines employed in the D-
LMBmap whole-brain registration based on brain regions constraints and
other methods.

A. In the training pipeline of D-LMBmap for whole-brain registration, brain
region constraints can either be automatically obtained using our developed
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NMETH-AS0696A Response to Reviwers

Multi-view Semi-CEA network for automated brain region segmentation or
manually delineated by users. These brain region constraints are then used as
input for the training of the whole-brain registration model. B. In the testing
pipeline of D-LMBmap for whole-brain registration, the brain regions of the
testing brain can be obtained either automatically using the Multi-view Semi-
CEA network or manually delineated by users. Once this is done, registration
can be automatically achieved using the trained whole-brain registration deep
model. C. The testing pipeline used by other methods requiring manual
delineation.

Additionally, because | anticipate that this program will be adopted by numerous
labs, please make sure the code deposited in Github is useable.

We sincerely thank the reviewer for histher great appreciation of our software.
We have invited 12 researchers to test the updated software for ease of use.
Of this group, 8 were running the software on Windows 10 X84 and the
remaining 4 were using Windows 11 X64. Neither system tested had prior
installation of dependency packages. As a result, we have implemented several
improvernents to expediate the installation process. For example, the software
can now be installed directly by double clicking the “D-LMBmap.exe” file.

In addition, we have also provided more detailed instructions consisting
of documents, a tutorial movie and example data, accessible from our project's
Github page (Link: hitps:/github.com/imbneuron/D-LMBmap). Users can follow

the movie as a guide to achieve each module in whole brain projection mapping.

Furthermore, on our Github page we have provided our code with detailed
annotations consisting of three files: 'axon segmentation’, ‘brain region
segmentation’ and ‘whole brain registration’. By running this code, users can
train their own data and accomplish whole-brain projection mapping.

Reviewer #2:
Remarks to the Author:

Zhongyu Li et al. developed D-LMBmap, an end-lo-end package providing an
integrated workflow containing three learning-based modules for whole-brain
conneclivity mapping. This paper is refreshing for researchers in this field and
provides a new tool for projection conneclivity research. However, as described
in the paper, most of them are the transfer and application of existing Al
methods, which lack enough originality. it would be a good job if the author
could continue to polish the paper and add more rich results to demonstrate the
practicability of the method.

We thank the reviewer for his/her positive comments. We have polished the
paper and added new results to address each concern. Our responses to the
specific comments are provided below.

1. It is suggested that authors adopt more careful and rigorous comments on
some "first” or similar staterments in the manuscript.

i. The authors claimed that “To the best of our knowledge, this is the first
learning-based whole mouse brain registration framework which can achieve

4
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NMETH-AS0696A Response to Reviwers

ngid, affine and deformation transformation in an end-to-end deep neural
network.” [Line 378-380] Different groups have studied learning-based methods

for whole brain registration. The following literature is recommended !

Qu, L., Li, Y., Xie, P. et al. Cross-modal coherent registration of whole mouse
brains. Nat Methods 19, 111-118 {2022). hilps://doi.org/10.1038/541592-021-
01334-w

MNi, H., Feng, Z., Guan, Y. el al. DeepMapi: a Fully Automatic Registration
Method for Mesoscopic Optical Brain Images Using Convolutional Neural
Metworks. Neurcinform 19, 267-284 (2021). hitps.//doi.org/10.1007/s12021-
020-09483-7

We thank the reviewer's advice revised the sentence as follows: “With this
learning-based whole mouse brain registration framework, D-LMBmap
achieves rigid, affine and deformation transformation in a comprehensive deep
neural network”. [Line 408-410]

Thanks very much for the references suggested by the reviewer. We
incorporated them into the “Discussion” [Line444-464). Meanwhile, we would
also like to clarify that mBrainAligner developed by Qu et al applied the leaming-
based method in 3D segmentation of main brain regions but not whole brain
registration2. Their registration step was achieved by landmark mapping and
optimization. Additionally, DeepMapi developed by Ni et al relies on manual
reference image assignment due to the difference between the experimental
brains and the brain atlas®. In comparison, our pipeline can achieve accurate
registration in an end-to-end deep neural network automatically, even for brains
from different modalities, without manual inputs.

We also found a mistake we made when we cited the paper by Qu et
al, thanks to this comment made by the reviewer (should be "Qu et al” instead
of “Peng et al”), and have it corrected in the revised manuscript.

ii. The authors claimed that “current 3D brain registration methods heavily rely
on the brain outline without a specific focus on the alignment of individual brain
regions”. [Line 69-71] Brain region registration technology has been developed
for many years, and it has long been a consensus in the field that only the outer
contour of the brain region can not achieve accurate registration. So, there are
a lot of approaches that are focused on the registration of individual brain areas.
Qu, L., Li, Y., Xie, P. et al. Cross-modal coherent registration of whole mouse
brains. Nat Methods 18, 111-118 (2022).

Mi, H., Tan, C., Feng, Z. et al. A Robust Image Registration Interface for Large
Volume Brain Allas. Sci Rep 10, 2139 (2020).

Jiang, X., Ma, J., Xiao, G., el al. A review of multimodal image malching:
Methods and applications, Information Fusion, 73, 22-71 {2021).

Thank you for the suggestion. We followed the reviewer's advice and revised
the sentence as “Secondly, the existing 3D brain registration methods primarily
rely on either whole-brain intensity or specified brain regions to carry out the
registration, which cannol coordinate multi-regional alignment optimisation and
whole brain registration.” [Line 69-72]. Here we mean to emphasize that, unlike
existing methods, ours embeds brain regions in a learning-based registration
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framework and generates multiple brain region constraints that optimize both
individual brain regions and whole brain registration simultaneously.

We thank the reviewer for the suggested reference. Qu et al used brain
region segmentation results for computing landmarks?. Ni et al performed brain
region segmentation manually by Amira and processed whole brain registration
by SyN separately’. Jiang et al reviewed general image registration methods,
some of which used intensity for image registration but didn’t generate brain
region constraints®. We recognised prior achievements in the field of brain
region registration and incorporate comparisons with these methods in the
“Introduction” [Line 56-62] and also added them in “Discussion” during revision
[Line 443-464).

iii. In Line 105, “The three main modules—axon segmentation, brain region
segmentation, and whole brain registration—are based on novel deep-learning
neural network algorithms™. Does the term "Novel" refer fo the author's novel
approach, or does it mean the introduction of the latest algorithm? If it is the
latter, it is recommended to add relevant references. If it is the former, the idea
of using automatically generated labels to train neural netwarks for axon
segmentation has been previously reported. The segmentation framework used
by the author is based on the existing nn-Unet without any innovation or
improvement in the architecture. Therefore, this module is not innovative for
deep leaming algorithms.

Huang Q, Chen Y, Liu §, et al. Weakly supervised learning of 3d deep network
for neuron reconstruction[J]. Frontiers in Neuroanafomy, 2020, 14: 38.

Chen W, Liu M, Du H, et al. Deep-Learning-Based Automated Neuron
Reconstruction From 30D Microscapy Images Using Synthelic Training
imagesfJ]. IEEE Transactions on Medical Imaging, 2021, 41(5): 1031-1042.
Chen X, Zhang C, Zhao J, el al. Weakly Supervised Neuron Reconstruction
From Optical Microscopy Images With Mormphological PriorsfJ]. IEEE
Transactions on Medical Imaging, 2021, 40(11): 3205-32186.

Thanks for the suggestion. We revised the sentence as “The three main
modules—axon segmentation, brain region segmentation, and whole brain
registration—are based on advanced deep-learning neural network algorithms"
[Line 108-109].

We would like to further clarify that even though nnU-Net, CycleGAN
and YoxelMorph are existing deep learning algorithms, in order to adapt them
for whole brain projectome mapping, we developed new network structures,
modules and frameworks to achieve automated processing with minimum
labour input so that it can be easily adopted by various labs to accelerate the
mesoscacle connectomic mapping at the whole brain level.

For example, as the reviewer has attentively pointed out in the
comments listed under “3.Brain region segmentation and registration”, this is
the first time style transfer is proposed for brain region registration and
CycleGAN is applied for this function. When we directly applied CycleGAN for
brain style transfer, the outlines of the style transferred brain and the original
brain cannot be aligned. Therefore, we designed a brain outline segmentation
sub-network (i.e., CEA-Net) to integrate with the CycleGAN model. This
integrated module can simultaneocusly achieve automated brain outline
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segmentation, brain style transfer and brain outline consistency. Even though
style transfer method employed in D-LMBmap is based on CycleGAN, as
shown in the newly added Extended Data Fig. 8A and Extended Data Fig. 14A,
our improved style transfer method outperforms all other method at both the
whole-brain and major brain regions level. Ablation studies also showed that
the proposed Multi-view Semi-CEA is essential for the improvement of
automated brain region segmentation (Extended Data Fig. 14B).

We share the reviewer’s enthusiasm and believe that this strategy can
tackle the brain style transfer problem.

We employed VoxelMorph as our basic Al model in whole-brain
registration. However, the original VoxelMorph algorithm is not only incapable
of handling multi-modality brain data, but also failed to coordinate the
registration of individual brain regions and whole brain alignment. To solve
these issues, we first extended the VoxelMorph model with multi-constraints to
include constraints generated by each of the six major brain regions and the
style transferred brain in different channels and final loss functions. The brain
region constraints can maintain the whole-brain registration consistency in each
major brain region, and the style transferred brain constraints can ensure the
whole-brain registration consistency between two brains in different modalities.
Furthermore, we extended the VoxelMorph model in multi-scale. The deep
model was trained with images from low-resolution to high-resolution, so that
the learning-based 3D registration can process big whole-brain data.

Indeed, the three studies suggested by the reviewer employed
automatically generated labels to train neural networks for axon segmentation.
However, these studies focused on the single neuron tracing/reconstruction in
high-resolution images (whole brain size of 20,000x30,000x25,000) generated
by block-face imaging (e.g. fMOST, two-photon or confocal microscopy).
Conversely, our strategy aims to map bulk tracing data generated by light-sheet
microscopy (whole brain size of 2,000x2,500x2,000). We expressed our
appreciation for the achievements in the axon segmentation methods applied
in block-face imaging and incorporate discussions in our revised manuscript
[Line 501-513].

We developed automated annotation, data augmentation, nnU-Net
training, and whole-brain prediction modules in our axon segmentation pipeline.
The automated annotation module is specifically designed to eliminate
laborious manual annotation in axon segmentation, which is a practical and
challenging problem for existing solutions (e.g. TrailMap). The data
augmentation module is specifically designed to alleviate the limitations of
training datasets in the automated annotation module. In the nnU-Net training
step, we added the axial attention module to improve feature learning of tree-
topological axons. Due to these distinctive designs, we can effectively achieve
annotation-free mesoscale whole-brain axon segmentation.

To further validate the effectiveness of our modules, we added new
ablation experiments in the revised manuscript. As presented in the newly
added Extended Data Fig. 8, even without data augmentation and axial
attention, D-LMBmap is more effective than Trailmap. Nevertheless, our data
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augmentation and axial attention are essential for the superior performance of
our automated annotation and axon segmentation solution and can further
markedly improve the results and achieved a ClDice score around 0.9.

The concerns regarding the difference between block-face
imaging/single neuron tracing (e.g. fMOST) and light-sheet imaging/bulk tracing
are further addressed under the comments listed in “2. Axon segmentation”.

2. Axon segmentation

a) Is the purpose of axon segmentation for projection axon density calculation
or further axon tracing? At present, due to the rapid development of high-
resolution whole-brain imaging technology, the research of neuroscience has
not only focused on finding out which are axon signals (segmentation), but also
needs to skeletonize them, judge their connection relationship, and finally
realize the axon tracing. In this case, segmentation is the easiest first step. In
particular, the latest HD-MOST (Zhong et al. 2021, Nat Methods) had shown
that a large range of complex neural fibers was accurately identified by
traditional algorithms due lo the high-definition image guality. As the most
difficult analytical task, axon tracing has nol yet been solved, and it is also the
focus of most current axon analysis methods.

We agree with the reviewer that the rapid development of whole-brain imaging
technology is pushing the limit for judging connection relationship and fine axon
tracing. HD-fMOST is a great example for the block-face imaging/single neuron
tracing technology which has advanced our knowledge on mapping brain-wide
connectivity with fine-scale spatial organization information. However, there is
stil a steep tradeoff between throughput and resolution in anatomical
approaches to mapping long-range connections. Due to the extensive
intertwining of neural processes, to achieve long-range projection axonal
tracing, studies using block-face imaging strategy usually use sparse labelling
and reconstruct fewer than 40 neurons per brain®8, The combination of tissue-
clearing and block-face imaging can handle maximumly up to 180 neurons per
brain, and 25 brains were used to reconstruct 1000 neurons in the study of
Winnubst et al’.

Here, we use serotonin neurons as an example to address the
limitation of the throughput generated by block-face imaging. There are roughly
~ 20,000 serotonin neurons projecting to the entire forebrain in a mouse brain.
These neurons are highly heterogenous, containing different sub-populations
defined by the projection sites and various collateralization pattern, which was
revealed by LSFM®. In our previous study, sparsely labelled serotonin neurons
were traced and reconstructed by the fiMOST pipeline and the results confirmed
the subpopulations we revealed by using bulk-tracing imaging®. Fine-scale
spatial organization and further detailed heterogeneity were uncovered by
single-neuron tracing, but the cell number is insufficient for analyzing the
statistics of their branching patterns across multiple target regions.

Block-face imaging requires specialized instruments that may not be
readily accessible to many researchers. As a result, there are further limitations
to the accumulation of cell numbers for a specific neuronal type across different
labs.
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Traditional bulk-tracing has been criticized for sampling the aggregate
architecture of neurons at the injection site and missing the diversity of
projection patterns. However, modern bulk-tracing data produced by viral-
genetic strategy and imaged by light-sheet at the whole brain level can reveal
the connection relationship of a very specific neuronal type defined by multiple
molecular features as well as other anatomical information®1°,

We did not aim for single axon tracing because of the densely labelled
data by bulk-tracing and the limited imaging resolution produced by light-sheet
microscopy. Nevertheless, our axon segmentation pipeline can achieve not
only axon density calculation but also segmentation, skeleton, and connection
relationship judgement efficiently.

b) The axons are distributed in the whole brain. The labeling effect of virus
labels, autofluorescence background of local brain tissue, and distribution
characteristics of axons themselves may affect the quality and features of the
final axon images. Can the expanded training set in this paper cover all the
axon features in the whole brain? Can simple axon training sets be used fo
achieve accurate segmentation of complex and dense axons? — This will affect
the application of the method, and | suggest that the author add relevant
validation experiments to demonstrate it.

We agree with the reviewer that the complexity of the axons, the various
artefacts and the diversity of image backgrounds pose great challenges for
mesoscale whole-brain projection mapping. This is also the main reason that
previous machine-learning methods (e.g. TrailMap) heavily rely on manually
annotated training data, which is extremely time-consuming.

To evaluate the efficacy of the automated axon segmentation module
in D-LMBmap in capturing axon features throughout the whole brain, we applied
it to brain samples generated in different labs by using various viral labelling
stratergies, including two experimental batches from Stanford University (the
U.S.) and three experimental batches from NIBS (China). Long-range
projecting axons labelled in these samples are from various brain regions and
neuronal types. In addition to serotonergic neurons (midbrain), glutamatergic
neurons (cerebellar nuclei) and GABAergic neurons (VTA), we also tested
samples containing dopaminergic neurons (VTA) during revision. These axons
contain various branching patterns and project to hundreds of brain regions
distributed across the whole brain'1. Details are also updated in Extended Data
Table 3-1.

As presented in the newly added Extended Data Fig.3, D-LMBmap
achieves effective axon segmentation in all of the four axonal types across, with
a ClDice score of more than 0.85 for all the samples tested, and outperforms
Trailmap. Detailed and zoomed-in examples of whole-brain axon prediction
results are presented in the updated Extended Data Fig.7 and Extended Data
Movie 1, 2, 3.

We also evaluated and compared the efficacy of D-LMBmap in axon
segmentation across different brain regions with Trailmap. As presented in the
newly added Extended Data Fig. 4, unlike Trailmap, the performance of D-
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LMBmap in axon segmentation is consistent and robust across all of the five
major brain regions tested.

Furthermore, to ensure that our pipeline is compatible for both sparsely
and densely labelled axons, we included brain samples containing a wide
spectrum of axon density. Brains from the Sert-Stanford group contains axons
with low to medium density, whilst DCN-Stanford, GABA-NIBS and DA-NIBS
contain axons with low to high density, and Sert-NIBS contains axons with
medium to high density (Extended Data Fig.7, and Fig. 2F). To further validate
that our pipeline is well suited for axons across different density and complexity,
we tested the axon segmentation performance on selected cubes with different
axon densities ranging from 1% to 100%. Here 100% density is defined as the
axons occupying around 800 millions of voxels in one cube (200x200x450
voxels). As shown in newly added Extended Data Fig. 5, the performance of D-
LMBmap in axon segmentation is consistent and robust across all of the cubes
with different axon density.

c) It is recommended that the author supplement the evaluation of the integrity
of the segmented axon. The Dice coefficient in Fig2 was only about 0.7,
indicating that the degree of signal extraction was limited. Although clDice
reached 0.9, as an index lo measure topological similarily, it is nol appropriate
to use clDice for evaluation on the premise that the integrity of extracted axons
cannot be guaranteed. In addition, according to "the quantitative evaluation of
six sample cubes" [Line 200-202], the precision rate was 0.8 and the Dice
coefficient was 0.7, then the recall rate can be calculated as only about 0.6.
Does it mean that about 40% of the axons were not recognized?

Thank you for this suggestion. Indeed, ClDice is used to measure the
topological similarity but not for integrity evaluation. According to the recent
vasculature segmentation works'®'3, we believe that measurements such as
ClRecall, ClPrecision and ClDice that are based on the centerline can better
evaluate the segmentation of tubular structure comparing to Recall, Precision
and Dice.

In the revised manuscript, we use ClRecall for integrity evaluation and
we presented ClDice, CIRecall, ClPrecision and Dice for total evaluation of axon
segmentation. Please see the schematic definition of ClRecall, ClPrecision and
ClDice in the updated Extended Data Fig. 3B. Please also find the detailed data
of using ClDice, CIRecall, ClPrecision and Dice to assess the performance of
TrailMap and D-LMBmap on each experimental group in Extended Data Fig.3C.

Comparing to TrailMap, D-LMBmap shows superior performance
accross every comparation except the ClRecall in the Sert-Stanford dataset.
There are two reasons contribute to this:

1). The Sert-Stanford dataset is one of the original datasets used as manually
annotated training dataset for TrailMap (The first author of TrailMap, Drew
Friedmann, is also one of the co-first authors in Ren et al®).

2). TrailMap tends to predict axons with redundancy in the Z axis, which is
caused by repetitive annotation in adjacent 2D slices (Fig. 2E, Extended Data
Movie 2). Therefore, TrailMap tends to predict more positive voxels (both true
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and false positives), which can result in high CIRecall and low CIPrecision
scores (Extended Data Fig.3B). In contrast, our method can reflect the actual
distribution and thickness of axons (Extended Data Fig. 2, and Extended Data
Movie 1). In fact, if we were to consider an extreme scenario, where an entire
cube is predicted by a given method to be covered by axons, the ClRecall
generated by this method would reach a maximum of 1. Because of this,
considering ClDice can comprehensively reflect the axon segmentation
performance judging by both ClPrecision and ClRecall, we stopped using
ClRecall for ablation studies but focus on ClDice in the rest of the rebuttal letter
(all of the scores are still reported in the manuscript for relevant parts).

d) The main difficulty in axon segmentation or identification is the low signal
intensity and the signal-to-noise ratio of the target object, which may further
lead to specific problems such as discontinuity of the segmented axon. |
suggest adding enlarged views to show the segmented axon details. Extended
Data Movie 2 appears lo show some unrecognized axons.

Thank you very much for the suggestion. We followed the reviewer's advice
and added enlarged views to show the segmented axon details in Extended
Data Fig. 2, Extended Data Fig. 7 and Extended Data Movie 1. There are still
a few broken axons captured, but, unless all the axons are labelled well and
segmented by the software, the discontinuity of the segmented axon cannot be
entirely eradicated. Compared to Trailmap, D-LMBmap has drastically reduced
this issue. For example, as shown in Extended Data Fig. 2C, all the axons
segmented by Trailmap in this cube are broken, and D-LMBmap rescued most
of them, but not all.

e) The Dice index and Precision index of this paper are far beller than the
TrailMap method. TrailMap used expert annolated data lo conduct model
training and prediction based on, while D-LMBMap used automatically
generated training data. | suggest that the authors supplement the
corresponding ablation experiments to reveal the mechanism behind the
improvement.

Thank you very much for the reviewer's appreciation of the efficiency of our
pipeline. Following the reviewer's advice, we did ablation experiments to
demonstrate the mechanisms behind the improvements, including data
augmentation, axial attention, and the deep neural networks used in training
modules.

As presented in the newly added Extended Data Fig. 6, even without
data augmentation and axial attention, D-LMBmap is more effective than
Trailmap. Nevertheless, our data augmentation and axial attention are essential
for the superior performance of our automated annotation and axon
segmentation solution and can further remarkably improve the results and
achieved a ClDice score around 0.9. Moreover, we also compared the
effectiveness of nnU-Net backbone with other most widely used 3D
segmentation backbone networks. As shown in Figure R2, based on the same
training samples after our data augmentation strategy, nnU-Net perfarms the
best comparing to other network architectures.
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Figure R2. Quantitative evaluation for the incorporation of different
network architectures for axon prediction. Two manually annotated large-
sized cubes (600x600x225 voxels) from Sert-Stanford are used for evaluation
(included in Extended Data Table. 3-1)

f) In extended data table 1, the author gives the data set used for axon
segmentation. There are 3 data sets with low resolution, it is difficult to ensure
that a single axon can be distinguished -- does it limit the application scenarios
of the method? Adding a discussion about it will be good.

We thank the reviewer for their suggestion and we incorporated the discussion
about the application scenarios [Line 495-511]. Indeed, compared with the
resolution of images generated by fMOST (20,000x30,000x25,000), the
resolution of images generated by light-sheet microscopy is relatively low
(Extended Data Table. 1 and 3). Lower resolution reduces the data size
significantly and in this study our data is around 20 — 200 GB per brain sample.
However, it is enough for us to achieve all the tasks needed for mesoscale
projectome mapping at the whole-brain level, and the processing time using our
D-LMBmap pipeline is only 12 hours per brain. Whilst we did not aim for single
axon tracing, the pipeline can achieve segmentation, skeleton, and connection
relationship judgement based on bulk tracing.

In contrast, fMOST brain data is generally imaged at 40X magnification
and has the size around 5TB to 10TB per brain. The D-LMBmap pipeline is
compatible with higher resolution images, but because of the limited
computational power it may take 500 days to finish projection mapping for a
whole brain. If the axonal projections are limited to a few brain regions due to
sparse labelling and whole-brain analysis is not necessary (like most iMOST
cases), the processing time can be reduced.

g) During the automalic generation of training samples, about 40 axon cubes
were selected for some dafa and about 80 for others. In addition, the number
of artifact blocks is also not fixed. How to determine these numbers? Is it a
random selection within the whole brain? If not, on what basis?

We have put more details and clarify cube selection in the “Methods” in revised
manuscript. [Methods Line 74-80]
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The manual selection of “axon™ and “artefact” cubes is not random. The
reason why the number of cubes manually selected for each tested group is
different, is because these groups have different axon projection patterns. To
achieve high-guality training, representative “axon” cubes are selected for brain
regions receiving axonal innervation. Only 40 “axon” cubes were selected for
Sert-Stanford and DCN-Stanford because only subpopulations of serotonin or
DCN neurons are labelled and there are many brain regions that do not receive
axon inputs. Around 90 “axon" cubes were selected for the Sert-NIBS and
GABA-NIBS groups, because they have more brain regions receiving axon
inputs and more cubes are selected to represent these brain regions. The
number of artefact cubes also depends on the complexity of artefacts for each

group.

To describe the relationship between the number of selected training
cubes and how well the deep model can predict axons, we did quantitative
evaluation by using DCN-Stanford and the newly added brain of DA-NIBS as
examples. As shown in Figure R3, we analysed three groups where a differing
number of randomly selected training cubes were used. In both of the first
groups we used 25 axon and 25 artefact cubes, the second ones 45 axon and
45 artefact cubes, and the last with either 84 axon and 100 artefact cubes or 85
axon and 84 artefact cubes. We find that even though it appears that more
training samples can generally achieve better performance for axon
segmentation, around 45 axon and 45 artefact cubes can already get
satisfactory results for the training of axon segmentation model.
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Figure R3. Quantitative evaluation of D-LMBmap for axon segmentation
when using different number of training cubes. ClDice and Dice scores
were used for evaluation. (a) Axon segmentation performance of D-LMBmap
with different number of training cubes selected from DA-NIBS brain. The
number of training cubes (axon cube number / artefact cube number) varied
from 25/25 to 84/100, and the evaluation was performed using 2 manually
annotated large-sized cubes (see Extended Data Table 3-1 for details); (b)
Axon segmentation performance of D-LMBmap with different number of training
cubes selected from DCN-Stanford brains. The number of training cubes (axon
cube number / artefact cube number) varied from 25/25 to 85/84, and the
evaluation was performed using 15 manually annotated small-sized cubes that
covered different major brain regions (see Extended Data Table 3-2 for details).

3. Brain region segmentation and registration
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a) The idea of style transfer is very clever, and it is indeed promising to solve
the problem due to the big style difference between the data lo be registered
and the reference map like CCF, which affects the registration quality. As staled
in the paper, the premise of the smooth application is that "in which the image
appearance is converted into a reference image style without losing its original
content" [Line 226-227]. However, it can be seen from Extended data fig.4 that
the structure information and gray value information of the transferred brain and
the original brain is very different. The gray value difference in the original brain
has specific biological significance, while some gray values were directly
reversed after the transfer. Is there a biological or mathematical explanation
behind this mapping mechanism, and how to verify it without losing the original
content?

We thank the reviewer very much for their appreciation of our implementation
of style transfer to sclve the image difference across different modality,
especially the difference between samples and atlas.

After style transfer, as shown in Extended Data Fig. 9A, indeed that “ihe
gray value difference in the original brain has specific biological significance,
while some gray values were directly reversed after the transfer.” This is
because the images generated by light-sheet microscopy are transferred into
Allen atlas style, and Allen atlas is constructed by interpolating high resolution
in-plane serial two-photon tomography images™. This is cross-modality style
transfer achieved by our style transfer module based on CycleGAN, which can
preserve the original brain structures and region outlines.

CycleGAN is originally designed for keeping image content consistency
between the original and the style transferred images, judged by the Cycle-
Loss's. As shown in Fig. 3A, our module first transferred the original LSFM brain
images into “Synthetic Allen” images based on the Generator A. Then
“Synthetic Allen” images are transferred to "Reconstructed LSFM" images
based on the Generatar B. Subsequently, the Cycle-Loss is computed between
the “Reconstructed LSFM" and the original LSFM images.

The brain structure consistency can also be validated by the brain region
segmentation on the style transferred brains (Fig.3E). We generated “ground-
truth” data by manually annotating major brain regions on the original samples.
Validation results showed that our brain region segmentation on style
transferred brain can achieve high Dice scores, indicating that brain structures
have not been changed.

Although the style transfer method employed in D-LMBmap is based
on CycleGAN, our improved style transfer method outperforms all other method
in major brain regions and at the whole brain level. In the newly added Extended
Data Fig. 8A and Extended Data Fig. 14A, we showed that for whole brain data,
the evaluation metrics of SSIM, PSNR, and FID, the style transfer method
employed in D-LMBmap introduces the least information loss between the
original LSFM brain and the reconstructed LSFM brain, when compared with
the other three methods.

b) Before registration, the author down-sampled the whole brain data set to 320
X 456 x 528 pixels (extended data table 4), which belonged to the test data with
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low resolution. Allen CCF currently provides the dala with 10-micron resolution.
| wonder how well the method has been tested on this level of data.

Thank you for the interasting question. Indeed, as the reviewer pointed out, the
latest CCF published by Allen is at 10-micron resolution. The brain size of this
latest CCF is 800x1140x1320. We used Allen CCF which is at 25-micron
resolution and the brain size is 320x456x528, and that is why we down-
sampled the raw data to 320x456x528 for whole brain registration.

Whole-brain 3D registration is a computationally expensive process,
especially for the learning-based 3D registration. The following table
summarizes the size of the brain and the correspondent theoretical GPU
memory required:

Brain size GPU memory required theoretically
(80,114,132) 6.5G

(160,228,264) 8.9G

(320,456,528) 28.5G

(800,1140,1320) 360.6G

Currently, our learning-based 3D registration is trained on NVIDIA GeForce
RTX 3090 GPU with 24GB of memory. Qur Concern is that such a highly
advanced GPU sufficient to support whole brain resolution using 10-micron
resolution CCF may not be accessible to many researchers.

c) As far as we know, it works well to calculate Dice and so on for large brain
regions. Can you supplement registration results of smaller nuclei (lateral
habenular, etc.), and even consider using reference sites to calculate distance
deviations directly?

Thank you for the suggestion. As Reviewer 1 also asked the same guestion on
the registration of small brain structures, we have provided detailed answers on
the Page 2 and 3 of this letter. Please find the summary blow.

We generated the ground truth of small region registration by manually
annotating several small brain structures in the thalamus, hypothalamus, and
brainstem to facilitate the validation, including habenular (Hb),
mammillothalamic tract (mtt), anterior commissure temporal limb (act),
fasciculus retroflexus (fr) and interpeduncular nucleus (IPN). We quantified the
whole-brain registration results of these five small brain regions using the
automated pipeline in D-LMBmap, and compared them with related registration
solutions. D-LMBmap can outperform other methods in all five small brain
regions. As presented in the new Fig. 4D, D-LMBmap achieves a median Dice
score from 0.60 to 0.85 for individual small brain regions, and an average
median Dice score of 0.76. Compared with other methods, D-LMBmap
achieves about 35% higher Dice score in small brain region registration. Next,
we asked, when doing small structure registration, how close D-LMBmap
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automated pipeline was to achieving results comparable to its pipeline that

incorporated training data from manual segmentation (Extended Data Fig. 16B).

As presented in the new Extended Data Fig. 16C, trained with data generated
by user delineation, D-LMBmap achieves a median Dice score from 0.80 to
0.94 for individual small brain regions, and an average median Dice score of
0.86. Thus, our newly added data demonstrate that D-LMBmap is the best
method for accurately and efficiently registering small brain structures with
detectable features under the autofluorescence channel. D-LMBmap also
provides a new strategy and the pipeline for optimising the accuracy of small
brain structures without detectable features under the autofluorescence.
Besides our automated pipeline, users could also either add a scant amount of
manually segmented constraints or constraints from channels with
cytoarchitectonic features during training to generate whole-brain registration
of small structures more precisely.

Additionally, following the reviewer's advice, we included landmark
distance as an additional evaluation metric, along with the Dice score. To
compute landmarks in both the Allen atlas and LSFM brains, we employed the
landmark extraction method - 2.50 corner detection, presented in
mBrainAlignerZ. We filtered out 18 landmarks that were automatically detected
across all the testing LSFM brains and the Allen atlas (Extended Data Fig. 17D).
As shown in the newly added Extended Data Fig. 17E, D-LMBmap achieves
better landmark alignment than other methods.

4. Software

a) The software is difficult to install and lacks dependency packages. Could you
please provide more detailed instructions for the convenience of users?

We recognise the difficulties encountered and should have provided more
detailed instructions. To remedy this, we have invited 12 researchers to test the
updated software for ease of use. Of this group, 8 were running the software
on Windows 10 X64 and the remaining 4 were using Windows 11 X64. Neither
system tested had prior installation of dependency packages. As a result, we
have implemented several improvements to expediate the installation process.
For example, the software can now be installed directly by double clicking the
“‘D-LMBmap.exe" file.

In addition, we have also provided more detailed instructions consisting
of documents, a tutorial movie and example data, accessible from our project's
Github page (Link: hitps:/github.com/imbneuron/D-LMBmap). Users can follow

the movie as a guide to achieve each module in whole brain projection mapping.

Furthermore, on our Github page we have provided our code with detailed
annotations consisting of three files: 'axon segmentation’, ‘brain region
segmentation’ and ‘whole brain registration’. By running this code, users can
train their own data and accomplish whole-brain projection mapping.

b) The software is not stable enough and sometimes encounters crashes. It is
suggested to further optimize the software for better promotion and use.

We acknowledge the problems the reviewer encountered while running
the software. We have tested the software on a greater number of users and
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incorporated their feedback. The revised version has been optimised and
updated to provide a more stable performance and a more user-friendly
experience. In the future, as well as frequently supplying updates to maintain
the software, we will encourage users to report any issues or bugs encountered.
Ultimately, we are confident that this software will be an invaluable resource to
those in the field and greatly accelerate studies in mesoscale whole brain

mapping.

Reviewer #3:

Remarks to the Author:

A. The authors present an inlegrated pipeline for aulomafed analysis of
mesoscale projection mapping from whole-brain light microscopic imaging data
of different modalities. The work is based on putting together deep net based
modules for axon segmentalion and brain/atlas registration.

B. The primary claim to originality is that this is the first lime such an integrated
pipeline has been presented, and also that individual modules in this pipeline
are new. This claim is difficult lo sustain.

We respectfully disagree with the characterizations of our study commented
here. Please see below for more detailed responses.

First, the primary focus of the paper is on the brain/alias registration problem,
but the methods presented by the authors are neither of very high quality (they
only segment the brain into 6 compartments - compare this with the 500-1000
compartments in current mouse brain atlases). Leaving aside the comparisons
with other methods, such a segmentation is of very little value for modern
mesoscale projection analysis from a biological significance perspective.

D-LMBmap contains three modules: axon segmentation, brain region
segmentation and whole brain registration (Fig. 1). We developed new methods
for each of the modules and presented superior data analysis results compared
with other state-of-art methods (Fig. 2, 3, 4, &5). High-quality mapping of
mesoscale whole brain connectivity requires all of the three modules to be
efficient and powerful, and D-LMBmap not only is the first pipeline integrating
all the three modules as end-toc-end software but a tool that significantly
improved the performance on all the three aspects.

It appears from the above comments that Reviewer #3 may have
confused “brain region segmentation” with “whole brain registration”. In our
pipeline, the ~1000 compartments in the mouse brain atlases are mapped and
registered after "whole brain registration”, based on the crucial results and
constraints generated by the “brain region segmentation” step (Fig. 4 & 5). The
purpose of image segmentation is to partition an image to different regions
based on given criteria for future processes. Brain region segmentation is a
major application of atlas-based registration'®'7, and whole brain registration
task can also benefit from brain region segmentation?.

It is not necessary nor computationally effective to have all the 1000
compartments segmented by learning-based methods, because the final goal
of mesoscale whole brain connectivity mapping is to achieve brain-to-atlas
or/and atlas-to-brain registration of the tracing/labelling data.
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We developed a novel semi-supervised multi-view pipeline for
accurate segmentation of 6 major brain regions. In the brain region
segmentation field, three state-of-art methods 287 have achieved great results
and they also focused on the segmentation of major brain regions but not each
of the individual small compartments listed on the atlas. Comparing with these
methods, D-LMBmap showed superior performance (Fig. 3E, F, Extended Data
Fig. 12, Extended Data Fig. 13). Most importantly, our highly effective brain
region segmentation process provides criteria and constraints to greatly
improve the performance of whole-brain 3D registration (Fig. 4C, D, E,
Extended Data Fig. 15, Extended Data Fig. 16, Extended Data Fig. 17).

It is possible that the reviewer's primary concern is about the accuracy
of the registration of small brain regions, which is also the major concern raised
by the other two reviewers. We provided detailed answers on the Page 2 and
3 of this letter. Please find the summary blow.

We generated ground truth of small region registration by manually
annotating several small brain structures in the thalamus, hypothalamus, and
brainstem to facilitate the wvalidation, including habenular (Hb),
mammillothalamic tract (mtt), anterior commissure temporal limb (act),
fasciculus retroflexus (fr) and interpeduncular nucleus (IPN). We quantified the
whole-brain registration results of these five small brain regions using the
automated pipeline in D-LMBmap, and compared them with related registration
solutions. D-LMBmap can outperform other methods in all five small brain
regions. As presented in the new Figure 40, D-LMBmap achieves a median
Dice scare from 0.60 to 0.85 for individual small brain regions, and an average
median Dice score of 0.76. Compared with other methods, D-LMBmap
achieves about 35% higher Dice score in small brain region registration. Next,
we asked, when doing small structure registration, how close D-LMBmap
automated pipeline was to achieving results comparable to its pipeline that

incorporated training data from manual segmentation (Extended Data Fig. 16B).

As presented in the new Extended Data Fig. 16C, trained with data generated
by user delineation, D-LMBmap achieves a median Dice score from 0.80 to
0.94 for individual small brain regions, and an average median Dice score of
0.86. Thus, our newly added data demonstrate that D-LMBmap is the best
method for accurately and efficiently registering small brain structures with
detectable features under the autofluorescence channel. D-LMBmap also
provides a new strategy and the pipeline for optimising the accuracy of small
brain structures without detectable features under the autoflucrescence.
Besides our automated pipeline, users could also either add a scant amount of
manually segmented constraints or constraints from channels with
cytoarchitectonic features during training to generate whole-brain registration
of small structures more precisely.

Additionally, we included landmark distance as an additional evaluation
metric, along with the Dice score. To compute landmarks in both the Allen atlas
and LSFM brains, we employed the landmark extraction method — 2.5D carner
detection, presented in mBrainAligner. We filtered out 18 landmarks that were
automatically detected across all the testing LSFM brains and the Allen atlas
(Extended Data Fig. 17D). As shown in the newly added Extended Data Fig.
17E, D-LMBmap achieves better landmark alignment than other methods.
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Besides, the multimodal/cross conlrast brainfallas registration problem
addressed by the authors through the style-transfer and GANS approaches has
already been addressed salisfactorily in previous publications (e.g. both
learned contrast maps and treatment of damaged/distoried seclions of the brain
are addressed in https://doi.org/10.1007/978-3-030-33226-6 18 ).

D-LMBmap is the first work applied style transfer method to the learning-based
multimodal brain style alignment, and this application greatly improved the atlas
based registration. As Reviewer 2 pointed out, “The idea of style lransfer is very
clever, and it is indeed promising to solve the problem due to the big siyle
difference between the data to be registered and the reference map like CCF,
which affects the registration quality."

We thank the reviewer for suggesting the reference of Tward Daniel et
al'®. However, they did not make use of GANs (Generative Adversarial Nets)
but rather the traditional Gaussian Mixture Modeling (GMM). Furthermore, they
did not perform 30 whole-brain registration but rather 3D CCF to 2D brain slice
registration.

In the work of Tward Daniel et al.’® they transformed the intensity
based on the traditional cubic polynomial intensity transformation (solving
Cubic Polynomial, i.e., RGB three channels), which is completely distinct from
our learning-based style transfer solution. For their Generative Model, it is
based on the traditional GMM, which is used to predict the shape of 2D slices.
Such GMM methed is not GANs approaches.

Beyond this, they did not registrate damaged/distorted sections but
rather employed the GMM methods to estimate the abnormality locations in 2D
slices. D-LMBmap, however, can demonstrably achieve high-quality
registration of damage/distorted 3D brain samples (Extended Data Fig. 18).

Second, segmentation of axons in brain images is a large subject and goes well
beyond the few references considered by the authors (consider the DIADEM
challenge and many associated papers). Even in the context of mesoscale
projection mapping there have been mulliple relevant works, including the
original AIBS publications on mesoscale connectivity maps of the mouse brain.

We agree that segmentation of axons in brain images is a large subject and
there are multiple works focused on mesoscale projection mapping.

There are three primary subjects relevant to axon segmentation of light
microscopy, 1) digital reconstruction of neuronal morphology in 2D slices, 2)
single neuron tracing in high-resolution images generated by block-face
imaging (e.g. fMOST), and 3) axon segmentation of 3D whole-brain images
generated by the integration of tissue-clearing methods and light-sheet
fluorescence microscopy (LSFM).

The axon segmentation method in D-LMBmap is developed for the
third subject - high-throughput mesoscale 3D whole-brain connectivity mapping
achieved by LSFM and tissue-clearing. Considering the importance and
significance of whole brain mesoscale connectivity mapping, there is a
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surprisingly limited number of studies focused on axon segmentation analysis
of whole brain LSFM data®20,

Studies/activities mentioned by the reviewers have a different subject
comparing with our axon segmentation method.

The DIADEM challenge was a neuron tracing competition held in 2010,
which focused on digital reconstruction of neuronal morphology in 2D slices
(hitps:Mink.springer.com/article/10.1007/s12021-010-8095-5). These images
are a series of 2D slices taken by 40X to 100X objective lens and each image
contains sparsely labelled neurons that often are not long-range (whole-brain
level) projecting neurons.

In the series of AIBS (Allen Institute for Brain Science) studies on
mesoscale connectivity maps of the mouse brain, there are two types of
analysis applied to the whole brain level projection analysis. For the datasets
they generated by serial two-photon tomegraphy (STPT)?'22, AIBS did not
perform learning-based axon segmentation but projection density analysis
based on a combination of adaptive edge/line detection and morphological
processing. They undertook single neuron reconstruction with the data
generated by fIMOST by manual annotation through Vaa3D, without learning-
based axon segmentation®?,

We acknowledged the achievements in the axon segmentation
methods applied in block-face imaging and incorporate discussions in our
revised manuscript. [Line 495-511]

The authors posit that the primary difficulty lies in the laborious process of
manually segmenting of proofreading individual axons under a sufficient variety
of circumstances. This is true, but the solution offered by the authors (reliance
on human labeling of image cubes containing/not containing axons, followed by
a se! of classical machine vision approaches including thresholding,
morphological operations elc) fails to reach the biologically relevant bar of
providing ground truth guarantees on the individually traced neurite fragments.
While the specific technique presented by the authors for axon segmentation
may or may not correspond to previous approaches (it is difficult to judge
because the authors do not comprehensively review this large literature), there
is no demonstration of biclogical ground truthing (which necessarily requires a
validation set of manually labelled axons across a spectrum of brain regions).
Thus it is difficult to conclude that there has been a frue methodological
advance here, as opposed lo yel another technique added lo a large variety of
techniques already brought to bear on this problem.

We are happy to know that the reviewer also thinks that “the laborious process
of manually segmenting of proofreading individual axons under a sufficient
variety of circumstances” is a major difficulty lies in axon segmentation.
Especially relevant to this is the series of work carried out by AIBS on
mesoscale connectivity mapping. The reason for this is that they did not use a
learning-based axon segmentation method but relied heavily on manual
annotation and proofreading.

20

29



natureresearch

NMETH-AS0696A Response to Reviwers

We must clarify that we are handling distinct datasets and employing
dissimilar methodologies. Currently, the only learning-based method designed
for high-throughput analysis of whole brain projectomes captured from LSFM is
TrailMap?®. The primary problem for this strategy is the laborious process of
generating training data by human annotation. We hope that since the reviewer
appreciates that laborious manual proofreading can be a primary difficulty for
single neuron reconstruction, he/she will also acknowledge that generating high
quality and guantity training data manually is the bottleneck for learning-based
segmentation methods.

To break this bottleneck, we developed an automated pipeline for axon
segmentation of LFSM data. The “human labeling of image cubes
containing/nol  containing axons” is just the starting point for generating
expanded training data. We described our automated pipeline in the main
manuscript (lines 129 to 191) and the detailed designs in the methods section
(lines 64 to 126). Following the selection of cubes having axons and
those containing artefacts, we can generale and expand the training data
through subsequent data processing and data augmentation.

To ensure the accuracy and reliability of our axon segmentation results,
we follow the standard practice of validating our training outcomes using ground
truth generated by manual annotation, as shown in Figure 2. It is important to
note that the manual annotation performed in this context is solely for validation
purposes and not used for training. This approach provides an objective and
rigorous evaluation of the performance of our method and ensures that our
segmentation results are consistent with the ground truth. By using manual
annotation solely for validation purposes, we can prevent any potential biases
from being introduced into the training process, leading to more reliable and
unbiased results. Comparing our validation results with the only existing
learning-based axon segmentation method for LFSM images — TrailMap2?, D-
LMBmap showed superior performance (Fig. 2). As Reviewer 2 pointed out,
“The Dice index and Precision index of this paper are far better than the
TrailMap method.”

Third the authors do not show recognition of one of the primary issues that
plague the analysis of mesoscale projections, namely the analysis of the
injection sites themselves. The key problem with this kind of projection mapping
and associated analysis is that injections are difficult to control (thus they have
widely varying sizes and seldom cover the brain in a uniform manner), thus the
projection maps derived fram such injections have necessarily to be subjecled
fo careful deconvoution analysis. This is still an open problem without
satisfactory solutions, perhaps only fo be addressed by combining with single-
neuron data (of which there is a growing volume today). Genetic constructs
seldom label a spatially well-localized sel of somala, so any automated pipeline
for mesoscale projection analysis worth its salt must address thorny issue. The
manuscript shows no evidence that this has been considered.

We did not address the analysis of injection sites in our description of D-
LMBmap because we believe that this is not a problem that requires solving
through the development of computational methods. Instead, the Allen Institute
provides tools for analyzing injection sites as part of their mesoscale
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connectivity mapping work, which we discussed earlier
(hitps:/fallensdk.readthedocs.io/enflatest/connectivity. niml#structure-level-
projection-data). Furthermore, in our previous work, we have demonstrated that
modern viral-genetic methods can provide reliable spatially well-localized sets
of somata®19,

If the reviewer wishes to integrate and quantify both neurons labelled at
the injection site and their long-range projections, an additional channel for
somata labelling during viral injection and light-sheet imaging can easily
accomplish this. As the current D-LMBmap software already includes a soma
detection function (see Fig. 4E), this end-to-end pipeline can perform both
soma/nuclei quantification and projection mapping for the same brain. Thus, D-
LMBmap can accommodate both somata labelling signals and projection
mapping signals, which can be registered to the atlas.

As such, the novelty of both the modules and the integrated approach is modest,

and of uncertain biological relevance. If the authors consider that the software
pipeline integration is the key story here this paper might better be directed
fowards a software journal,

Multi-function integration is only one of the great features D-LMBmap
processes. It integrates three modules including axon segmentation, brain
region segmentation and whole brain registration. We developed new methods

for each of the modules and compared them with other state-of-the-art methods.

The axon segmentation results generated by D-LMBmap “are far better than
the TrailMap method” (Reviewer 2), requiring no manual annotation. Our brain
region segmentation and whole brain registration results show “the advantages
of D-LMBmap compared to several other current brain mapping tools, such as
SeBRe, BIRDS, mBrainAligner” (Reviewer 1). We completely agree with
Reviewer 1 that, “because lightsheet and other 3D microscopic imaging
technologies have been adopted by numerous laboratories, the D-LMPmap will
be an extremely valuable tool for these fabs to map anatomical and behavioral
data”.
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Decision Letter, first revision:

Dear lJing,

Thank you for submitting your revised manuscript "D-LMBmap: A fully automated deep learning pipeline
for whole-brain profiling of neural circuitry”" (NMETH-A50696A). It has now been seen by the original
referees and their comments are below. The reviewers find that the paper has improved in revision, and
therefore we'll be happy in principle to publish it in Nature Methods, pending minor revisions to satisfy
the referees' final requests and to comply with our editorial and formatting guidelines.

In response to the remaining comments from reviewer 2, we ask that you include an honest and
detailed discussion of computational costs/data size.

We are now performing detailed checks on your paper and will send you a checklist detailing our
editorial and formatting requirements in about a week. Please do not upload the final materials and
make any revisions until you receive this additional information from us.

TRANSPARENT PEER REVIEW

Nature Methods offers a transparent peer review option for new original research manuscripts
submitted from 17th February 2021. We encourage increased transparency in peer review by publishing
the reviewer comments, author rebuttal letters and editorial decision letters if the authors agree. Such
peer review material is made available as a supplementary peer review file. Please state in the cover
letter ‘I wish to participate in transparent peer review’ if you want to opt in, or ‘l do not wish to
participate in transparent peer review’ if you don’t. Failure to state your preference will result in delays
in accepting your manuscript for publication.

Please note: we allow redactions to authors’ rebuttal and reviewer comments in the interest of
confidentiality. If you are concerned about the release of confidential data, please let us know
specifically what information you would like to have removed. Please note that we cannot incorporate
redactions for any other reasons. Reviewer names will be published in the peer review files if the
reviewer signed the comments to authors, or if reviewers explicitly agree to release their name. For
more information, please refer to our <a href="https://www.nature.com/documents/nr-transparent-
peer-review.pdf" target="new">FAQ page</a>.

ORCID

IMPORTANT: Non-corresponding authors do not have to link their ORCIDs but are encouraged to do so.
Please note that it will not be possible to add/modify ORCIDs at proof. Thus, please let your co-authors
know that if they wish to have their ORCID added to the paper they must follow the procedure
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described in the following link prior to acceptance:
https://www.springernature.com/gp/researchers/orcid/orcid-for-nature-research

Thank you again for your interest in Nature Methods. Please do not hesitate to contact me if you have
any questions. We will be in touch again soon.

Sincerely,
Rita

Rita Strack, Ph.D.
Senior Editor
Nature Methods

Reviewer #1 (Remarks to the Author):

The authors have carefully and thoroughly addressed my concerns, as well as critiques from other
reviewers. | have no more comments.

Reviewer #2 (Remarks to the Author):

The authors responded positively to almost all the comments, and the revised manuscript has improved
dramatically. | believe these improvements will be more helpful for readers to understand the main
contributions of the study and guide everyone to use the technical ideas and tools suggested by the
authors.

It is also because | am happy to see new methods can be applied that | think that the difficulties related
to the calculation cannot be ignored. The limitation of computing resources is a constraint to applying
your method on 10 um image data. However, as we know, the down-sampling of CCF to 25 um per pixel
will cause information loss of brain parcellation, especially for subtle brain nuclei. This may also be why
CCF needs to provide a 10 um version. Possibly worse, many biology labs may struggle with the
computing resources required for even a basic 25 um solution. Therefore, | strongly recommend that
the authors address this issue more comprehensively, assess the application limitations imposed by this
technical bottleneck, or at least provide necessary clarifications in the discussion section or elsewhere
where appropriate to mitigate potential concerns.
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Reviewers' Comments:
Reviewer #1:
Remarks to the Authar:

The authors have carefully and thoroughly addressed my concerns, as well
as critiques from other reviewers. | have no more comments.

We sincerely thank the reviewer for hisfher great appreciation of our study.

Reviewer #2:
Remarks to the Author:

The authors responded positively to almost all the comments, and the revised
manuscript has improved dramatically. | believe these improvements will be more
helpful for readers fo understand the main confributions of the study and guide
everyone fo use the technical ideas and fools suggested by the authors.

We thank the reviewer for his/her approval of our study, and their helpful suggestions.

1. It is also because | am happy fo see new methods can be applied that | think that
the difficulties related fo the calculation cannot be ignored. The limitation of computing
resources Is a constraint to applying your method on 10 pm image data. However, as
we know, the down-sampling of CCF to 25 um per pixel will cause information loss of
brain parcellation, especially for sublle brain nucler. This may also be why CCF needs
to provide a 10 ym version. Possibly worse, many biology labs may struggle with the
compuiing resources required for even a basic 25 um solution. Therefore, | strongly
recommend that the authors address this issue more comprehensively, assess the
application limitations imposed by this technical boffleneck, or at least provide
necessary clarifications in the discussion section or elsewhere where appropnate to
mitigate potential concemns.

In response to the reviewer's comments on computing resources and imaging
resolution in relation to brain registration, we greatly value their input. To address this
concemn, we have included a new table in the manuscript (Supplementary Table 5),
which provides comprehensive information regarding computing resources, training
fime, and registration time associated with different imaging resolutions. A new figure
(Supplementary Fig. 8) is added to illustrate the proposed solutions for whole-brain
registration at higher resolution. Furthermore, we have incorporated these discussions
into the "Discussion” section of the paper (Line 437-446).

As shown in Supplementary Table x, we provided the required GPU memory and
actual running time of D-LMBmap for training the deep registration model from scraich
using 100pm, 50pm, and 25pm resolutions, respectively. Most wet labs can achieve
fraining using whole-brain images with a resolution of 25um per pixel by an ordinary
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server equipped with NVIDIA GeForce RTX 3090 GPU. In D-LMBmap, we also provide
well-trained deep models for whole-brain registration, and users can complete
registration in just a few minutes using an ordinary desktop or laptop.

Based on theoretical calculations, it is not practical to train whole-brain registration
models using images captured at a resolution of 10um per pixel using our current
pipeline (Supplementary Table x). Most existing methods primarily focus on resolutions
of 25um or even lower, and training whole-brain registration models using high-
resolution images remains an open area for further investigation. However, we believe
that performing registration with images at a resolution of 10um directly at the whole-
brain level may not be the most efficient approach from an algonthmic perspective. As
we use the multi-scale and muti-constraint stratergy for the registration model, we
propose to solve this problem by extending our current pipeline with an exira module
that registers major brain regions (e.g., CTX, CNU, IB, MB, HB, CBX, CBN) instead of
the entire brain with a resolution of 10pm. The initial registration parameters and
deformation space can be obtained by the whole-brain registration in lower resolutions
(e.g., 25um) first by our current pipeline, and each major brain region can be further
registered to Allen CCFv3 atlas at a resolution of 10um and integrated together to
archive whole-brain registration at higher resolution (Supplementary Figure x) By
doing this, even though the total training time is prolonged while performing further
refined high resolution registration for each major brain regions, the total training time
for whole-brain registration is sfill acceptable for most wet labs.

There are also other potential solutions we will explore in the future. One option is
to use control points [1] instead of brain images for whole-brain registration.
Deformation computation for each voxel in a large-sized 3D whole brain is
computationally expensive, requiring significant GPU memory and computational time.
To address this, dunng the training of the deep registration neural networks, the
deformation matnx can be computed and updated using a subset of control
points/voxels instead of all the 3D voxels in the whole brain. With the deformation
matnx of control points, other voxels in the 3D whole brain can be computed using
interpolation algonthms [2]. We have conducted preliminary tests on this approach,
which significantly reduces computational resource requirements. We need to work on
this strategy further to minimize the impact on registration performance. In addition,
we can explore the use of distributed systems for training large registration models.
With the advancements in technologies like ChatGPT and other large deep models,
distributed training technigues have been extensively studied and leveraged through
cloud computing platforms such as Google and Amazon. This enables the possibility
of training registration models directly on 10pm and higher resolution at the whole-
brain level.

[1] Modat, Marc, et al. "Fast free-form deformation using graphics processing units."
Computer methods and programs in biomedicine 98 3 (2010): 278-284.

[2] Aumann, Ginter. "A simple algorithm for designing developable Bézier surfaces "
Computer Aided Geometric Design 20.8-9 (2003). 601-619.
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‘ Final Decision Letter:

Dear Jing,

| am pleased to inform you that your Article, "D-LMBmap: A fully automated deep learning pipeline for
whole-brain profiling of neural circuitry”, has now been accepted for publication in Nature Methods.
Your paper is tentatively scheduled for publication in our October print issue, and will be published
online prior to that. The received and accepted dates will be Oct 20, 2022 and August 2, 2023. This note
is intended to let you know what to expect from us over the next month or so, and to let you know
where to address any further questions.

Acceptance is conditional on the data in the manuscript not being published elsewhere, or announced in
the print or electronic media, until the embargo/publication date. These restrictions are not intended to
deter you from presenting your data at academic meetings and conferences, but any enquiries from the
media about papers not yet scheduled for publication should be referred to us.

Over the next few weeks, your paper will be copyedited to ensure that it conforms to Nature Methods
style. Once your paper is typeset, you will receive an email with a link to choose the appropriate
publishing options for your paper and our Author Services team will be in touch regarding any additional
information that may be required.

You will receive a link to your electronic proof via email with a request to make any corrections within
48 hours. If, when you receive your proof, you cannot meet this deadline, please inform us at
risproduction@springernature.com immediately.

Please note that <i>Nature Methods</i> is a Transformative Journal (TJ). Authors may publish their
research with us through the traditional subscription access route or make their paper immediately
open access through payment of an article-processing charge (APC). Authors will not be required to
make a final decision about access to their article until it has been accepted. <a
href="https://www.springernature.com/gp/open-research/transformative-journals"> Find out more
about Transformative Journals</a>

Authors may need to take specific actions to achieve <a
href="https://www.springernature.com/gp/open-research/funding/policy-compliance-fags">
compliance</a> with funder and institutional open access mandates. If your research is supported by a
funder that requires immediate open access (e.g. according to <a
href="https://www.springernature.com/gp/open-research/plan-s-compliance">Plan S principles</a>)
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then you should select the gold OA route, and we will direct you to the compliant route where possible.
For authors selecting the subscription publication route, the journal’s standard licensing terms will need
to be accepted, including <a href="https://www.springernature.com/gp/open-research/policies/journal-
policies">self-archiving policies</a>. Those licensing terms will supersede any other terms that the
author or any third party may assert apply to any version of the manuscript.

If you have any questions about our publishing options, costs, Open Access requirements, or our legal
forms, please contact ASJournals@springernature.com

Your paper will now be copyedited to ensure that it conforms to Nature Methods style. Once proofs are
generated, they will be sent to you electronically and you will be asked to send a corrected version
within 24 hours. It is extremely important that you let us know now whether you will be difficult to
contact over the next month. If this is the case, we ask that you send us the contact information (email,
phone and fax) of someone who will be able to check the proofs and deal with any last-minute
problems.

If, when you receive your proof, you cannot meet the deadline, please inform us at
risproduction@springernature.com immediately.

Once your manuscript is typeset and you have completed the appropriate grant of rights, you will
receive a link to your electronic proof via email with a request to make any corrections within 48 hours.
If, when you receive your proof, you cannot meet this deadline, please inform us at
risproduction@springernature.com immediately.

Once your paper has been scheduled for online publication, the Nature press office will be in touch to
confirm the details.

If you have posted a preprint on any preprint server, please ensure that the preprint details are updated
with a publication reference, including the DOI and a URL to the published version of the article on the
journal website.

Once your paper has been scheduled for online publication, the Nature press office will be in touch to
confirm the details.

Content is published online weekly on Mondays and Thursdays, and the embargo is set at 16:00 London
time (GMT)/11:00 am US Eastern time (EST) on the day of publication. If you need to know the exact
publication date or when the news embargo will be lifted, please contact our press office after you have
submitted your proof corrections. Now is the time to inform your Public Relations or Press Office about
your paper, as they might be interested in promoting its publication. This will allow them time to
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prepare an accurate and satisfactory press release. Include your manuscript tracking number NMETH-
A50696B and the name of the journal, which they will need when they contact our office.

About one week before your paper is published online, we shall be distributing a press release to news
organizations worldwide, which may include details of your work. We are happy for your institution or
funding agency to prepare its own press release, but it must mention the embargo date and Nature
Methods. Our Press Office will contact you closer to the time of publication, but if you or your Press
Office have any inquiries in the meantime, please contact press@nature.com.

To assist our authors in disseminating their research to the broader community, our SharedlIt initiative
provides you with a unique shareable link that will allow anyone (with or without a subscription) to read
the published article. Recipients of the link with a subscription will also be able to download and print
the PDF.

As soon as your article is published, you will receive an automated email with your shareable link.

You can now use a single sign-on for all your accounts, view the status of all your manuscript
submissions and reviews, access usage statistics for your published articles and download a record of
your refereeing activity for the Nature journals.

Nature Portfolio journals <a href="https://www.nature.com/nature-research/editorial-
policies/reporting-standards#protocols" target="new">encourage authors to share their step-by-step
experimental protocols</a> on a protocol sharing platform of their choice. Nature Portfolio 's Protocol
Exchange is a free-to-use and open resource for protocols; protocols deposited in Protocol Exchange are
citable and can be linked from the published article. More details can found at <a
href="https://www.nature.com/protocolexchange/about"
target="new">www.nature.com/protocolexchange/about</a>.

Please note that you and any of your coauthors will be able to order reprints and single copies of the
issue containing your article through Nature Portfolio's reprint website, which is located at
http://www.nature.com/reprints/author-reprints.html. If there are any questions about reprints please
send an email to author-reprints@nature.com and someone will assist you.

Please feel free to contact me if you have questions about any of these points.

Best regards,
Rita

Rita Strack, Ph.D.
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