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SUPPLEMENTARY METHODS
Delphi process

We compiled the recommendations provided by the Metrics Reloaded framework by assembling an
international expert consortium which then underwent a multi-stage Delphi process. A Delphi
process is a structured group communication process that serves to gather opinions from an expert
panel via a series of individual interrogations, usually in the form of questionnaires, interspersed
with feedback from the respondents [18]. The technique is widely used for establishing consensus
among experts in medicine, particularly in the development of best practices in areas where evidence
may be limited, conflicting, or absent [77]. The initial panel participating in our Delphi process
comprised 30 international biomedical image analysis experts representing 25 institutions. Member
selection was initially based on membership in one of the three initiatives that triggered this
research, namely the Biomedical Image Analysis Challenges (BIAS) initiative, the Medical Open
Network for Artificial Intelligence (MONAI) Working Group for Evaluation, Reproducibility and
Benchmarks, and the Medical Image Computing and Computer Assisted Interventions (MICCAI)
Special Interest Group for Challenges (previously MICCAI board working group). To reflect as
broad a range of imaging domains as possible and expand the available expertise, the number
of consortium members was gradually increased from the initial 30 to a final number of 73. The
members provided a wide range of expertise ranging from biology, medicine, epidemiology and
biomedical image analysis all the way to statistics, mathematics and computer science. Furthermore,
leading members of major standardization initiatives were included, such as the Enhancing the
QUALlity and Transparency Of health Research (EQUATOR) network, from which imaging and
clinical guidelines have originated, including CONSORT/CONSORT-AI [30, 91], TRIPOD/TRIPOD-
Al [28, 73], STARD/STARD-AI [16, 95], and others.

Overall, the process comprised six distinct stages and encompassed five workshops and nine
surveys before a final Delphi consensus voting was performed. Each survey was developed by
the Metrics Reloaded core team and taken by the remaining members of the consortium; in other
words, the researchers that designed the surveys did not take part in them. Upon completion, the
core team then analyzed the results, discussed them with team members where necessary, and
integrated the feedback, thus iteratively refining the framework. The main stages of the compilation
and consensus building process are detailed in the following:

1. Initialization. A kickoff workshop was held in December 2020 with the primary goal of deciding
on the concrete scope of the recommendation framework. Prior to the workshop, an initial survey
had been conducted with a focus on gathering relevant literature as well as theoretical and practical
failure cases of metrics in the broader scope of classification, segmentation and detection. Based on
the discussions at the workshop, a series of three surveys was issued whose responses resulted in
(1) a joint terminology (see Suppl. Note 5), (2) inclusion criteria for the paper, namely the decision
to cover classification tasks at image/object and pixel level (Fig. 4), (3) a shortlist of relevant metrics
for each category (whose subsequent refinement resulted in Tab. SN 2.1), and (4) an initial set of
fingerprint items, whose refinement resulted in the final fingerprints presented in Suppl. Note 1.3.
It was further decided by the consortium that the choice of problem category should be part of the
recommendation itself (covered in Subprocess S1, Extended Data Fig. 1).

2. Compilation of first draft of recommendations in expert groups. The primary purpose of the
second Delphi workshop in June 2021 was the formation of expert groups that should coordinate
individual task forces. Five expert groups were initially formed; three dedicated to the problem
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categories addressed in the framework (one for image-level classification, one for semantic segmen-
tation and one for object detection and instance segmentation), plus a biomedical expert group and
a cross-topic expert group. The task of the expert groups corresponding to the problem categories
was to develop recommendations for their respective categories that address the pitfalls compiled
in the sister publication [86] (now captured in Fig. 2 and the nine subprocesses in Extended Data
Figs. 1-9). The task of the cross-topic group was to identify and tackle metric-related issues going
beyond pure metric selection, such as metric aggregation, reporting and implementation, statistical
considerations, rankings, and biases (now captured in Extended Data Tab. 1). The task of the
biomedical expert group was to ensure that the recommendation framework would satisfy the
needs of domain experts, such as clinicians, and to identify relevant biomedical scenarios (now
captured in Suppl. Note 4). Group-specific surveys were issued to support the work of the task
forces. To give the experts enough freedom, no specific restrictions were imposed with respect to
how the individual groups would arrive at their recommendations. In the following third Delphi
workshop, held in October 2021, the expert group leaders discussed their preliminary results with
the entire core team.

3. Consolidation of recommendations by Metrics Reloaded core team. Once the expert groups had
finalized their initial recommendation drafts for the problem categories, the Metrics Reloaded core
team consolidated and harmonized the recommendations in close collaboration with the groups.
In the fourth Delphi workshop in January 2022, the resulting decision trees capturing the core
recommendations (Fig. 2; S1-S4, S6-S9) were presented and discussed.

4. Revision by Metrics Reloaded consortium. The decision trees were then subjected to internal
tests by members of the consortium and their teams. The Metrics Reloaded core team incorporated
the survey-based feedback in close collaboration with the expert groups. The first draft of the entire
framework was then presented and discussed at the fifth Delphi workshop in March 2022.

5. Crowdsourcing of feedback. Finally, community feedback was obtained via a social media
campaign. The recommendation framework was released on arXiv [66], and a survey link was sent
by the Metrics Reloaded core team to various mailing lists, as well as posted on the social media plat-
forms LinkedIn, with the hashtag #imageanalysis, and Twitter, where we tagged various relevant
accounts, e.g., @MICCAIStudents, @ WomenInMICCAI, @midl_conference, @ELLISforEurope,
@ProjectMONAI, and @naturemethods. The original tweet received more than 42,000 impressions.
All co-authors were asked to distribute the survey among their colleagues and societies. Further-
more, the survey link was added to the released arXiv version. The survey was initially opened
at the beginning of June 2022 and closed at the end of July 2022. The community had the choice
between submitting one-click feedback or detailed feedback by answering questions on the compre-
hensiveness and usefulness of our approach, the specific mappings, as well as voicing concerns or
questions. In addition, we specifically asked for which biomedical use cases the framework should
be instantiated. All contributors were given the choice to be included in the acknowledgements. A
total of 186 researchers participated in the survey. Of those, 82 provided feedback in the form of
free text answers. 58 participants chose to give detailed feedback rather than one-click feedback.
A total of 46 researchers wished to be mentioned in the acknowledgements and provided their
names. Contributors who provided substantial feedback were invited into the consortium (seven
in total). The social media survey was used as a basis to select biomedical use cases for which
the framework was instantiated. Based on the feedback, we designed the metric cheat sheets (see
Suppl. Note 4). The implementation of the web toolkit was highly encouraged by several survey
participants. Moreover, in response to the feedback, an additional expert group on the topic of



calibration was established with newly recruited consortium members, which led to the generation
of the calibration recommendations captured in S5 (Extended Data Fig. 5). A revised framework,
with the community feedback integrated (e.g., including new classification metrics, such as the
EC), was presented to the consortium in another survey, based on which the Metrics Reloaded core
team compiled the final recommendations (captured in Fig. 2 and S1-S9) that served as basis for the
final Delphi-based consensus building.

6. Final Delphi consensus building. In the final stage, an accelerated final Delphi process was
initiated to vote for the ten core components of the recommendation framework (Fig. 2 and
Subprocesses S1-59). In response to the consortium’s comments, final modifications to the calibration
recommendations were made. After two rounds of revisions to S5, the final recommendation received
strong support (only one member disagreed). For all other nine components, the first round had
already resulted in a very strong consensus (disagreement 0%-7%). Minor modifications, primarily
concerning formatting and style, were communicated to the entire consortium whose members
were then given the opportunity to veto any of the changes, which none of the consortium made
use of.

Expert consortium

The expert consortium consisted of a total of 73 researchers (73% male, 27% female) from a total of
65 institutions. The majority of experts (52%) were professors, followed by postdoctoral researchers
(37%). The median h-index of the consortium was 34 (mean: 27; minimum: 6; maximum: 113) and
the median academic age was 18 years (mean: 19; minimum: 3; max: 42). Experts were from 18
countries and 5 continents. 66% of experts had a technical, 7% a clinical, 3% a biological, and 24%
a mixed background. From the 65 institutions, we could identify the number of employees for
88% of institutions. From those, the majority of institutions had a size between 1,000 and 10,000
employees (58%), followed by even larger institutions between 10,000 and 100,000 employees (25%),
and smaller institutions below 1,000 employees (16%). Only a small portion of institutions were
above 100,000 employees (2%).

Reference implementations

To overcome pitfalls related to metric implementation [86], we provide reference implementations
for all Metrics Reloaded metrics within the MONAI open-source framework. They are accessible at
https://github.com/Project-MONAI/MetricsReloaded.

Web-based tool

The recommendation framework was implemented as a web-based tool, which guides the users
through the entire recommendation processes of Fig. 2. The core advantage of the tool compared to
the decision trees depicted in S1-S9 is the fact that the tool automatically restricts the visualization
only to the relevant information that is required in each specific step and for the specific use case.
It further provides comprehensive profiles of all metrics contained in the Metric Reloaded pool.

The Metric Reloaded tool is available at https://metrics-reloaded.dkfz.de.
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SUPPL. NOTE 1 STEP 1-PROBLEM FINGERPRINTING

The first step in the framework Step 1: Problem fingerprinting (Fig. 2) requires the user to read the
general instructions provided in Suppl. Note 1.1, perform the problem category mapping according
to Suppl. Note 1.2, and generate the corresponding problem fingerprint as detailed in Suppl. Note 1.3.

1.1 General Instructions

Users of the Metrics Reloaded framework should read the following instructions prior to metric
selection.

Inclusion criteria. The Metrics Reloaded framework currently considers problems in which cate-
gorical target variables are to be predicted based on a given n-dimensional input image. Hence, it
covers a broad range of imaging modalities from classical 2D/3D modalities, such as fluorescence,
computed tomography (CT) or X-ray imaging, to novel, for example spectral, imaging modalities
that yield high-dimensional output per pixel [24]. Classification can occur at pixel, object or image
level, resulting in the four problem problem categories covered by the framework and depicted in
Fig. 4:

Image-level classification refers to the assignment of one or multiple category labels to the
entire image or fixed regions/predefined locations within an image.

Semantic segmentation refers to the assignment of one or multiple category labels to each
pixel. For many segmentation problems, object boundaries are generated in addition to the
pixel-wise classification images, which enables the computation of distance-based metrics,
such as the Normalized Surface Distance (NSD).

Object detection refers to the localization and categorization of an unknown number of
structures.

Instance segmentation refers to the localization and delineation of each distinct structure of
a particular class. It can be regarded as delivering the tasks of object detection and semantic
segmentation at the same time. In contrast to object detection, instance segmentation also
involves the accurate marking of the structure boundary. In contrast to semantic segmentation,
it distinguishes different structures of the same class.

Notably, the four different categories are mathematically closely related (Fig. 4) as they typically
rely on the generation of confusion matrices as a foundation of metric computation. Application
examples for all categories can be found in Fig. 5. Importantly, Metrics Reloaded does not require
an entire image to be provided as input for the validation. For example, the classification of a
Region of Interest (ROI) within a medical image may be required. In this example, the framework
would proceed with the ROI as input as if it was an entire image. Furthermore, the shape of the
image/input does not need to be rectangular. Finally, context information may be provided along
with the input. For example, medical images may be processed along with clinical data to arrive at
a diagnosis; video frames may be processed along with preceeding video snippets. Ultimately, only
the algorithm output must correspond to an n-dimensional image.

Phrasing of the biomedical task. The recommendation framework has been designed in a way to
support the metric selection and application process for one specific driving biomedical question.
In practice, multiple questions are often addressed with one given data set. For example, a clinician
may have the ultimate interest of diagnosing brain cancer in a patient based on a given magnetic
resonance imaging (MRI) data set. While this would be phrased as an image-level classification



task, an interesting surrogate task could be that of segmentation to assess the quality of tumor
delineation. In the case of multiple different driving biomedical questions, a recommendation is
generated separately for each question. This specifically holds true for multi-label problems, in
which multiple labels can simultaneously be assigned to the same image/object/pixel (e.g., multiple
sclerosis and brain tumor both assigned to the same magnetic resonance image). In such a case, the
problem should be converted to multiple binary problems, for which the framework is traversed
individually.

Matching reference annotations. The metric selection process begins with the step of mapping a
given problem with all its intrinsic and data set-related properties to the corresponding problem
category via the category mapping shown in Extended Data Fig. 1. Our framework assumes that
the reference annotations of the given data set meet the requirements of the identified problem.
Expected formats for both the reference annotations and the algorithm output are provided in
Suppl. Note 5.2.

Model-agnostic metric recommendation. Metrics should be chosen based solely on the driving
biomedical problem and not be affected by algorithm design choices. For example, the error functions
applied in common neural network architectures do not justify the use of corresponding metrics
(e.g., validating with Dice Similarity Coefficient (DSC) to match the Dice loss used for training a
neural network). Instead, the domain interest should guide the choice of metric, which, in turn, can
guide the choice of the loss term.

Dealing with multiple classes. Multi-class metrics, such as Accuracy or Matthews Correlation
Coefficient (MCC), have the unique advantage that they capture the performance of an algorithm
for all classes in a single score without the need for customized class-aggregation schemes. On
the other hand, they do now allow for detailed class-specific analyses. Metrics Reloaded therefore
generally recommends performing a per-class validation for all classes (in addition to potential
multi-class validation). Specifically in segmentation problems, problem properties may differ from
class to class (e.g. the size or size variability of target structures). In these rare cases, the problem
fingerprint needs to be generated separately for each class and several subprocesses (denoted by
the B-symbol in the framework overview shown in Fig. 2) need to be traversed separately for each
class. Although not common in current validation practice, this may - in theory - lead to different
validation metrics for different classes. We speak of class-specific metric pools in this case, which
are generated in addition to the multi-class metric pool.

Primary and secondary metrics. In general, biomedical interest cannot be captured with a single
metric. The framework has therefore been designed to recommend multiple complementary metrics
for a given task. We assume two main use cases for our framework. In comparative benchmarking
studies (e.g., competitive challenges), multiple algorithms or algorithm variants are compared on
identical data sets. This requires the ranking of the competing algorithms according to performance.
Typically, multiple complementary validation metrics are applied in this use case, resulting in
either multiple rankings or a merged ranking that takes all or several metric values into account.
We refer to the metrics that contribute to the (primary) ranking(s) as primary metrics. While our
framework focuses on the recommendation of primary metrics, users are invited to complement
them with secondary metrics according to their specific needs. Secondary metrics can additionally
be applied for comprehensive reporting, for example because they reflect complementary properties
of interest (e.g., compute time, carbon footprint), or for providing performance measures that are
comparable across publications. The computer vision community, for instance, typically reports
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the Intersection over Union (IoU) rather than the DSC. The second use case of metrics addressed
by our framework are validation studies centered around a single algorithm that focus on
comprehensive diagnostics rather than comparative assessment. In this case, it is often desired
to report as many complementary metrics as possible in order to comprehensively analyze the
properties of an algorithm. Users interested in this second use case can ignore the discrimination
between primary and secondary metrics.

Decision rule applied to predicted class scores. A classification system in practice operates by
making decisions. Converting the raw continuous model outputs — the predicted class scores -
into discrete decisions is achieved by determining an appropriate decision rule. Common options
are detailed in Suppl. Note 1.3 (— FP2.6: Decision rule applied to predicted class scores). While
identifying the optimal decision rule for a classification system is beyond the scope of this work, it
is important to know that the choice affects the selection of adequate validation metrics.

In binary tasks, defining an optimal decision rule boils down to determining a suitable cutoff (i.e.,
threshold) on predicted class scores (Fig. SN 1.1). In contrast, identifying an optimal decision rule for
multi-class problems is generally more complex. A common, intuitive workaround for this challenge
is to determine an individual decision rule for each predicted class score. However, this strategy
implies that multiple decisions are made for the same input, thus fundamentally changing the task to
multi-label classification (in this framework, multi-label classification is handled as separate binary
tasks, as detailed in Suppl. Note 1.1 - inclusion criteria). Instead, in practice, a multi-class system
requires a single global decision rule for all classes, which amounts to identifying optimal global
"decision regions’. The most common global decision rule is to simply select the class associated
with the highest predicted class score, which is typically implemented as an ’argmax’ operation
and is also referred to as a 'maximum a posteriori’ decision. Bayesian decision theory, however,
shows that this argmax rule is only the optimal choice in case of equal severity of class confusions
(FP2.5.2=False) and no compensation for class imbalances being requested (FP2.5.5=False). If one
of these requirements is not fulfilled, a cost-dependent variation of the argmax-rule should be
employed (see equation 44 in [40]). Further, the argmax decision rule assumes that predicted class
scores are calibrated (see Section 2.6 for details on calibration). Fig. SN 1.1 showcases a hypothetical
example of how argmax can be a suboptimal decision rule in combination with miscalibrated model
outputs. While a variety of calibration metrics is discussed in Section 2.6, it should be noted that
Expected Cost (EC) features a framework to directly validate the effect of a decision rule on the
quality of associated decisions. Moreover, any measured negative effect can be associated with the
miscalibration of scores, thus guiding users to enhance their decision making.

A further potential pitfall associated with the global decision rule of a classifier can occur when
the validation of a multi-class problem is primarily based on multi-threshold metrics. This is
because multi-threshold metrics, which do not rely on a decision rule, may conceal the fact that in
practice, the optimal global decision rule will not be identified. Thus, the resulting metric scores
may overestimate the decision-making performance of a model in practice.

Finally, an important consideration for identifying a decision rule of a classifier is that any
data-based optimization or search must be performed on a separate data split different from the
validation data. This consideration includes any configuration of re-calibration methods.



Argmax decision Optimal
rule decision rule === True label class 1

e== True label class 2

Number of samples

Predicted class score (class 2)

Fig. SN 1.1. Argmax decision rule for converting predicted class scores to a categorical label. Choosing the
class with the highest predicted class score does not necessarily result in the best decision-making, as for
example measured by Accuracy.

Notation. The notation for our recommendations has been based on Business Process Model
and Notation (BPMN)!. The individual components used in the recommendation diagrams are
explained in Fig. SN 5.1. Please note that we do not strictly follow BPMN to improve clarity of
presentation.

Terminology. Terminology may differ substantially across communities. For example, the statistics
community prefers the term Positive Predictive Value (PPV) over Precision, as the latter can be
confused with the mathematical precision (repeatability) term. In the medical domain, the term
validation is used for an independent assessment (untouched test set) of an algorithm, while the
machine learning community commonly uses a validation set for hyperparameter tuning. To avoid
confusion resulting from unclear terminology, we follow the general terminology of [85] and have
included a glossary in the Suppl. Note 5.4.

Thttps://www.omg.org/spec/BPMN/


https://www.omg.org/spec/BPMN/

Supplementary Notes — Metrics Reloaded 9

1.2 Problem Category Mapping

The problem fingerprinting (Step 1 in Fig. 2; see Sec. 1.3) begins with the step of mapping a given
problem with all its intrinsic and data set-related properties to the corresponding problem category
via the category mapping shown in Extended Data Fig. 1. This step is crucial for avoiding pitfalls
related to the inappropriate choice of the problem category, as detailed in the sister publication of
this work [86]. Specifically, when multiple instances of the same structure type can occur in an
image, it is typically advisable to phrase the underlying problem as an object detection or instance
segmentation problem rather than a semantic segmentation problem (Figs.1 and SN 1.2).

Reference Prediction (SemS) Prediction (InS)

s ks

—

R/ R2

R missed
Poor segmentation of R2

Fig. SN 1.2. Boundary-based metrics in semantic/instance segmentation problems. If multiple struc-
tures of the same type can be seen within the same image (here: reference objects R7and R2), it is generally
advisable to phrase the problem as instance segmentation (InS; right) rather than semantic segmentation
(SemS; left). This way, issues with boundary-based metrics resulting from comparing a given structure
boundary to the boundary of the wrong instance in the reference can be avoided. In the provided example,
the distance of the red boundary pixel to the reference, as measured by a boundary-based metric in SemS
problems, would be zero, because different instances of the same structure cannot be distinguished. This
problem is overcome by phrasing the problem as InS. In this case, (only) the boundary of the matched instance
(here: R2) is considered for distance computation.
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1.3 Generation of the problem fingerprint

Metrics Reloaded is based on the novel concept of problem fingerprinting — the generation of a
structured representation of the given problem that captures all aspects that are relevant for metric
selection. Specifically, the fingerprint comprises a set of items, each of which represents a specific
property of the problem, is either binary or categorical, and must be instantiated by the user. In the
following, we will refer to all fingerprint items with the notation FPX.Y, where Y is a numerical
identifier and the index X represents one of the following families: general, domain interest-related,
target structure-related, data set-related, algorithm output-related.

Fingerprint generation begins with the aforementioned mapping of the underlying problem
with its intrinsic and data set-related properties to the corresponding problem category via the
category mapping (Subprocess S1) shown in Extended Data Fig. 1. Next, the user needs to instantiate
the category-specific fingerprint items provided in Figs. SN 1.7-SN 1.9 (image-level classifica-
tion), Figs. SN 1.10/SN 1.11 (semantic segmentation), Figs. SN 1.12-SN 1.14 (object detection), and
Figs. SN 1.15-SN 1.17 (instance segmentation).

Instantiating fingerprint items may not always be straightforward due to their binary/categorical
nature. Therefore, the Metrics Reloaded tool comprises a "Why are we asking this question?" button
in each branch based on a fingerprint that may not be straightforward to instantiate. In case of
ongoing doubt, the user may traverse all appropriate branches originating from the questions.

Importantly, some fingerprint items require particularly careful consideration and/or are not
sufficiently self-explanatory. These are the following:

FP2.6: Decision rule applied to predicted class scores. Modern algorithms output (continuous)
predicted class scores. To classify cases in an actual biomedical application (i.e., to make actual
decisions), however, applying a decision rule to the scores is required; this amounts to setting
a cutoff value in the binary classification case. The deciding factor for whether or not to apply
a decision rule during validation should be how much focus is to be put on the quality of the
actual decisions of a classification system versus the general quality of its continuous predictions.
While some communities have converged to decision rule-based validation (e.g., cell instance
segmentation [20]), recent clinical initiatives advocate for decision rule-agnostic validation, arguing
that decision rules are often over-optimized on a specific data set, associated results are not
transferable across study cohorts (e.g., with differing disease prevalence) and clinical applications
(e.g., with differing cost-benefit trade-offs for patients), and continuous "risk scores" might be
beneficial for communicating results with patients [10, 73, 111]. One study goes so far as to call out
the common practice of imposing decision rules on continuous predictions as ‘dichotomania’ [117].
We handle this controversy in current practices by making validation with specific decision rules
applied optional (for all tasks except semantic segmentation) and encoding user preferences in this
fingerprint. The fingerprint offers the following decision rule strategies (Fig. SN 1.3):

Target-value based (for binary image-level classification problems) Sometimes, the un-
derlying problem provides a specific target metric value to be reached (e.g., Sensitivity of 0.95),
requiring a corresponding cutoff value. In this case, we use the notation Metric@(TargetMetric
= TargetValue), for example, Specificity@(Sensitivity = 0.95), denoting the Specificity for
a Sensitivity matching the target value (here: 0.95). Importantly, this cutoff needs to be
configured on a separate and dedicated data split.

Optimization-based If no specific target value is provided, a data-based decision rule can
also be identified by optimizing a primary metric (e.g., F; Score) using a dedicated data
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set for decision rule configuration. Notably, simple (one-dimensional) cutoff scans are only
possible in binary tasks, while identifying decision rules in multiple classes represents a
computationally and technically complex process.
Argmax-based An alternative widely used strategy is to simply apply a decision rule based on
the ’argmax’ operation, which boils down to a cutoff of 0.5 in binary classification problems.
The underlying hypothesis for this strategy is that the highest class score resembles the
highest probability for the associated class being the true class. In Bayesian theory, this
decision rule defines a Bayes classifier, and the theory further shows that the underlying
hypothesis only holds for equal severity of class confusions (FP2.5.2=False) and when the
class scores are calibrated. Detailed considerations for this decision rule strategy are provided

in Sec. 1.1.

Cost-benefit-based If the predicted class scores are calibrated (see FP2.7), and task-related
error costs or a risk cutoff (the latter only for binary classification tasks, e.g., "only treat
patients with cancer risk >10%") are provided, one can apply this decision rule directly to the
scores without data-driven optimization. Notably, in binary classification tasks, cost-benefit-
based cutoffs often correspond to a cost ratio of True Positive (TP) versus False Positive (FP)
(e.g., not more than 10FP per 1 TP should be treated), while for cost-based cutoffs the explicit
costs for both errors FP and False Negative (FN) are defined (see DG3.2, Suppl. Note 2.7.2).
Cost-based decision rules are further extendable to multi-class problems [40].

No decision rule applied A complementary strategy is to abstain from validating algorithms
under a certain decision rule and exclusively report results on multi-threshold metrics

(averaging over various cutoffs) instead.

Decision rule

Y

v

'

Target value-based decision rule

The cutoff represents the threshold for
which a specific target metric value
(e.g. Sensitivity = X) is achieved.

It requires a dedicated data split for
cutoff configuration and is only
applicable for binary problems

or when a dedicated target class

is defined
2
3
=
5
<
Y
&
- Specificity

Specificity@Sensitivity = X

Optimization-based decision rule

The cutoff is inferred by optimizing a
target metric on a validation data set.

It requires a dedicated data split for
cutoff configuration. It is mostly
applied for binary problems or when a
dedicated target class is defined
(to avoid multi-dimensional
optimization)

[ S

Target
metric

Argmax-based decision rule
The cutoff is chosen by picking the class
with the highest predicted class score.

Bayesian theory shows that this
cutoff is only optimal for equal costs
and when scores are calibrated.

Class 1:0.22
Class 2:0.05
Class 3:0.61
Class 4:0.12

Cost-benefit-based decision rule

If predicted class scores express the risk
associated with a case belonging to a certain
class and either a task related risk-
threshold or explicit error costs are provided,
one can apply this threshold directly to

the scores without data-driven optimization.

It should only be used for binary problems.

Cost-benefit analysis:
~9 unnecessary biopsies for
one detected lesion are
acceptable.

®

Fig. SN 1.3. Illustration of strategies for identifying a decision rule applied to predicted class scores.
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FP2.4 Desired granularity of localization. Selecting a localization criterion operating on a lower/
coarser resolution with regard to provided reference annotations effectively discards spatial informa-
tion and should be well motivated by the given task (see Fig. SN 1.4). For instance, Box Intersection
over Union (IoU) is sometimes employed despite access to pixel-mask annotations (FP4.4) because
associated models (object detectors) are considered simpler approaches compared to instance seg-
mentation models. Such simplification may cause problems if structures are not well-approximated
by a box shape — especially for 3D shapes, boxes usually constitute poor approximations — or if
structures can overlap (FP3.5), causing multi-component masks (see Fig. SN 1.5).

Information loss Information loss
%
Mask/Boundary loU Box loU Center point criterion

Fig. SN 1.4. Selection of a localization criterion that discards spatial information should be well motivated by
the given task.
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Box loU > 0.3: True positive (TP)
Box loU < 0.3: False positive (FP)

Reference Prediction | Prediction 2

Reference . Prediction . Prediction f
bounding box 1"‘-|I.Real object bounding box .‘I'|-||.Real object bounding box 1I'|-|LReaI object

= | [

ﬂ

Complex structure
Structure is not well
approximated by box

Disconnected structure
Box does not capture that
the structure is disconnected

Box loU = 0.35 Box loU = 0.35
™ X 7PV

Fig. SN 1.5. Bounding boxes are not well-suited for representing complex (top) and disconnected (bottom)
shapes. Specifically, they are not well-suited for capturing multi-component structures. Predictions 1and 2
both end up in a True Positive (TP) detection, as the Box Intersection over Union (loU) is larger than the
cutoff 0.3. However, Prediction 1 does not hit the real objects at all.

FP2.5.5: Compensation for class imbalances. While Accuracy is the de facto standard metric in
multi-class settings with balanced class frequencies and error costs, this metric is prone to several
pitfalls when class imbalances are present. To give an example, consider the following confusion
matrix for a binary classification task: TP = 0, FP = 1, FN = 1, TN = 10,000, which leads to an
accuracy of ~ 1. Three pitfalls pertain to this metric score, which at the same time represent the
three reasons why users may want to compensate for the underlying effects caused by the class
imbalance:
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Misleading metric values due to missing reference value for naive classifier: In the
provided example, the near-perfect score hides the fact that the same performance could have been
achieved by a naive system always predicting the dominant class. Generally, in balanced scenarios,
the Accuracy of a naive classifier is known to be “1/number of classes”, which serves as an important
anchor when interpreting the metric scores. However, when class imbalances are present, no such
interpretation can be made and the naive reference depends on the class prevalences.

Misleading metric values due to unequal contribution of classes to the metric score: In
the provided example, the near-perfect score hides the fact that all samples of the positive class (here:
one sample) were misclassified. While all classes contribute similarly to the Accuracy metric in
balanced scenarios, frequent classes dominate the performance value in imbalanced settings. While
0% (0/1) of the rare cases have been classified correctly, the metric achieves an almost perfect score
due to the very good performance on the dominant class. Other prevalence-independent metrics,
such as Balanced Accuracy (BA), are based on the equal contribution of each class irrespective of
prevalence.

Misleading metric values due to missing consideration of predictive values: In the pro-
vided example, the near-perfect score hides the fact that the positive predictive value of this system
is 0. Generally, in balanced scenarios, high accuracy scores imply high predictive values (Positive
Predictive Value (PPV) and Negative Predictive Value (NPV)), which are important indicators of the
utility of a classification system in practice. This is not necessarily the case in imbalanced scenarios,
as seen in the provided example, where the PPV is 0 despite a high Accuracy. To compensate for
this effect, alternative metrics such as Matthews Correlation Coefficient (MCC) can be considered,
which explicitly assess the predictive performance of a classifier.

FP4.2 Class prevalences reflect the population of interest. Class prevalences and their differences
across data sets are highly important, although this aspect is often ignored in common validation
practice. This can best be explained with the example of diagnostic tests, for example image-based
disease classification. While several metrics, such as Sensitivity and Specificity, are independent of
class frequencies and measure the inherent properties of the test, other metrics, such as Accuracy,
measure the test performance for the specific prevalence of the test set. This is not problematic
if the class prevalences of the provided test set reflect the population of interest, but can lead to
problems otherwise (see Fig. SN 1.6). This fingerprint should hence be set to true if either the
validation interest is constrained to the data set at hand (no future comparison to data sets with
different class prevalences is desired) or no variation of prevalences is expected in other cohorts
and upon application of the method.
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Inherent properties of a method: Sensitivity = 0.90, Specificity = 0.80

Application to data

Prevalence = 0.50 sets with different Prevalence = 0.90
class prevalences

PREDICTED PREDICTED
Positive  Negative Positive  Negative
ol FN glTe FN
2 § 45 5 2 § 81 9
> )
o o
% 2| FP N < 2| FP TN
g 10 40 g 2 8
z z
BA=0.85 BA=0.85
EC*=0.15 EC*=0.15
* Prevalence-corrected
Accuracy = 0.85 < Accuracy = 0.89) Prevalence
MCC=0.70 >> MCC=0.56 | dependent

Fig. SN 1.6. Effect of prevalence dependency. An algorithm with specific inherent properties (here: Sensitivity
of 0.9 and Specificity of 0.8) may perform completely differently on different data sets if the prevalences differ
(here: 50% (left) and 90% (right)) and prevalence-dependent metrics are used for validation (here: Accuracy
and Matthews Correlation Coefficient (MCC)). In contrast, prevalence-independent metrics (here: Balanced
Accuracy (BA) and the prevalence-corrected Expected Cost (EC)) can be used to compare validation results
across different data sets. Used abbreviations: True Positive (TP), False Negative (FN), False Positive (FP) and
True Negative (TN).
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IMAGE-LEVEL CLASSIFICATION (ImLC) PART 1

Fingerprint ID and name Fingerprint illustration Fingerprint description
Class 1 Image-level classification (ImLC): assignment of one or multiple category labels to
1.1 Image processing category the entire image.

identified by category mapping Example: disease screening; deciding on the presence or absence of a certain

condition/pathology without localizing the phenomenon.

Domain interest-related properties (part 1)

2.5 Penalization of errors There may be a preference for certain types of errors from a domain perspective.

Class 2

There is a preference for one or several of the classes. This has implications for
both the metric selection and the metric aggregation. It is important to note that
. this fingerprint only considers “a priori interest” in classes that is irrespective of
2.5.1 Unequal interest across Klﬁ the class prevalences in the data. This distinction is necessary, because one can
classes m also think of the importance of a class in terms of how much it contributes to the

final metric score. This latter concept, however, is based on the class prevalence at
hand and thus considered via compensation for class imbalances (FP2.5.5) in our
framework.
Note that class interest in this context can be considered as costs for all cells of a
confusion matrix related to one class as a whole. In contrast, “class confusions”
(FP2.5.2) considers individual cells in the confusion matrix.
Example 1: five-way classification on a heavily imbalanced dataset. One class domi-
nates the other classes in terms of frequency, but the interest lies in the overall error
rate of the system, implying the dominating class should contribute more to the final
metric score.
Example 2: In cell classification scenarios, it may be more important to correctly clas-
sify tumor cells compared to correctly classifying muscle cells or connective tissue.
Example 3: in full surgical scene segmentation for autonomous robotics, critical struc-
tures, such as nerves or vessels, should be localized more accurately compared to
fatty tissue.

Any class can be confused with another, but certain mismatches are more severe
than others, from a domain point of view. This holds especially true (1) in screen-
ing tasks, in which FNs are typically more severe than FP, (2) in retrieval tasks, in
which FP are typically more severe than FN and (3) in tasks with ordinal rating.
Note that class confusions in this context can be considered as costs for individu-
al cells in the confusion matrix, while “interest across classes” (FP2.5.1) would con-
sider all matrix cells related to one class as a whole.

It is important to note that this fingerprint only considers “a priori costs” of a task
that is irrespective of the class prevalences in the data. This distinction is neces-
sary, because one can also tweak the confusion costs in hindsight to compensate
for certain imbalances in the data (not considered here).

Example 1 (multi-class): Depending on the application, confusing different kinds of
immune cells is more problematic compared to confusing an immune cell with a
tumor epithelial cell.

Example 2 (multi-class): lung tumor categorization T1-T5 depends largely on struc-
ture size, implying an ordinal scale of classes. Thus, penalization of class confusions
should reflect this ordinal scale.

2.5.2 Unequal severity of class
confusions

The class prevalences do not reflect the class importance. There are three scenari-
os in which this property should be set to TRUE.
1. Class prevalences are balanced (FP4.1 = FALSE), but there is an unequal interest
—p across classes (FP2.5.1 = TRUE).
2.5.3 Mismatch between class T N R ™ T mmw 2 Classimbalance is present (FP4.1 = TRUE), but there is an equal interest across
prevalences and class # = classes (FP2.5.1 = FALSE).
importance K AE x AE 3. Class imbalance is present (FP4.1 = TRUE) and there is an unequal interest

™ N

across classes (FP2.5.1 = TRUE), but the way in which classes are imbalanced
does not match the “imbalance of interest”.
Importantly, while scenarios 1 and 2 can be expressed with other fingerprints,
scenario 3 represents a new set of use cases.

In the case of an unequal severity of class confusions (FP2.5.2 = TRUE), these un-
equal severities might be explicitly defined in the form of cost values associated
TP FN with each confusion. For example, a cost analysis may lead to the result that FN
2.5.4 Costs for class confusions TP FN | orrors are 5 times more costly than FP errors. In case such costs are defined or can
available P TN | be estimated with adequate accuracy for the use case, it is possible to apply cer-
FP@ TN tain metrics which explicitly consider these costs in validation (e.g., WCK and EC).
If costs are not provided and cannot be estimated, we recommend to proceed
with validation separately for individual classes.

Severe class imbalances might lower interpretability and impede objective as-
sessment of method validation and for example, lead to overly optimistic conclu-
sions. Specifically, we distinguish three pitfalls:

1. Missing reference value for random performance

2.Neglect of equal importance of classes

3. Missing consideration of predictive values

2.5.5 Compensation for class

imbalances requested m

The choice of counting metric(s) depends crucially on which of these pitfalls
should be avoided.

Fig. SN 1.7. Fingerprint for image-level classification (Part 1). In the case of binary fingerprint items,
the blue column shows examples for which the property is true while the red column shows counterexamples.
Categorical fingerprint items are only shown in blue. Suppl. Note 1.3 provides more detailed explanations of
selected fingerprint items. Used abbreviations: True Positive (TP), False Positive (FP), False Negative (FN),
True Negative (TN).
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IMAGE-LEVEL CLASSIFICATION (ImLC) PART

Fingerprint ID and name

2.6 Decision rule applied to
predicted class scores
Options:

- Target value-based

- Optimization-based

- Argmax-based

- Cost-benefit-based

- No decision rule applied

2.7.1 Calibration assessment
requested

2.7.2 Comparative calibration
assessment requested

Options:
- Comparison of re-calibration
- Comparison of calibration

- Comparison of overall

- No comparative assessment

2.7.3 Assessment of
interpretability of model
outputs requested

Options:
- Assessment of calibration
error in isolation

and discrimination
- No assessment of interpret-
ability required

methods on the same classifier
performance across classifiers

performance across classifiers

- Joint assessment of calibration

ingerprint illustration Fingerprint description

Domain interest-related properties (part 2)

Decision rule

Modern algorithms output continuous class scores. Making a classification decision requires
identifying a decision rule applied to the scores, which amounts to setting a cutoff value in
binary tasks. A product of this process is the (decision rule-specific) confusion matrix. This
matrix enables the computation of popular single-threshold counting metrics, such as Sensi-
tivity, PPV and F, Score. Depending on domain interest the decision rule can be set in multi-
ple ways:

Target value-based (only for binary tasks): The cutoff represents the threshold for which a
specific target metric value (e.g., Sensitivity = 0.95) is achieved. Importantly, this threshold
has to be determined on a separate data split. Other metric values (e.g., Specificity) are then
reported for this specific threshold. We use the notation Metric@(TargetMetric = TargetVal-
ue) (e.g., Specificity@Sensitivity = 0.95) in this case. This cutoff strategy is limited to binary
classification problems.

Optimization-based: The decision rule is inferred by optimizing a target metric, such as the F,
Score in the binary case, on a separate data split.

Argmax-based: Especially in multi-class scenarios and if no target value is defined, no sepa-
rate data split for optimization is available, or there are concerns w.r.t generalization of da-
ta-based decision rule optimization, a common option is to follow the principle of a Bayes
classifier and pick the class with the highest predicted class score.

Cost-benefit-based: In case the predicted class scores are calibrated (see FP2.7), and there is
either a task related risk-cutoff (only for binary classification tasks, e.g. “only treat patients
with cancer risk >10%”"), or explicit costs for misclassification errors provided, one can apply
this decision rule directly to the scores without data-driven optimization. Notably, in binary
classification tasks provided risk cutoffs are often based on a cost ratio of TP versus FP (e.g.,
not more than 10 FPs per 1 TP should be treated). In most cases, no specific risk cutoff can be
determined, thus model performance is plotted over a reasonable range of risk scores (“deci-
sion curve analysis”).

No decision rule applied: Examples for no interest in validating a method at a specific deci-
sion rule are 1) focus on general methodological performance across many tasks and data
sets without application interest, 2) concerns regarding the comparability of results based
on a single decision rule that is fixed across varying study cohorts (see also FP4.2), or 3) focus
on the probabilistic predictions to obtain and communicate personalized risk factors of indi-

When validating classification methods - particularly those with applications that involve direct human read-out - it is

2.7 Calibration of predicted class scores often crucial for the predicted class scores themselves to be interpretable. A system is well-calibrated if the predicted

class scores (i.e., the output of the model) reflect the true probabilities of the outcome (formal definition see App. C.6).

Q&S

This property should be set to TRUE if the predicted class scores should reflect the true
probabilities of the outcome. An obvious requirement for this assessment is that predicted
class scores are available (FP5.1 = TRUE). Methods subject to validation in this context are
either classification models whose inherent ¢ ion quality is d, or re-calibrati
methods, which are typically accuracy-preserving (bijective) transformations on the classmer
outputs aiming to improve calibration quality.

Comparison of re-calibration methods on the same classifier: The potential benefit of one or
more re-calibration methods is to be assessed and compared. The desired validation output
is a ranking of re-calibration methods (including the performance of "no re-calibration")
from which the best method can be selected.

Comparison of calibration performance across classifiers: This comparison of classification
models potentially includes re-calibration methods applied on their outputs. The desired
validation output is a ranking of methods according to calibration quality.

Comparison of overall performance across classifiers: Overall performance refers to the joint
assessment of discrimination performance and calibration quality. This comparison of classi-
fication models potentially includes re-calibration methods applied on their outputs. The
desired validation output is a single ranking naturally weighting both aspects.

No comparative assessment: If the interest lies in understanding the reliability of predicted
class scores for one given model, no metrics for comparative assessment are required.

There is an interest in understanding the reliability of predicted class scores for a given
model as a basis for interpreting and communicating results. The desired validation output is
a single score that captures the interpretability of the output. We differentiate two notions
of interpretability that correspond to different families of calibration-sensitive metrics.
Assessment of calibration error in isolation: The user may be interested in assessing the cali-
bration quality of a model “in isolation” (i.e., without associated discrimination power). Quan-
tifying this property is often a desirable aspect of validating a model. Knowing that predict-
ed class scores are well-calibrated allows making specific statements about individual
output scores such as “80% of outputs with score 0.8 belong to the true class”. Importantly,
calibration metrics do not assess whether outputs match the true posterior probabilities.
Hence, the “risk statements” depend on the model at hand (and its discrimination power)
and thus cannot assocnate a true model mdependent risk to a data sample (e.g., patient).

: An alternative approach to assessing the
interpretability of outputs is to compare the predicted class scores directly to the reference
and thus to quantify the overall performance of a model (discrimination and calibration) in
one joint score. This assessment can also be interpreted as measuring whether scores match
the true posteriors, e.g. the risks of individual patients. A disadvantage of this strategy is that
the calibration error is conflated with discrimination performance, thus prohibiting state-
ments about the reliability of particular scores such as “80% of outputs with score 0.8 belong
to the true class”.

Fig. SN 1.8. Fingerprint for image-level classification (Part 2). In the case of binary fingerprint items,

the blue column shows examples for which the property is true while the red column shows counterexamples.

Categorical fingerprint items are only shown in blue. Suppl. Note 1.3 provides more detailed explanations of
selected fingerprint items. Used abbreviations: True Positive (TP), False Positive (FP), False Negative (FN),

True Negative (TN).
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The class prevalences differ substantially.
. . Example: In a screening application, the positive class (e.g., cancer) may occur ex-
4.1 High class imbalance tremely rarely. In this case, prevalence-dependent metrics, such as Accuracy, may be
extremely misleading.

4.5 Non-independence of I::etsest cases are hierarchically structured, indicating non-independence of test

test cases Examples: multiple images of the same patient, hospital or video.

Algorithm output-related properties

Modern algorithms in biomedical image classification output continuous class
scores, which are often interpreted as predicted class probabilities. These scores
contain relevant information about the performance of a model and are thus
crucial for comprehensive and meaningful validation.

If no predicted class probabilities are available, this property is set to false.

5.1 Availability of predicted
class scores

Fig. SN 1.9. Fingerprint for image-level classification (Part 3). In the case of binary fingerprint items,
the blue column shows examples for which the property is true while the red column shows counterexamples.
Categorical fingerprint items are only shown in blue. Suppl. Note 1.3 provides more detailed explanations of
selected fingerprint items. Used abbreviations: Reference (Ref), Prediction (Pred), True Positive (TP), False
Positive (FP), False Negative (FN), True Negative (TN).
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Semantic segmentation (SemS): assignment of one or multiple category labels to
each pixel.

Example: surgical scene seg ion for robotics; assigning each pixel
the c ponding struc g hology label.

1.1 Image processing category
identified by category mapping

Domain interest-related properties

The biomedical application requires exact structure boundaries.
le: seg. ion for radiotherapy planning; k ledge of exact structure
boundaries is crucial to destroy the tumor while sparing healthy tissue.

2.1 Particular importance of

structure boundaries Important: Overlap-based metrics do not measure shape agreement. In the case

of complex shapes (high boundary-to-volume ratio) it is therefore typically
advisable to set this property to TRUE.

The biomedical application requires accurate knowledge of structure centers.
Example: cell centers are subsequently used for cell tracking and cell motion
characterization, so false center should be supp. d.

2.3 Particular importance of structure
center (e.g., in cells, vessels)

Any class can be confused with another, but certain mismatches are more severe
than others, from a domain point of view. This holds especially true (1) in screen-
ing tasks, in which FN are typically more severe than FP, (2) in retrieval tasks, in
which FP are typically more severe than FN and (3) in tasks with ordinal rating.
Note that class confusions in this context can be considered as costs for individual
cells in the confusion matrix, while “interest across classes” (FP2.5.1) would consid-
er all matrix cells related to one class as a whole.

Itis important to note that this fingerprint only considers “a priori costs” of a task
that is irrespective of the class prevalences in the data. This distinction is neces-
sary, because one can also tweak the confusion costs in hindsight to compensate
for certain imbalances in the data.

Example (multi-class): lung tumor categorization T1-T5 depends largely on structure
size, implying an ordinal scale of classes. Thus, penalization of class confusions should
reflect this ordinal scale.

2.5.2 Unequal severity of class
confusions

The reference annotation is typically only an approximation of the (forever un-
2.5.7 Compensation for annotation known) ground truth. It may be desirable to compensate for known uncertainties,
imprecisions requested such as intra-rater or inter-rater variability, by cor ing the metric accordingl;
This is only possible for some metrics.

Fig. SN 1.10. Fingerprint for semantic segmentation (Part 1). In the case of binary fingerprint items, the
blue column shows examples for which the property is true while the red column shows counterexamples.
Categorical fingerprint items are only shown in blue. Suppl. Note 1.3 provides more detailed explanations of
selected fingerprint items. Used abbreviations: Reference (Ref), Prediction (Pred), True Positive (TP), False
Positive (FP), False Negative (FN), True Negative (TN).
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Target structure-related properties

3.1 Small size of structures relative
to pixel size

Structures of the provided class are only a few pixels in size.
Example: multiple sclerosis lesions in magnetic resonance imaging (MRI) scans.

3.3 Target structures feature
tubular shape

The target structures feature a tubular shape.
Examples: vessels, neurons, microtubules.

3.5 Possibility of overlapping or
touching target structures
(e.g., medical instruments or cells)

Different instances of a class can overlap or touch each other.
pl lapping cells or isms, such as BBBCO10 (worms in a dish); over-
lapping medical instruments in laparoscopy.

The class prevalences differ substantially.

Example: In a screening application, the positive class (e.g., cancer) may occur ex-
tremely rarely. In this case, prevalence-dependent metrics, such as Accuracy, may be
extremely misleading.

4.1 Presence of class imbalance

4.3.1 High inter-/intra-rater

A The reference can be assumed to be noisy due to high inter-rater variability.
variability

The test cases are hierarchically structured, indicating non-independence of test
cases.
Examples: multiple images of the same patient, hospital or video.

4.5 Non-independence of test cases

Algorithm output-related properties

5.2 Possibility of algorithm output
not containing the target The algorithm may yield outputs in which not all classes are present.
structure(s)

Fig. SN 1.11. Fingerprint for semantic segmentation (Part 2). In the case of binary fingerprint items, the
blue column shows examples for which the property is true while the red column shows counterexamples.
Categorical fingerprint items are only shown in blue. Suppl. Note 1.3 provides more detailed explanations of
selected fingerprint items.
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OBJECT DETECTION (ObD) PART 1

Fingerprint ID and name

Fingerprint illustration Fingerprint description

1.1 Image processing category
identified by category mapping

58]

=

Object detection (ObD): detection and localization of structures of one or multiple cate-
gories.
Example: detection and bounding box-based localization of polyps in colonoscopy sequences.

2.3 Particular importance of structure
center (e.g., in cells, vessels)

2.4 Desired granularity of
localization
Options:
- Only position
-Rough outline
- Exact outline

2.5 Penalization of errors

2.5.1 Unequal interest across
classes

2.5.2 Unequal severity of class
confusions

2.5.3 Mismatch between class
prevalences and class
importance

2.5.8 Penalization of multiple
predictions assigned to the
same reference object
requested

LET LT
EE

There may be a preference for certain types of errors from a domain perspective.

¢
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Domain interest-related properties (part 1)

The biomedical application requires accurate knowledge of structure centers.
Example: cell centers are subsequently used for cell tracking and cell motion
characterization, so false center should be

The granularity of required localization can vary in object detection tasks. We
distinguish two main categories:

ition: given an n-dimensional image, the object is represented by its
position, encoded in n degrees of freedom (e.g. xy/xyz coordinates of center point).

ine: a rough outline of the object is provided, typically given by simple geo-

metric approximations such as ing boxes or ellipsoit
It should be noted that if a substantial fraction of objects are tiny (FP3.1), any
outline-based localization becomes very noisy. In such cases, users might want to consider
alternative localization strategies, such as a center point-based
localization.

There is a preference for one or several of the classes. This has implications for both the
metric selection and the metric aggregation. It is important to note that this fingerprint
only considers “a priori interest” in classes that is irrespective of the class prevalences in
the data. This distinction is necessary, because one can also think of the importance of a
class in terms of how much it contributes to the final metric score. This latter concept,
however, is based on the class prevalence at hand and thus considered via compensation
for class imbalances (FP2.5.5) in our framework.

Note that class interest in this context can be considered as costs for all cells of a confu-
sion matrix related to one class as a whole. In contrast, “class confusions” (FP2.5.2) consid-
ers individual cells in the confusion matrix.

Example 1: five-way classification on a heavily imbalanced dataset. One class dominates the
other classes in terms of frequency, but the interest lies in the overall error rate of the system,
implying the dominating class should contribute more to the final metric score.

Example 2: In cell classification scenarios, it may be more important to correctly classify tumor
cells compared to correctly classifying muscle cells or connective tissue.

Example 3:in full surgical scene segmentation for autonomous robotics, critical structures,
such as nerves or vessels, should be localized more accurately compared to fatty tissue.

Any class can be confused with another, but certain mismatches are more severe than
others, from a domain point of view. This holds especially true (1) in screening tasks, in
which FN are typically more severe than FP, (2) in retrieval tasks, in which FP are typically
more severe than FN and (3) in tasks with ordinal rating.

Note that class confusions in this context can be considered as costs for individual cells in
the confusion matrix, while “interest across classes” (FP2.5.1) would consider all matrix
cells related to one class as a whole.

Itis important to note that this fingerprint only considers “a priori costs” of a task that is
irrespective of the class prevalences in the data. This distinction is necessary, because
one can also tweak the confusion costs in hindsight to compensate for certain imbalanc-
es in the data (not considered here).

Example 1 (binary): polyp detection; a FN (missed polyp) is clinically much more severe than a
FP.

Example 2 (multi-class): Depending on the application, confusing different kinds of immune
cells is more problematic compared to confusing an immune cell with a

tumor epithelial cell.

Example 3 (multi-class): lung tumor categorization T1-T5 depends largely on structure size,
implying an ordinal scale of classes. Thus, penalization of class confusions should reflect this
ordinal scale.

The class prevalences do not reflect the class importance. For metric selection it is crucial

to understand whether the class prevalences match the target population (covered by

FP4.2) and whether they match the class importance. There are three scenarios in which

this property should be set to TRUE:

1. Class prevalences are balanced (FP4.1 = FALSE), but there is an unequal interest across
classes (FP2.5.1 = TRUE).

2.Class imbalance is present (FP4.1 = TRUE), but there is an equal interest across classes
(FP2.5.1 = FALSE).

3.Class imbalance is present (FP4.1 = TRUE) and there is an unequal interest across
classes (FP2.5.1 = TRUE), but the way in which classes are imbalanced does not match
the “imbalance of interest”.

Importantly, while scenarios 1 and 2 can be expressed with other fingerprints, scenario 3

represents a new set of use cases.

Object detection algorithms involve the step of assigning predicted objects to reference
objects. This may result in more than one prediction being assigned to the same refer-
ence. This fingerprint property should be set to TRUE if all but one prediction of such an
assignment (i.e., “double assignments”) should be penalized as FP, and set to false if
these spare predictions should be ignored during validation. Note that in the inverse
case of one prediction assigned to multiple reference objects, the convention is to not
ignore the spare (non-matched) reference(s), but penalize them as FN (or via applica-

tion-specific penalization such as “merge errors” or subsequent segmentation metrics).

21

Fig. SN 1.12. Fingerprint for object detection (Part 1). In the case of binary fingerprint items, the
blue column shows examples for which the property is true while the red column shows counterexamples.
Categorical fingerprint items are only shown in blue. Suppl. Note 1.3 provides more detailed explanations of
selected fingerprint items. Used abbreviations: True Positive (TP), False Positive (FP), False Negative (FN),

True Negative (TN).
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OBJECT DETECTION (ObD) PART

Fingerprint ID and name

Fingerprint illustration Fingerprint description

interest-related properties (part 2)

Modern algorithms output continuous class scores. Making a classification deci-
sion requires identifying a decision rule applied to the scores, which amounts to
setting a cutoff value in binary tasks. A product of this process is the (decision
rule-specific) confusion matrix. This matrix enables the computation of popular
single-threshold counting metrics, such as Sensitivity, PPV and F, Score. Depend-
2.6 Decision rule applied to ing on domain interest the decision rule can be set in multiple ways:
predicted class scores Target value-based (only for binary tasks): The cutoff represents the threshold for
which a specific target metric value (e.g., Sensitivity = 0.95) is achieved. Important-
ly, this threshold has to be determined on a separate data split. Other metric values
(e.g., Specificity) are then reported for this specific threshold. We use the notation
- Optimization-based Metric@(TargetMetric = TargetValue) (e.g., Specificity@Sensitivity = 0.95) in this
- Argmax-based case. This cutoff strategy is limited to binary classification problems.
- No decision rule applied Optimization-based: The decision rule is inferred by optimizing a target metric,
such as the F, Score in the binary case, on a separate data split.
Argmax-based: Especially in multi-class scenarios and if no target value is defined,
no separate data split for optimization is available, or there are concerns w.r.t gen-
eralization of data-based decision rule optimization, a common option is to follow
the principle of a Bayes classifier and pick the class with the highest predicted class
score.
No decision rule applied: Examples for no interest in validating a method with a
specific decision rule are 1) focus on general methodological performance across
many tasks and data sets without application interest, 2) concerns regarding the
comparability of results based on a single decision rule that is fixed across varying
study cohorts, or 3) focus on the probabilistic predictions to obtain and communi-
cate personalized risk factors of individual patients.

Decision rule
:

Options:
- Target value-based

et structure-related prope

3.1 Small size of structures relative r Structures of the provided class are only a few pixels in size.
to pixel size — Example: multiple sclerosis lesions in magnetic resonance imaging (MRI) scans.

The target structures vary substantially in size, such that some structures are

3.2 High variability of structure sizes [~ % several times the size of others.

(within an image and/or Example: polyps in colonoscopy screening, where some polyps are several times the
9 size of others.

across images) Counterexample: large organs, such as the liver or the kidneys, which are relatively
comparable in size across individual
3.3 Target structures feature 1l.. . The target structures feature a tubular shape.
tubular shape Examples: vessels, neurons, microtubules.
3.5 Possibility of overlapping or Different instances of a class can overlap or touch each other.
touching target structures ‘ h P pping cells or isms, such as BBBCO10 (worms in a dish); over-
(e.g., medical instruments or cells) lapping medical instruments in laparoscopy.
3.6 Possibility of disconnected u A given structure appears disconnected in the given image.
t  SEUEE) - I Examples: neurons in 2D microscopy of a slice of tissue; single tomographic image
ElfgR SitEiiEs slice depicting complex vessels.

Fig. SN 1.13. Fingerprint for object detection (Part 2). In the case of binary fingerprint items, the
blue column shows examples for which the property is true while the red column shows counterexamples.
Categorical fingerprint items are only shown in blue. Suppl. Note 1.3 provides more detailed explanations of
selected fingerprint items. Used abbreviations: True Positive (TP), False Positive (FP), False Negative (FN),
True Negative (TN).
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OBJECT DETECTION (OBD) PART

Data set-related properties

The class prevalences differ substantially.
Example: In a screening application, the positive class (e.g., cancer) may occur ex-

tremely rarely. In this case, prevalence-dependent metrics, such as Accuracy, may be
extremely misleading.

4.1 Presence of class imbalance

4.3.1 High inter-/intra-rater
variability

4.4 Granularity of provided reference The granularity of the reference can vary in object detection problems. We

annotations distinguish three main categories:
Options: Only position: Given an n-dimensional image, the object is represented by its
S position, encoded in n degrees of freedom (e.g. xy/xyz coordinates of center point)
- Only position Rough outline: A rough outline of the object is provided, typically given by simple

- Rough outline
- Exact outline

geometric objects such as bounding boxes or ellipsoids.
ine: The object is outlined exactly.

4.6 Possibility of reference without

There are test cases in which the reference for at least one class is empty.
target structure(s)

Algorithm output-related properties

Modern algorithms in biomedical image classification output continuous class
scores, which are often interpreted as predicted class probabilities. These scores
contain relevant information about the performance of a model and are thus
crucial for comprehensive and meaningful validation.

In object detection, predicted class probabilities are typically available for each
detected object.

If no predicted class probabilities are available, this property is set to false.

5.1 Availability of predicted
class scores

5.3 Possibility of invalid algorithm
output (e.g., Prediction is NaN)

The files representing the algorithm output can contain invalid output. Note that
an invalid prediction differs from an empty prediction.

Fig. SN 1.14. Fingerprint for object detection (Part 3). In the case of binary fingerprint items, the
blue column shows examples for which the property is true while the red column shows counterexamples.
Categorical fingerprint items are only shown in blue. Suppl. Note 1.3 provides more detailed explanations of
selected fingerprint items. Used abbreviations: Reference (Ref), Prediction (Pred).
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INSTANCE SEGMENTATION (InS) PART 1

Instance segmentation (InS): detection and delineation of each distinct object of a
particular class. It can be regarded as delivering the tasks of object detection and se-
mantic segmentation at the same time. In contrast to object detection, instance seg-
mentation also involves the accurate marking of the object boundary. In contrast to
semantic segmentation, it distinguishes different instances of the same class.
Example: cell ion with a goal of ing cell properties.

1.1 Image processing category
identified by category mapping

Domain interest-related properties (part 1)

The biomedical appllcatlon requlres exact structure boundaries.
Example: for ledge of exact structure bound-
aries is crucial to destroy the tumor while sparing healthy tissue.

2.1 Particular importance of structure
boundaries Important: Overlap-based metrics do not measure shape agreement. In the case of
complex shapes (high boundary-to-volume ratio) it is therefore typically
advisable to set this property to TRUE.

The biomedical application requires accurate knowledge of structure centers.
Example: cell centers are subsequently used for cell tracking and cell motion
characterization, so false center should be supp

2.3 Particular importance of structure
center (e.g., in cells, vessels)

Any class can be confused with another, but certain mismatches are more severe
than others, from a domain point of view. This holds especially true (1) in screening
tasks, in which FN are typically more severe than FP, (2) in retrieval tasks, in which FP
are typically more severe than FN and (3) in tasks with ordinal rating.

Note that class confusions in this context can be considered as costs for individual
cells in the confusion matrix, while “interest across classes” (FP2.5.1) would consider
all matrix cells related to one class as a whole.

Itis important to note that this ﬁngerpnm only considers “a priori costs” of a task that
is

2.5.2 Unequal severity of class of the class in the data. This distinction is necessary, be-
confusions cause one can also tweak the costs in hindsight to for certain
. imbalances in the data (not considered here).
a) for detection Example 1 (multi-class): D th different kinds of
b) for segmentation immune cells is more proble pared to immune cell with a
(per instance) tumor epithelial cell.
Example 2 (multi-class): lung tumor categorization T1-T5 depends largely on structure
size, implying an ordinal scale of classes. Thus, I of class conft should
reflect this ordinal scale.

Specifically in instance segmentation problems, the property needs to be set sepa-
rately for the valldatlon of the (a) detection (relevant decision guide: 3.5) and (b) seg-

(relevant sub; S6). At object level, FNs (missed in-
stances) are sometimes more severe than FPs, while FNs (e.g. undersegmentation)
and FPs (e.g. oversegmentation) may be equally important at pixel level.

Fig. SN 1.15. Fingerprint for instance segmentation (Part 1). In the case of binary fingerprint items, the
blue column shows examples for which the property is true while the red column shows counterexamples.
Categorical fingerprint items are only shown in blue. Suppl. Note 1.3 provides more detailed explanations of
selected fingerprint items. Used abbreviations: True Positive (TP), False Positive (FP), False Negative (FN),
True Negative (TN).
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INSTANCE SEGMENTATION (InS) PART 2

Fingerprint ID and name

Fingerprint illustration

Fingerprint description

2.5.6 Handling of spatial outliers

2.5.7 Compensation for annotation
imprecisions requested

2.5.8 Penalization of multiple
predictions assigned to the
same reference object
requested

2.6 Decision rule applied to
predicted class scores
Options:

- Target value-based

- Optimization-based

- Argmax-based

- No decision rule applied

Domain interest-related properties (part 2)

o

C il

P Ref TP
Ref@
FP ignored

Decision rule

Spatial outliers are FP predictions that feature a large distance to the reference.
They can be handled in three different ways:

Distance-based penalization with outlier focus: Individual outliers should be heavily
penalized as a function of the distance to the reference contour.

Distance-based penalization with whole contour focus: Outliers should be penal-
ized as a function of the distance to the reference, but the assessment should focus
on the general contour agreement rather than individual outliers.

Existence-based penalization: The existence of spatial outliers should be penalized
irrespective of their distance to the reference contour.

Note that distance-based penalization is not possible when either the reference or
the prediction is empty. In applications in which many of such cases potentially
occur, we therefore recommend an existence-based penalization.

The reference annotation is typically only an approximation of the (forever
uncertainties, such as intra-rater or inter-rater variability, by configuring the
metric accordingly. This is only possible for some metrics.

Instance segmentation algorithms often involve the step of assigning predicted
objects to reference objects. This may result in more than one prediction being
assigned to the same reference. This fingerprint property should be set to TRUE if
all but one prediction of such an assignment (i.e., “double assignments”) should
be penalized as FP, and set to false if these spare predictions should be ignored
during validation. Note that in the inverse case of one prediction assigned to mul-
tiple reference objects, the convention is to not ignore the spare (non-matched)
reference(s), but penalize them as FN (or via application-specific penalization
such as “merge errors” or subsequent segmentation metrics).

Modern algorithms output continuous class scores. Making a classification decision
requires identifying a decision rule applied to the scores, which amounts to setting a
cutoff value in binary tasks. A product of this process is the (decision rule-specific)
confusion matrix. This matrix enables the computation of popular single-threshold
counting metrics, such as Sensitivity, PPV and F, Score.
Depending on domain interest the decision rule can be set in multiple ways:
Target value-based (only for binary tasks): The cutoff represents the threshold for
which a specific target metric value (e.g., Sensitivity = 0.95) is achieved. Importantly,
this threshold has to be determined on a separate data split. Other metric values
(e.g., Specificity) are then reported for this specific threshold. We use the notation
Metric@(TargetMetric = TargetValue) (e.g., Specificity@Sensitivity = 0.95) in this case.
This cutoff strategy is limited to binary classification problems.

imization-| : The decision rule is inferred by optimizing a target metric, such
asthe F, Score in the binary case on a separate data split.
Argmax-based: Especially in multi-class scenarios and if no target value is defined, no
separate data split for optimization is available, or there are concerns w.r.t generaliza-
tion of data-based decision rule optimization, a common option is to follow the prin-
ciple of a Bayes classifier and pick the class with the highest predicted class score.
No decision rule applied: Examples for no interest in validating a method with a spe-
cific decision rule are 1) focus on general methodological performance across many
tasks and data sets without application interest, 2) concerns regarding the compara-
bility of results based on a single decision rule that is fixed across varying study co-
horts, or 3) focus on the probabilistic predictions to obtain and communicate per-
sonalized risk factors of individual patients.

Fig. SN 1.16. Fingerprint for instance segmentation (Part 2). In the case of binary fingerprint items, the

blue column shows examples for which the property is true while the red column shows counterexamples.

Categorical fingerprint items are only shown in blue. Suppl. Note 1.3 provides more detailed explanations of
selected fingerprint items. Used abbreviations: Reference (Ref), True Positive (TP), False Positive (FP), False
Negative (FN), True Negative (TN).
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INSTANCE SEGMENTATION (InS) PART 3

Target structure-related properties

3.1 Small size of structures relative
to pixel size

3.3 Target structures feature
tubular shape

Structures of the provided class are only a few pixels in size.
Example: multiple sclerosis lesions in magnetic resonance imaging (MRI) scans.

The target structures feature a tubular shape.
Examples: vessels, neurons, microtubules.

3.5 Possibility of overlapping or Different instan

ces of a class can overlap or touch each other.
touching target structures

lapping cells or isms, such as BBBCO10 (worms in a dish); overlapping

(e.g., medical instruments or cells) medical instruments in laparoscopy.

The class prevalences differ substantially. Example: In a screening application, the posi-
tive class (e.g., cancer) may occur extremely rarely. In this case, prevalence-dependent met-
rics, such as Accuracy, may be extremely misleading.

4.1 Presence of class imbalance

4.3.1 High inter-/intra-rater
variability

The test cases are hierarchically structured, indicating non-independence of test cases.

4.5 Non-independence of test cases Examples: multiple images of the same patient, hospital or video.

Modern algorithms in biomedical image classification output continuous class scores,
which are often interpreted as predicted class probabilities. These scores contain rele-
vant information about the performance of a model and are thus

crucial for comprehensive and meaningful validation.

Instance segmentation problems in the biomedical domain are often approached by
adding a post-processing step (e.g. connected component analysis) to a

semantic segmentation algorithm. In this process, predicted class probabilities often
get lost.

If no predicted class probabilities are available, this property is set to false.

5.1 Availability of predicted
class scores

5.3 Possibility of invalid algorithm
output (e.g., Prediction is NaN)

The files representing the algorithm output can contain invalid output. Note that an
invalid prediction differs from an empty prediction.

Fig. SN 1.17. Fingerprint for instance segmentation (Part 3). In the case of binary fingerprint items, the
blue column shows examples for which the property is true while the red column shows counterexamples.
Categorical fingerprint items are only shown in blue. Suppl. Note 1.3 provides more detailed explanations of
selected fingerprint items. Used abbreviations: Reference (Ref), Prediction (Pred).
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SUPPL. NOTE2 STEP 2 - METRIC SELECTION

As a foundation for the metric selection process, the Metrics Reloaded consortium compiled a set of
common reference-based validation metrics (Suppl. Note 2.1). The framework leverages the problem
fingerprints to guide the user through the process of selecting an appropriate set of category-specific
reference-based validation metrics while being made aware of potential pitfalls related to individual
choices. A bird’s eye perspective of the process is shown in Fig. 2. A detailed explanation for the
selection of reference-based metrics is provided separately for all four problem categories in Suppl.
Notes 2.2-2.5. Details on selecting appropriate calibration metrics, if desired, are given in Suppl.
Note 2.6. The corresponding formal decision trees (subprocesses) along with corresponding decision
guides are shown in Extended Data Figs. 1-9 and Suppl. Note 2.7, respectively.

2.1 Metrics Reloaded pool of reference-based metrics

The Metrics Reloaded pool of common reference-based validation metrics is shown in Tab. SN 2.1.
Most of these metrics are directly or indirectly based on the cardinalities of the confusion matrix
(i.e., the true (T)/false (F) positives (P)/negatives (N) in binary problems). For the purpose of metric
recommendation, we follow the terminology in the sister publication of this work [85] and classify
the metrics into counting metrics that operate directly on a single fixed confusion matrix and
express the metric value as a function of the cardinalities, multi-threshold metrics that operate
on a dynamic confusion matrix, and distance-based metrics, designed to measure differences
between boundaries, volumes, center (line)s or shapes [85]. In addition to these, our framework
considers metrics designed to measure calibration capabilities of models.

Importantly, many popular counting metrics are closely related. In Fig. SN 2.1, we categorize the
relationship as follows.

(1) : For some metrics, various terms exist. Popular examples are:

o Recall = Sensitivity = True Positive Rate (TPR) = Hit rate

e Positive Predictive Value (PPV) = Precision

e Dice Similarity Coefficient (DSC) = F; Score (at pixel level)

(2) : Some metrics are directly computable from each other
without further information. Popular examples are:

e Accuracy = 1 - Error Rate (ER)

e DSC = (2 * Intersection over Union (IoU))/(1 + IoU)

e Balanced Accuracy = (Bookmaker Informedness (BM) + 1) / 2

(3) Generalization/Instantiation: Some metrics are an instantiation of others. Popular examples
are:

e DSC is an instantiation of the Fg Score for = 1

e Accuracy is a specialization of Expected Cost (EC), where costs are chosen as "0-1-costs",
meaning c; = 0 and ¢;; = 1 otherwise.

e Balanced Accuracy (BA) is a specialization of EC, where costs are chosen such that ¢;; = 0
and ¢;; = CLPI_ with P; reflecting the class prevalence of class i and C denoting the number
of classes.

4) : Assuming a simple problem setup, additional
metrics coincide. Popular examples are:

e Assuming perfect class balance in a binary problem, BA = Accuracy = Cohen’s Kappa (CK)

e Assuming = 1 allows to compute IoU and Jaccard index from Fg Score



28

(5) : Some metrics share another notable relationship. These are
detailed in the metric cheat sheets (Suppl. Note 3.1)

Cheat sheets for all metrics, comprising basic information such as definition and links to reference
implementations, relationships to other metrics, and Metrics Reloaded recommendations for their
usage, can be found in Suppl. Note 3.1.
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Table SN 2.1. Overview of recommended reference-based metrics. For each metric, name, acronym,
synonyms, reference to the definition and illustration, range and corresponding problem categories are
provided. The direction of the arrow in the ’range’ column indicates whether higher (up) or lower scores
(down) are better. A detailed introduction and discussion of all metrics can be found in the sister publication
of this work [85]. ImLC: image-level classification; SemS: semantic segmentation; ObD: object detection; InS:

instance segmentation.

Metric Acronym Synonyms Definition Range Recommended for
ImLC SemS ObD InS
Counting Metrics
Accuracy [42, 99] [0,1] 7 X
Balanced Accuracy BA [42, 99] [0,1]1 T X
Weighted Cohen’s Kappa WCK Cohen’s Kappa Coefficient, Kappa [27] [1,1] 7 X
Statistic, Kappa Score
centerline Dice Similarity Coeffi- cIDice [93] [0,1]1 7 X X
cient
Dice Similarity Coefficient DsC Serensen-Dice Coefficient, F1 Score, [35] [0,1] T X X
Balanced F Score
Expected Cost EC [15, 40] (-0, 00) | X
Fp Score [23] [0,1] T x X x x
False Positives per Image* FPPL [8, 108] [0, ) | X X
Intersection over Union ToU Jaccard Index, Tanimoto Coefficient [52] [0,1] T X X
Matthews Correlation Coefficient McCC Phi Coefficient [69] [1,1] 7 X
Panoptic Quality PQ [56] [0,1] T x
Net Benefit NB [111] (-00,00) T X
Negative Predictive Value* [14, 99] [0,1] T x
Positive Likelihood Ratio LR+ Likelihood Ratio Positive, Likelihood [6] [0, ) T X
Ratio for Positive Results
Positive Predictive Value* PPV Precision [14, 42, 99] [0,1]1 7 X X X
Sensitivity™ Recall, Hit Rate, True Positive Rate [14, 42, 99] [0,1]1 7 X X X
(TPR)
Specificity™ Selectivity, True Negative Rate (TNR) [14, 42, 99] [0,1] 7 X
Multi-threshold Metrics
Area under the Receiver Operating ~ AUROC Area under the curve (AUC), AUC Re- [47] [0,1] 7 X
Characteristic Curve ceiver Operating Characteristic (ROC),
C-Index, C-Statistics
Average Precision AP [64] [0,1] T X X X
Free-Response Receiver Operating ~ FROC Score [8, 108] [0,1] 7 X X
Characteristic Score
Distance-based Metrics
Average Symmetric Surface Dis-  ASSD [119] [0, ) | X X
tance
Boundary Intersection over Union Boundary IoU [22] [0,1]1 T X X
Hausdorff Distance HD Hausdorff Metric, Pom- [50] [0, 00) | X X
peiu-Hausdorff Distance, Maximum
Symmetric Surface Distance
Mean Average Surface Distance MASD [11] [0, 00) | X X
Normalized Surface Distance NSD Normalized Surface Dice, Surface Dis- [80] [0,1] T X X
tance, Surface Dice
Xh Percentile Hausdorff Distance X" Per- [50] [0, ) | X X
centile HD
Calibration Metrics
Brier Score BS [17] [0,1] | X X X
Class-wise Calibration Error CWCE [59, 60] [0,1] | X X X
Expected Calibration Error ECE [44, 74] [0,1] | X X X
Expected Calibration Error Kernel ~ ECEKPE [83] [0,1] | X X X
Density Estimate
Kernel Calibration Error KCE [43, 115] [0,1] | X X X
Negative Log Likelihood NLL Cross Entropy Loss [31] [0, ) | X
Root Brier Score RBS [43] [0,1] | x x x

*: This metric is best used in combination with another metric using a predefined target value (see "Target value-based cutoff" in the definition of
FP2.6: Cutoff on predicted class scores (Suppl. Note 1.2).
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. Synonym Mutually computable with standard choice of metric hyperparameters
ynony (for EC, WCK, Fbeta) in binary classification with balanced classes

. Mutually computable from each other . Generalization/Instantiation

Other notable relationship

ABBREVIATIONS
Phi Phi Coefficient

Acc Accuracy HR Hit Rate PPV Positive Predictive Value
BA Balanced Accuracy loU Intersection over Union PREC Precision

BM Bookmaker Informedness J Youden's Index REC Recall

CK Cohen’s Kappa JAC Jaccard Index SEL Selectivity

DSC Dice Similarity Coefficient LR+ Positive Likelihood Ratio Sens Sensitivity

EC Expected Cost MCC Matthews Correlation Coefficient Spec Specificity

ER Error Rate MK Markedness TNR True Negative Rate

FB FpP Score NB Net Benefit TPR True Positive Rate

F1 F1 Score NPV Negative Predictive Value WCK Weighted Cohen’s Kappa

Fig. SN 2.1. Common counting metrics and their relation to each other. The depicted metrics comprise
the counting metrics of the Metrics Reloaded pool (Tab. SN 2.1) as well as closely related metrics, namely
Error Rate (ER), Bookmaker Informedness (BM), Markedness (MK), and Cohen’s Kappa (CK) with synonyms.
Panoptic Quality (PQ), centerline Dice Similarity Coefficient (cIDice), and False Positives per Image (FPPI)
have been excluded as they rely on more information than solely the confusion matrix.
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2.2 Recommendations for Image-level Classification

FPX.Y refers to a fingerprint item detailed in Figs. SN 1.7-SN 1.9.
SX refers to a subprocess in Extended Data Figs. 2-5.

DGX.Y refers to a decision guide in Suppl. Notes 2.7.1-2.7.4.

\. J

This section provides recommendations for selecting common reference-based metrics for image-
level classification problems. As depicted in Fig. 2, these common metrics can then be complemented
by application-specific metrics as well as non-reference-based metrics (assessing run time or carbon
footprint, for example).

Image-level classification refers to the process of assigning one or multiple labels (classes) to an
image. Modern algorithms usually output predicted class scores between 0 and 1 for every image
and class, which are often interpreted as the probability of the image belonging to a specific class. In
binary classification, a threshold can be applied to convert the continuous scores to a classification
decision (e.g. cancer = true for values above 0.5). In multi-class classification, the class associated
with the highest predicted score is often selected as the final prediction (Cargmax’ operation). The
most common strategies for converting predicted class scores into discrete decisions are captured in
the fingerprint FP2.6 Decision rule applied to predicted class scores and are detailed in Suppl. Note 1.3.

Comparing the algorithm predictions with the reference labels enables the generation of a
confusion matrix, which captures the number of correct class assignments on the diagonal for each
class and the numbers for all possible class confusions in the remaining cells. In the binary case, these
numbers, here referred to as the cardinalities, are simply the true/false positives/negatives arranged
in a 2X2 matrix. Counting metrics operate on this matrix by relating the cardinalities of different
matrix entries [85]. They can be classified into multi-class counting metrics that operate on the
full, potentially multi-class confusion matrix, such as Accuracy, Matthews Correlation Coefficient
(MCC) and Expected Cost (EC), and per-class counting metrics that validate the performance
of a particular class of interest defined as the positive class (e.g. with a one-vs-rest comparison
for multi-class scenarios), such as the Fz Score. Per-class validation is typically recommended
(see below) to obtain an in-depth understanding of the performance of each individual class, as
multi-class metrics may potentially hide poor performance of individual classes. All counting
metrics differ exclusively in which cardinalities of the confusion matrix they use and how they are
combined.
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Select
per-class
counting

metric (if any)

Select
multi-class
counting
metric (if any)

Generate
problem
fingerprint
(App.B.2)

metric(s) application results
(if any) (Tab. 2)
v

Select multi- Select Select
threshold calibration application-
metric (if any) [~ metric (if any) speglﬁ(c'
metric(s]
(+3 +H (if any)

i E.g., for measuring the carbon
CANDIDATES: CANDIDATES: | CANDIDATES: cmnégmss: footprint or runtime.
EC

Select non- Read
reference- recommendations Generate
based on metric metric @

Accuracy AP B
2 F, Score AUROC ECE©
MCC LR+ CWCE
WCK NB KCE
[Metrica NLL
(TargetMetric RBS
=TargetValue)]
Sensitivity

ABBREVIATIONS

AP Average Precision libration Error KCE Kernel Calibration Error

AUROC Area Under the Receiver Operating Characteristic Curve st LR+ Positive Likelihood Ratio NLL Negative log likelihood
BA Balanced Accuracy X alibration Error MCC Matthews Correlation Coefficient RBS Root Brier Score
BS Brier Score ECE*®® Expected Calibration Error Kernel Density Estimate ~ NB Net Benefit WCK Weighted Cohen’s Kappa

Fig. SN 2.2. Metrics Reloaded recommendation framework for image-level classification at a glance.

Counting metrics in general reflect the fact that systems in practice need to define a strategy for
converting the predicted class scores (if available) into actual decisions. Choosing a decision rule
for the generation of a confusion matrix, however, is not necessarily straightforward, and counting
metrics may fail to capture the full capacities of a classifier by restricting performance analysis to a
single working point on the decision curve [86] (Fig. SN 1.3). Multi-threshold metrics (Fig. SN 2.9
such as Area under the Receiver Operating Characteristic Curve (AUROC) overcome the limitation
of a potentially arbitrary threshold by calculating metric scores based on a range of thresholds.
They are commonly only defined for binary classification (again, one-versus-rest validation can
be performed) and relate basic complementary properties, such as Sensitivity and Specificity in
the case of AUROC, or Sensitivity and Positive Predictive Value (PPV) in the case of Average
Precision (AP), to each other. The metric value is then obtained by computing the area under the
resulting curve [86].

While both counting metrics and multi-threshold metrics measure the discrimination capabilities
of a classifier, they do not assess whether the predicted class scores reflect the true probability of
cases belonging to the predicted class. An orthogonal class of metrics has therefore been designed
to assess the interpretability of classifier outputs. As detailed in Suppl. Note2.6, these calibration
metrics can roughly be categorized in metrics that assess discrimination and calibration quality
together, such as the Brier Score (BS), and those that assess only calibration, such as the Expected
Calibration Error (ECE)).

Taking into account these considerations as well as the complementary strengths and weak-
nesses of classification metrics, we recommend the following process for selecting reference-based
classification metrics (blue path in Fig. 2 and Fig. SN 2.2):

1: Select multi-class counting metric (if any): Multi-class counting metrics have the unique
advantage that they capture the performance of an algorithm for all classes in a single value.
With the ability to take into account all entries of the multi-class confusion matrix, they
provide a holistic measure of performance without the need for customized class-aggregation
schemes. We therefore recommend the selection of a multi-class counting metric based on
Subprocess S2 (Extended Data Fig. 2) if a decision rule should be applied to the predicted class
scores (FP2.6). In some use cases and especially in the presence of ordinal data, there may
be an unequal severity of class confusions (FP2.5.2 = TRUE), implying that different costs to
be applied to different errors reflected by the confusion matrix must be available (FP2.5.4 =
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TRUE). In this case, the only viable options are Weighted Cohen’s Kappa (WCK) (Fig. SN 3.18)
and EC (Fig. SN 3.6). While WCK is widely used, it comes with severe drawbacks (see Suppl.
Note 2.7.1 for details), such as high prevalence dependency and ’paradoxical results’ [113]
for the most common variant based on quadratic weights. For this reason, the consortium
recommends EC as the default choice for the described scenario. In the case of equal costs,
Accuracy (Fig. SN 3.2) is the most widely used multi-class metric, but we recommend it in
only one specific scenario: when the class prevalences in the data set reflect those in the target
population (FP4.2) and potential class imbalances should not be compensated for. In the more
general case, the decision boils down to either picking one of the prevalence-independent
metrics EC or Balanced Accuracy (BA) (Fig. SN 3.3), which is specifically recommended if
the class prevalences do not reflect the target population, or MCC (Fig. SN 3.10), which has
the important property that it requires not only the class-specific Sensitivities (i.e. Sensitivity
and Specificity in the binary case) but also the corresponding predictive values (PPV and
Negative Predictive Value (NPV)) to be high (see Fig. SN 2.3). Irrespective of the metric choice,
we recommend additionally reporting the whole confusion matrix in the case of a reasonable
number of classes.

2: Select per-class counting metric (if any): As detailed class-specific analyses are not pos-
sible with multi-class counting metrics, which may potentially hide the poor performance of
individual classes, we recommend an additional per-class validation with metrics selected
according to Subprocess S3 (Extended Data Fig. 3). To this end, class-specific metric pools
are generated. The choice of metric depends primarily on the decision rule applied to the
predicted class scores (FP2.6; see Suppl. Note 1.3 for a detailed explanation). If a target
value-based strategy is preferred, the decision rule applied to the predicted class scores
is optimized such that a specific target value (e.g. Sensitivity = 0.95; see Fig. SN 3.16) is
achieved (see Fig. SN 1.3). Complementary metrics, such as Specificity (Fig. SN 3.17), can
then be reported for this fixed value of the target metric (see decision guide 3.1 in Suppl.
Note 2.7.2). In this case, the target metric is only reported for the specified target class. If a
cost-benefit-based strategy is chosen (only recommended for binary classification tasks),
we recommend selecting either Net Benefit (NB) (explicit risk-centric view; Fig. SN 3.11) or
EC (cost-centric view; Fig. SN 3.6) (see decision guide 3.2 in Suppl. Note 2.7.2). In contrast, in
the case of optimization-based or argmax-based decision rules, the metric choice should
be made between Sensitivity, Positive Likelihood Ratio (LR+) (Fig. SN 3.14), and F-g Score
(Fig. SN 3.7) (see decision guide 3.3 and 3.4 in Suppl. Note 2.7.2).

3: Select multi-threshold metric: To obtain a more comprehensive picture of the discrimina-
tion performance of a classifier, we always recommend the selection of a multi-threshold met-
ric according to Subprocess S4 (Extended Data Fig. 4), irrespective of the decision rule. Multi-
threshold metrics are again applied per class. A particular strength of AUROC (Fig. SN 3.19)
is the fact that it is well-interpretable, as the value simply reflects the probability of a sample
from the positive class being assigned a higher predicted class score compared to a sample
from the negative class. Furthermore, it is prevalence-independent and therefore well-suited
for comparison of performance across different data sets. AP (Fig. SN 3.20), on the other hand,
is a prevalence-dependent metric, which comes with the advantage that predictive values are
considered. This may be a crucial property in class-imbalanced scenarios where the focus is
to be put on the rare class while AUROC scores are dominated by the frequent class and may
lead to overly optimistic interpretation.

4: Select calibration metric (if any): If the calibration of a method should be assessed in
addition to its discrimination capabilities (FP2.7.1), one or multiple calibration metrics should
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be chosen based on Subprocess S5 (Extended Data Fig. 5). Details on this process are provided
in Suppl. Note 2.6.
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Fig. SN 2.3. Failure of prevalence-independent metrics in a screening scenario with high class imbalance.
Intuitively, the system is substantially better than random guessing because almost all positive cases have been
retrieved out of a large database. At the same time, it is not perfect because only about half of the retrieved
cases are correctly classified. However, common popular metrics either indicate near-perfect performance
(Sensitivity and Specificity close to 1) or random performance (normalized EC (ECN) about 1). Only the
F1 Score and Matthews Correlation Coefficient (MCC) reflect the intuitive scoring of “quite good, but not
perfect” because they incorporate predictive values.
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FPX.Y refers to a fingerprint item detailed in Figs. SN 1.10-SN 1.11.
SX refers to a subprocess in Extended Data Figs. 6-7.

DGX.Y refers to a decision guide in Apps. 2.7.5-2.7.6.

\. J

This section provides recommendations for selecting common reference-based metrics for semantic
segmentation problems. As depicted in Fig. 2, these common metrics can then be complemented by
application-specific metrics as well as non-reference-based metrics (assessing run time or carbon
footprint, for example).

Semantic segmentation is commonly defined as the process of partitioning an image into multiple
segments/regions. To this end, one or multiple labels are assigned to each pixel such that pixels with
the same label share certain characteristics. Semantic segmentation can therefore also be regarded
as pixel-level classification. As in image-classification problems, predicted class probabilities are
typically calculated for each pixel deciding on the class affiliation based on a threshold over the class
scores [5]. In semantic segmentation problems, the pixel-level classification is typically followed by
a post-processing step, in which boundary pixels are identified.

The most common semantic segmentation metrics (e.g. Dice Similarity Coefficient (DSC) and
Intersection over Union (IoU)) are per-class counting metrics — here referred to as overlap-based
metrics, which measure the overlap between the reference annotation and the prediction of the
algorithm. They can be considered the de facto standard for assessing segmentation quality and are
well-interpretable.

A key weakness of overlap-based metrics is their shape and contour unawareness [85]. A
second class of metrics, the distance-based metrics, therefore explicitly assess certain spatial
characteristics such as the quality of structure centers or boundaries. Note that in scenarios in
which multiple structures of the same type are present within the same image (e.g., in multiple
sclerosis (MS) lesion segmentation), a potential pitfall is related to comparing a given structure
boundary to the boundary of the wrong instance in the reference (Fig. SN 1.2). Similar issues arise in
the case of completely missed instances. In such scenarios, we explicitly recommend reconsideration
to phrase the problem as an instance segmentation problem. If semantic segmentation remains the
chosen category, we advise against the use of distance-based metrics, as these are not designed for
cases where confusion of boundaries across different instances can occur.
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Fig. SN 2.4. Metrics Reloaded recommendation framework for semantic segmentation at a glance.

Based on the complementary strengths and weaknesses of common segmentation metrics [85], we
recommend the following process for segmentation problems (orange path in Fig. 2 and Fig. SN 2.4):

1: Select overlap-based metric (if any): We recommend selecting an overlap-based metric
by default unless the target structures are consistently small (FP3.1) and the reference may
be noisy (FP4.3.1). As detailed in Subprocess S6 for selecting overlap-based metrics (Extended
Data Fig. 6), our default recommendation is the DSC (Fig. SN 3.5), which is almost identical
to the IoU (Fig. SN 3.9). The Fg Score (Fig. SN 3.7), which can be seen as a generalization
of the DSC = F; Score, is an alternative if there is a preference for either False Positive (FP)
or False Negative (FN). In the specific case of tubular structures (FP3.3), the centerline Dice
Similarity Coefficient (clDice) (Fig. SN 3.4) as an increasingly used variant of the DSC can
also be applied (optionally in addition to the DSC).

2: Select boundary-based metric (if any): To compensate for the weakness of overlap-based
metrics, specifically their shape unawareness and limitations when dealing with small struc-
tures or high size variability [85], our general recommendation is to complement an overlap-
based metric with a boundary-based metric according to Subprocess S7 (Extended Data
Fig. 7). If annotation imprecisions should be compensated for, our default recommendation
is the Normalized Surface Distance (NSD) (Fig. SN 3.26). Otherwise, the fundamental user
preference guiding metric selection is whether errors should be penalized by existence or
distance (FP2.5.6). In the case of existence-based penalization, Boundary IoU (Fig. SN 3.23)
should be preferred over NSD if even slight contour errors can be seen as crucial inconsis-
tencies that should be assessed. In the case of distance-based penalization, Mean Average
Surface Distance (MASD) (Fig. SN 3.25) is our default recommendation, as it has mathematical
advantages over Average Symmetric Surface Distance (ASSD) (Fig. SN 3.22; see decision
guide 7.2 in Suppl. Note 2.7.6) and is not as sensitive to annotation outliers as Hausdorff
Distance (HD) and its variants (Fig. SN 3.24).

While overlap- and distance-based metrics are the standard metrics used by the general computer
vision community, biomedical applications sometimes have special domain-specific requirements.
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To accommodate specific domain needs, the standard metrics can therefore be complemented by
further ’application-specific’ metrics as shown in Fig. 2. In medical imaging, for example, the actual
volume of an object, for example a tumor, may be of particular interest (FP2.2). In this case, volume
metrics such as the Absolute or Relative Volume Error and the Symmetric Relative Volume Difference
can be computed [76]. Also, the clDice can be complemented by application-specific connectivity
metrics, for instance in the case of tubular structures [32, 78]. Similarly, the explicit agreement of
object centers (e.g., in cells) or shapes may be of interest. Note that the latter can often be addressed
by choosing a boundary metric with a high tolerance. In other cases, shape agreement may be
measured by comparing specific object properties, such as curvatures or principal components.
Finally, compliance with prior knowledge, such as hierarchical label structure (FP3.4), can be
measured with additional application-specific metrics.

Once a set of metrics has been selected, an appropriate aggregation strategy should be chosen.
We recommend handling of ’Not a Number’s (NaNs) by setting the corresponding metric value
to the worst possible value (see Fig. SN 2.5). In the case of distance-based metrics such as the HD,
the image diagonal can be chosen, for example (see Fig. SN 2.6). In a benchmarking setting, an
alternative lies in using a "rank-then-aggregate" strategy [116]. A test case with a NaN value can
then be assigned the worst rank for the given image.

Image N R R 1, I 1,

DYel 0.94 NaN 0.87 090 NaN 0.89

Ignore NaNs Set NaNs to worst possible value (here: 0)

v

Mean DSC:0.90 Mean DSC: 0.60

Fig. SN 2.5. Effect of missing values when aggregating metric values. In this example, ignoring missing values
leads to a substantially higher Dice Similarity Coefficient (DSC) compared to setting missing values to the
worst possible value (here: 0).
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Fig. SN 2.6. Effect of missing values when aggregating metric values for metrics without fixed boundaries
(here: Hausdorff Distance (HD)). In this example, ignoring or treating missing values in different ways leads
to substantially different HD values.

In multi-class settings, the metric values for the individual classes can be combined in a single
score. This can be done via macro averaging over class-specific scores, indicating equal importance
for each class (FP2.5.1 = FALSE) and an interest to compensate for potential class imbalance (FP2.5.5
= TRUE). Alternatively, weighted averaging, which takes the unequal interest across classes and/or
different class prevalences into account, may be performed (Fig. SN 2.7).

Reference Prediction
(®Class | MClass 2 A Class 3] (ODIA Reference Class 1/2/3 |
©%®* 0% ¢® oy [0
o9 ®9 [ |
o0 = ®0 I-
] A @m u
mg ©H o 0
gy mn¥ m

Averaged Weighted
Accuracy =0.68 > Accuracy = 0.60

Fig. SN 2.7. Effect of unequal handling of classes. Simple averaging (macro-averaging) of the Accuracy ignores
the unequal importance of classes, given by pre-defined weights of classes. Incorrect predictions are indicated
by a red square.
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2.4 Recommendations for Object detection

FPX.Y refers to a fingerprint item detailed in Figs. SN 1.12-SN 1.14.
SX refers to a subprocess in Extended Data Figs. 3-4 and Extended Data Figs. 8-9.

DGX.Y refers to a decision guide in Suppl. Note 2.7.2 - 2.7.4, 2.7.7-2.7.8.

This section provides recommendations for selecting common reference-based metrics for object
detection problems. As depicted in Fig. 2, these common metrics can then be complemented by
application-specific metrics as well as non-reference-based metrics (assessing run time or carbon
footprint, for example).

Object detection refers to the detection and localization of structures of one or multiple categories.
A key feature of object detection algorithms is their ability to distinguish different instances of the
same class, which may be of crucial domain interest (see Fig. 1). The confusion matrix is generated
by comparing reference objects to predicted objects. Based on their matching (see below), True
Positives (TPs) (prediction matched to reference object), False Positives (FPs) (prediction without
assigned reference object) and False Negatives (FNs) (references without assigned predictions) can
be computed. While the design choices in image-level classification are primarily related to the
selection of discrimination and calibration metrics (see Suppl. Note 2.2), additional design decisions
must be made in object detection due to the object-centric validation. Specifically, a localization
criterion must be chosen to determine whether a predicted object spatially corresponds to one of
the reference objects and vice versa. To this end, an appropriate representation of objects must
be chosen. Typical choices are bounding boxes or other approximating shapes. As the object
localization step might lead to ambiguous matchings, such as two predictions being assigned to the
same reference object, an assignment strategy needs to be picked as well. Overall, predictions in
object detection have to fulfill the following requirements to be labeled TP: Firstly, the localization
criterion must be fulfilled (spatial correspondence). Secondly, the predicted class must match the
class of the reference object (always given in the binary case). Finally, the assignment strategy must
yield a matching reference object for the given prediction. The recommended localization criteria
are provided in Suppl. Note 3.1.3.
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Fig. SN 2.8. Metrics Reloaded recommendation framework for object detection at a glance.

Based on the choice of localization criterion and assignment strategy, standard classification
metrics can be computed on object level. Importantly from a mathematical perspective in this
context, the absence of True Negatives (TNs) in object detection problems renders many popular
classification metrics (e.g., Accuracy, Specificity, Area under the Receiver Operating Characteristic
Curve (AUROC)) invalid. Based on these considerations and taking into account all the comple-
mentary strengths and weaknesses of existing metrics [85], we propose the following steps for
object detection problems (green path in Fig. 2 and SN 2.8):

1: Select localization criterion: The selection of the localization criterion should be per-
formed according to Subprocess S8 (Extended Data Fig. 8). If a rough outline of objects is
desired, rather than just obtaining the object position (FP2.4 Desired granularity of localiza-
tion, see Suppl. Note 1.3 for details), our recommendation is the Box/Approximation Intersection
over Union (IoU) (Fig. SN 3.38). If only the position of objects is relevant from a domain inter-
est (e.g. for determining the location of cells), the Center Distance (Fig. SN 2.28) is often an
attractive option, although Mask IoU > 0 (Fig. SN 3.39) or Point inside Mask/Box/Approximation
(Fig. SN 3.40) are viable alternatives in case of fine-granular reference annotations (FP4.4
Granularity of provided references).

2: Select assignment strategy: The recommendations for the assignment strategy are pro-
vided in Subprocess S9 (Extended Data Fig. 9). In case of the availability of predicted class
scores (FP5.1 = TRUE) Greedy (by Score) Matching (Fig. SN 3.41) is our default recommendation.
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Otherwise, Greedy (by Localization criterion) Matching (Fig. SN 3.42), Optimal (Hungarian)

Matching (Fig. SN 3.43) or Matching via Overlap > 0.5 (Fig. SN 3.44) are viable options, as

detailed in decision guide 9.1 in Suppl. Note 2.7.8. The user must also decide whether double

assignments should be punished (FP2.5.8).

3: Select classification metric(s) (if any): Once objects have been located and assigned to
reference objects, generation of a confusion matrix (without TN) is possible. The final step
therefore simply comprises choosing suitable classification metrics.

a: Select counting metric (if any): The selection of a per-class counting metric according
to Subprocess S3 (Extended Data Fig. 3) is governed by the decision rule (FP2.6). If a
target value for a specific target metric is provided (e.g. Sensitivity = 0.95; Fig. SN 3.16),
complementary metrics such as Positive Predictive Value (PPV) (Fig. SN 3.15) can be
assessed at the provided point on the decision curve (Fig. SN 2.9). Otherwise, we recommend
the Fg Score (Fig. SN 3.7) as a counting metric.

b: Select multi-threshold metric: Several subfields of biomedical image analysis have con-
verged to choosing solely a counting metric as the primary metric. This choice seems to
be a historical artifact from when algorithms did not provide predicted class scores. We
generally recommend not discarding the scores typicalls provided by current algorithms
and disagree with the practice of basing performance assessment solely on a single, poten-
tially suboptimal, decision rule applied to the predicted class scores. Instead, we primarily
propose selecting a multi-threshold metric (Subprocess S4, Extended Data Fig. 4) to present
a more holistic picture of performance. As multi-threshold metric, we recommend Average
Precision (AP) (Fig. SN 3.20) or Free-Response Receiver Operating Characteristic (FROC)
Score (Fig. SN 3.21), depending on whether an easy interpretation (FROC Score) or a
standardized metric (AP) is preferred (see decision guide 4.2 in Suppl. Note 2.7.3).

Note that the previous description implicitly assumed single-class problems, but generalization
to multi-class problems is straightforward by applying the validation per class.
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Fig. SN 2.9. Principle of multi-threshold metrics (top) and per-class counting metrics with application-driven
thresholds (bottom). Rather than being based on a static threshold (e.g., for generating the confusion matrix),
multi-threshold-based metrics integrate over a range of thresholds. Prominent examples are the Area under
the Receiver Operating Characteristic Curve (AUROC) (also known as Area under the curve (AUC) or AUC
Receiver Operating Characteristic (ROC)) and the Area under the Precision-Recall (PR) curve (AUC PR).
Cardinalities, i.e., the true (T)/false (F) positives (P)/negatives (N), are computed based on a threshold (e.g.,
0.5) of predicted class probabilities (left). Based on those values, Sensitivity (also known as Recall) and 1 -
Specificity/Positive Predictive Value (PPV) are calculated and plotted against each other (right). The procedure
is repeated for several thresholds, resulting in the ROC/PR curve. The area under the ROC/PR curve is referred
to as AUROC/AUC PR. The latter is often interpolated by the Average Precision (AP) metric. The dashed
gray lines refer to a classifier with no skill level (random guessing). In the case of an application-driven
threshold (e.g., required Sensitivity of 0.95), the metrics Sensitivity@Specificity, Specificity@Sensitivity,
PPV@Sensitivity and Sensitivity@PPV can be calculated on the basis of the ROC/PR curves. Please note that
we use the synonyms Precision instead of PPV and Recall instead of Sensitivity for the PR curve, given their
common use.
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Fig. SN 2.10. Validation on object level can be performed per data set (left) or per image (right). For the
per-data set validation of objects, the cardinalities are calculated over the whole data set. For the per-image
validation of objects, metric scores are computed per image and aggregated afterward. @ refers to the average

F1 Score.
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It is further worth mentioning that metric application is not straightforward in object detection
problems. One example is the fact that the number of objects in an image may be extremely small
(even zero) compared to the number of pixels in an image. Special considerations with respect
to aggregation strategy must therefore be made (Fig. SN 2.10). In fact, in the machine learning
community, object detection tasks are typically validated by pooling all matched objects (i.e, TP,
FP, and FN) over the entire data set and computing global metrics on the entire pool ("per-data set
aggregation’). An alternative strategy is the ’per-image aggregation’, where matched objects are
aggregated per individual image to compute corresponding metrics (e.g., Fs Score). The per-image
metrics are subsequently averaged over the data set. This alternative aggregation may be desirable
for two reasons. Firstly, due to the hierarchical data structure (potentially multiple objects per
image and/or multiple images per patient), a hierarchical aggregation of metric values, which
compensates for the non-independence of images, is generally recommended. Secondly, from a
domain interest, the expected metric value per image (rather than per entire data set) may be
desirable. Importantly, the per-image aggregation strategy also changes the way multi-threshold
metrics such as AP are computed: While the thresholds are still scanned over the scale of predicted
class scores simultaneously for the entire data set, the precision and recall used to generate the
PR-curve are now per-image scores averaged over the data set rather than the global per-data set
scores. It should further be noted that validating an object-level problem per image rather than
per data set comes with the problem that images containing no reference or prediction objects
lead to division by zero for some metrics and thus to 'Not a Number’ (NaN) as metric output. We
therefore propose strategies for NaN handling in Fig. SN 2.11a. In summary, we recommend to
exclude NaN cases from metric computation except when an empty prediction corresponds to an
empty reference, in which case PPV, and in extension Fz Score, should be set to 1.

A further critical consideration for metric application in object detection is the fact that struc-
ture sizes may have a large effect on performance metrics [102]. We therefore recommend size
stratification, i.e., the separate validation for different size ranges, if size variability is high (FP3.2 =
TRUE).
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Fig. SN 2.11. Effect of handling a ’"Not a Number’ (NaN) occurring during metric computation, when object
detection/instance segmentation tasks are validated per image. Specifically, NaN cases occur when an image
features no target structures and/or no object predictions by the model, which causes division by zero errors
in prevalent metrics. (a) Demonstration of how and when NaN can occur. Each column represents a potential
scenario for per-image validation of objects, categorized by whether TPs, FNs, and FPs are present (n > 0) or
not present (n = 0) after matching/assignment. The sketches on the top showcase each scenario when setting
"n>0"to "n = 1" For each scenario, Sensitivity, Positive Predictive Value (PPV), and F; Score are calculated.
(b) Effect of different NaN handling strategies based on different conventions for the aggregation across
multiple images. Four examples are shown for the NaN scenarios from (a) (NaN 1-4). NaN 1 and 4: The
intuitive penalization for FPs in "empty" images is already established by means of PPV scores (see NaN 4)
and further penalization by means of Sensitivity is neither required nor appropriate. Instead, images without
reference objects should be ignored when averaging Sensitivity scores over images. NaN 2: The intuitive
penalization for FP in "empty" images is established when assigning a PPV (and F; Score) of 1. NaN 3: The
intuitive penalization for FP is established when removing images with FN and no FP from the aggregation
of PPV (and F;) scores.
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2.5 Recommendations for Instance segmentation

FPX.Y refers to a fingerprint item detailed in Figs. SN 1.15-SN 1.17.
SX refers to a subprocess in Extended Data Figs. 3-4 and Extended Data Figs. 6-9.
DGX.Y refers to a decision guide in Suppl. Notes 2.7.2-2.7.8.

Segmentation metrics are to be applied per instance.

This section provides recommendations for selecting common reference-based metrics for instance
segmentation problems. As depicted in Fig. 2, these common metrics can then be complemented by
application-specific metrics as well as non-reference-based metrics (assessing run time or carbon
footprint, for example).

Instance segmentation can be regarded as delivering the tasks of object detection and semantic
segmentation at the same time. In contrast to object detection, instance segmentation also involves
the accurate marking of the object boundary. In contrast to semantic segmentation, it distinguishes
different instances of the same class. The pitfalls and recommendations for instance segmentation
problems are closely related to those for segmentation and object detection [85] and we recommend
reading Suppl. Note 2.4 and Suppl. Note 2.3 as a foundation for this section.

Our recommendations for assessing instance segmentation quality can be summarized as follows
(purple path in Fig. 2 and Fig. SN 2.12):
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Fig. SN 2.12. Metrics Reloaded recommendation framework for instance segmentation at a glance.

1: Select object detection metric(s): From a semantic segmentation perspective, overcoming
problems related to instance unawareness (Fig. 1a (top left)) requires the selection of a set of
detection metrics to explicitly measure detection performance. To this end, we follow the same
general process as in the object detection recommendation by selecting a localization criterion,

an assignment strategy, and suitable classification metrics. The specific recommendations for
instance segmentation are:
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a: Select localization criterion: Although not common in practice, we argue that for con-
sistency it might be appropriate to base the localization criterion on the corresponding
target segmentation metric (see step 2: "Select segmentation metric(s) (if any)" below). For
example, if the target metric is Normalized Surface Distance (NSD), the localization crite-
rion could be defined accordingly. This may not always be possible, for instance because
the target metric has no fixed upper bound (e.g., Hausdorff Distance (HD)), rendering the
setting of adequate cutoffs challenging. As an alternative strategy, we therefore recom-
mend choosing the localization criterion according to common practice (see Subprocess S8,
Extended Data Fig. 8). For this strategy, given the fine granularity of both the output and
the reference annotation, we recommend selecting between Boundary Intersection over
Union (IoU) (Fig. SN 3.35), Mask IoU (Fig. SN 3.38), and Intersection over Reference (IoR),
(Fig. SN 3.37) using decision guide 8.1 in Suppl. Note 2.7.7.

b: Select assignment strategy: The recommendations for the assignment strategy are iden-
tical to those for object detection (Extended Data Fig. 9). In case of the availability of
predicted class scores (FP5.1 = TRUE) Greedy (by Score) Matching is our default recom-
mendation. Otherwise, Greedy (by Localization criterion) Matching, Optimal (Hungarian)
Matching. or Matching via Overlap > 0.5 are viable options, as detailed in decision guide
9.1 in Suppl. Note 2.7.8. The user must also decide whether double assignments should be
punished (FP2.5.8).

c: Select classification metrics: Our recommendations with respect to classification met-
rics are identical to those for object detection (Suppl. Note 2.4) with a single exception. As
depicted in S3, Extended Data Fig. 3, we recommend the Panoptic Quality (PQ) (Fig. SN 3.13)
[56] as an alternative to the F5 Score (Fig. SN 3.7). As illustrated in Fig. SN 2.13, this metric
is especially suited for instance segmentation, as it combines the assessment of overall de-
tection performance and segmentation quality of successfully matched (True Positive (TP))
instances in a single score.

2: Select segmentation metric(s) (if any): In a second step, metrics for explicit assessment
of the segmentation quality for the TP instances, i.e., successfully matched instances, may be
selected. Here, we follow the exact same process as in semantic segmentation (Subprocesses
S6, Extended Data Fig. 6 and S7, Extended Data Fig. 7). The primary difference is that the
segmentation metrics are computed per-instance and subsequently averaged resulting, for
example, in a 'Dice Similarity Coefficient (DSC) per instance’ score.

While we have found our recommendations for instance segmentation to match the majority of
biomedical problems, standard reference-based metrics are not well-suited for some applications.
Specifically, standard metrics struggle in images with structures of extreme density and complex
shapes, because overlap often fails as a criterion to establish unique correspondences between
predicted and reference instances. In such cases, specialized metrics not relying on one-to-one
correspondences may be required, such as pair-counting metrics or information theoretic-based
metrics [97]. Another example that calls for application-specific metrics is cell nucleus segmentation,
where splitting a reference object by two separate predictions is assessed by a dedicated ’split error’,
and the converse by a dedicated "merge error’ [21]. These application-specific errors can either be
used as stand-alone metrics or integrated into compound metrics such as F; Score.

Recommendations for aggregating object detection and instance segmentation metrics are
provided in the respective appendices Suppl. Note 2.4 and Suppl. Note 2.5, respectively.
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Fig. SN 2.13. The Panoptic Quality (PQ) measures the segmentation and detection quality of a prediction
in one score. The metric simply averages the loU scores for all True Positive (TP) instances and multiplies the
result with the Fy score. For perfect segmentation results, i.e., an average loU of 1, the PQ would equal the F;
Score.
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2.6 Recommendations for Calibration of Predicted Class Scores

While most research in biomedical image analysis focuses on the discrimination capabilities of
classifiers, a complementary property of relevance is the calibration of predicted class scores.
Importantly, a large portion of the research in this field is comparatively young, and a variety
of new calibration metrics are proposed every year. As it might be premature to call for rigid
standardization in such a vibrant environment, the following recommendations are to be seen as
general guidance through the current landscape of calibration metrics, which might be subject to
updates in the following years.

Intuitively speaking, a system is well-calibrated if the predicted class scores (i.e., the output of the
model) reflect the true probabilities of the outcome. In practice, this means that calibrated scores
match the empirical success rate of associated predictions. For example, in a binary classification
task, calibration implies that of all the data samples assigned a predicted score of 0.8 for the positive
class, empirically, 80% belong to this class.

One common but critically important misconception about calibration is that the predicted class
scores of a well-calibrated model express the true posterior probability Py x of an input belonging
to a certain class [82], e.g., that they express a patient’s risk for a certain condition based on an
image. While this probability is commonly of interest in classification problems, common calibration
metrics instead typically consider Py r(x), i.e., the probability of a model’s output score belonging
to a certain class. Conditioning on the output entirely ignores the mapping f: X — #. Thus, while
calibration allows making statements about the empirical class membership of predicted scores,
such as in the example above, these statements are conditioned on the discrimination power of a
model. This means that different models may predict different probabilities for the same input even
though all of them are perfectly calibrated [82]. Going back to the clinical example, this implies
that a classifier that always predicts the score 0.5 is considered perfectly calibrated on a balanced
binary task, although another perfectly calibrated model with better discrimination ability could
output completely different, practically more meaningful scores. Again, this discrepancy occurs
because calibrated scores reflect the empirical success rate of predictions and not a patient-specific
(model-agnostic) inherent risk. The clinical prediction modelling community therefore traditionally
distinguishes different levels of calibration [106], where level 4 strong calibration implies correct
posteriors (Py|x). As level 4 is practically unfeasible to measure (the true individual posteriors
are unknown), common research focuses on level 3 moderate calibration, which implies that the
predicted scores match the empirical success rate.

For a more formal definition of (level 3) calibration, let the random variables X and Y correspond
to the feature (e.g., an image) and target variables (encoding the outcome), respectively, with feature
and target spaces X and Y. Let f: X — % denote a classifier with predicted class scores f (X) and
P a set of distributions on Y. We further use the notation Py, Py|r(x) € P, where Py refers to the
distribution of Y, and Py (x) to the conditional distribution of Y given f(X).

In practice, three different variations of calibration conditions can be distinguished [105]:

e Canonical calibration: f (X) = Py|r(x). This condition implies pairwise matching of all
entries across the two distributions (see also the top panel in Fig. SN 2.14). Although not the
most commonly applied condition in practice, a common perception is that this condition
is the appropriate perspective on calibration in many application scenarios as the weaker
conditions (see below) are prone to underestimating miscalibration [40, 43, 83].

e Class-wise calibration: f; (X) =P (Y =k | f; (X)) for all classes k € Y. This is a weaker
condition, where not the joint, but the marginal distributions for each class are required
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to match (see also the middle panel in Fig. SN 2.14). Assessing the calibration quality for
individual classes provides crucial information, for example in scenarios where there is a
mismatch between class prevalences and class importance (FP2.5.3=TRUE).

o Top-label calibration: fx (X) =P (Y = K | fx (X)), where K = arg maxy fx (X) of a model
f: X — P. This is the weakest of the three conditions, where only the maximum entry (top
label) of each predicted class vector is considered (see also the bottom panel in Fig. SN 2.14).
This condition assesses only the highest class score, which is often used to determine the
predicted class, and thus implies a strong focus on validating the reliability of a model’s
decisions.

While these three conditions are equivalent for binary classification problems, they may differ
substantially in the broader multi-class setting, as illustrated in Fig. SN 2.14.

In practice, no model is perfectly calibrated. Calibration quality is captured by the Calibration
Error (CE), which can be computed via a divergence, i.e., a distance function, between predictions
f (X) and either of the three conditions (canonical, class-wise, top-label). For instance, typical
choices for quantifying the canonical CE are expected L; or Ly errors [43, 60, 74]. These can be
further generalized to the L, CE: For 1 < p € R, the canonical £, CE (CE,) of model f: X — % is
defined as:

CE, () = (E[|lf c0 - PYIf(X)Hﬁ])% : ()

The relations of CE variants associated with the three conditions above intuitively translate
to CEcanonical 2 CEclass—wise = CErop-iaber- In the example provided in Fig. SN 2.14, the weaker
conditions of top-label calibration and class-wise calibration are fulfilled (associated errors are
zero), while the broader canonical condition for calibration is not met. The fact that the calibration
quality of a classifier varies when assessed through the lens of different conditions causes common
calibration measures to be characterized as inconsistent in multi-class settings [43].

The canonical £, CE can be generalized by replacing the £, norm as a distance measure between
f (X) and Py, ¢(x) with alternative distance functions. For example, [115] introduced a canonical
CE based on matrix-valued kernels.
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Fig. SN 2.14. Estimating the Calibration Error (CE) according to the three different conditions in multi-class
settings yields inconsistent results. For the top-label calibration, only the maximum values of the predicted
class scores f (X) are considered, while all other values are neglected. For the computation of the CE, for
each distinct output value of f (X) (only 0.6 in this case), Py|r(x) is determined as the average over the
empirical rates of this output (0.6, 0.7, 0.6, 0.5, 0.7, 0.5 in this case). The top-label calibration condition (i.e.,
matching the two scores) results in a perfect CE = 0 in this scenario. Similarly, for the class-wise calibration,
the predicted class scores are compared per class, a requirement that is also fulfilled by the depicted system.
Only the canonical calibration, which comes with the strict requirement that the model output must match
the full probability distribution (implying the comparison of entire vectors rather than single values) indicates
a miscalibrated system (CE > 0). This figure is inspired by [105].

Generally, measuring the CE is challenging, because Py r(x) is unknown and needs to be esti-
mated as the expected value on the available data. Returning to the simple example above, as we
only have access to a small subset of all potential cases for which the model would predict a score
of 0.8, we do not know whether the corresponding success rate of these cases is 80% in general;
instead, our assessment relies on the estimated success rate based on the available samples. The
fact that classifier outputs are generally continuous often reduces the number of available samples
per prediction to one. Strategies for alleviating the sparse sampling problem include binning the
continuous scale of f (X) and estimating the CE per bin (such as done for Expected Calibration
Error (ECE) (Fig. SN 3.30) and Class-wise Calibration Error (CWCE) (Fig. SN 3.29), as illustrated in
Fig. SN 2.16), or using kernel density estimation methods (such as done for Expected Calibration
Error Kernel Density Estimate (ECEXPE), see Fig. SN 3.31). Despite these efforts, the most popular
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calibration measures are generally biased estimators of the true error, which means their estimates
depend on the number of samples (i.e., size of the validation data set). Gruber et al. [43] recently
described this bias and how it leads to substantial under- and over-estimations of the true error.
Popordanoska et al. [83] showed that straightforward estimators of £, calibration based on density
estimation (such as done for ECEXPE) have a generally lower bias compared to statistical estimators
(such as binning) and presented means to additionally de-bias estimators. There are also ongoing
efforts investigating canonical CEs that are not based on the £, norm, such as the Kernel Calibra-
tion Error (KCE), where *'maximum mean discrepancy’ is used as a distance function instead (see
Fig. SN 3.31). These efforts have resulted in fully unbiased estimators, which, however, do not allow
for interpretable calibration assessment and further require nontrivial configuration of the kernels
and associated hyperparameters.

An attractive alternative to estimate CEs are so-called Proper Scoring Rules (PSRs) (also referred
to as overall performance measures [96]), which measure discrimination and calibration in a single
score (e.g. Negative Log Likelihood (NLL), Brier Score (BS); Figs. SN 3.28, SN 3.33). An intuitive
example for this metric category is the BS: For a model f: X — P the BS is defined as the expected
value of the squared error between predictions and reference values as determined on the validation
data:

BS (f) =E[IIf (X) - Y'll5], (2)
where Y’ is the one-hot-encoded version of the reference vector Y for each individual data sample.
This equation illustrates the difference between overall performance measures and calibration
metrics measuring the CE in Equation 1. While the CE measures whether the predicted class scores
match the empirical success rate (see also SN 2.14), BS is defined as an expected value over every
single prediction, thus posing a stronger requirement on the scores which can be interpreted as
assessing the true posterior probabilities or individual risks. In theory, BS can be decomposed into
explicit terms for discrimination and calibration assessment [34]. In practice, however, although
overall performance measures do not suffer from the sampling problem, they conflate the true
CE with the discrimination error and can thus not make calibration quality explicit. However,
proper scores are still useful for comparative studies. Furthermore, it has been shown that the
square root of the BS, referred to as the Root Brier Score (RBS) (Fig. SN 3.34), represents a robust
estimator and upper bound of the canonical CE [43]. Such a guarantee can be particularly relevant
in safety-critical scenarios where the error must not be underestimated.

The choice of which calibration condition to validate as well as which metric to use depends
on the task interest. Methods subject to validation in this context are either classification models
whose inherent calibration quality shall be assessed, or so-called ’re-calibration methods’, i.e.,
transformations on the classifier outputs aiming to improve the calibration quality. In the most
common scenarios, the driving interest may either be a comparative performance assessment, in
which methods are ranked according to calibration quality, or an absolute performance assessment,
in which an interpretable and communicable measure of calibration quality is desired. We identified
four main use cases (U1-U4) which our framework addresses (Fig. SN 2.15).
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for interpreting and communicating the algorithm output (U4). The use cases are detailed in Suppl. Note 2.6.
The brackets around re-calibration methods denote that their application is optional in the corresponding
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(1) Ranking methods to determine calibration quality: The following use cases focus on
the comparative assessment of the calibration quality of one or multiple classifiers.

(a) Use case 1 (U1): comparing the effect of one or more re-calibration methods on the same
(fixed) classifier. The desired validation output is a ranking of re-calibration methods
(possibly including the performance of 'no re-calibration’) from which the best method
can be selected.

(b) Use case 2 (U2): comparing the calibration quality across multiple classifiers on the same
task. The desired validation output is a ranking of classifiers according to calibration
quality. In practice, such a ranking should be accompanied by a ranking according to
discrimination performance, as it is not recommended to base model selection purely on
calibration performance.

(c) Use case 3 (U3): comparing the ’overall performance’ of classifiers (optionally including
potential re-calibration methods), i.e., a joint assessment of discrimination performance
and calibration quality. The desired validation output is a single ranking naturally weighing
both aspects.

(2) Interpreting model outputs: Complementary interest may lie in the analysis of the CE to
the end of assessing the reliability of the predicted class scores of one or multiple classifiers.

(a) Use case 4 (U4): interest in understanding the reliability of predicted class scores for a
given model as a basis for interpreting and communicating results. The desired validation
output is a single score which provides insight into how well the model is calibrated. The
reliability of model outputs is often considered crucial upon application, such as for clinical
prediction models [36, 107, 118]. Importantly, U4 can be used in addition to U1, U2 or U3
as it is based on an orthogonal interest.

Because some decision rules assume calibrated model outputs, a further potential interest in

calibration validation may lie in determining the quality of a decision rule applied to predicted class
scores (see FP2.6), i.e., answering the question: "How much better could the classifier’s decisions
have been under this rule if predicted class scores were calibrated?". While such ablations of

classifier design decisions are generally out of the scope of our framework, decision rule-related
pitfalls and countermeasures are discussed in Sec. 1.1.

Based on all of the above considerations, we recommend selecting calibration metrics using

Subprocess S5 (Extended Data Fig. 5) in case the assessment of calibration quality is desired
(FP2.7.1 = TRUE):

1: Select metric for comparative calibration assessment (if any): This step selects an ad-
equate metric in case a comparative assessment of calibration methods is desired (FP2.7.2).
The fingerprint FP2.7.2 covers the presented use cases U1-U3 (Fig. SN 2.15). For U1 "Compar-
ison of re-calibration methods for the same fixed classifier", one option is to select a metric
that assesses the canonical CE, such as KCE as an unbiased estimator of a canonical CE
based on an alternative distance function, or ECEXPE as a well-interpretable estimator of
canonical ¢, calibration. Alternatively, an overall performance measure such as the BS can
be used (see DG5.2), because the classifier is fixed in this scenario, the conflation of the CE
with discrimination errors is no disturbing factor, and the true CE is exposed for relative
comparison of scores. For U2 "Comparison of calibration quality across classifiers on the
same task", we recommend reporting the CE per class by using an estimator of marginal
CE, such as CWCE, if there is an unequal interest across classes (FP2.5.1). Otherwise the
canonical CE should be assessed, e.g. using KCE or ECEXPE (see DG5.1). For U3 "Comparison
of overall performance across classifiers”, we recommend reporting a PSR (i.e., BS or NLL, see
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DG5.3) as the joint assessment of calibration and discrimination is exactly what this category
of metrics is designed for.

2: Select metric for assessing output interpretability (if any): This step selects an adequate
metric for assessing the interpretability of the model output (FP2.7.3), which corresponds to
U4. The first decision to be made in FP2.7.3 is whether to assess the calibration quality in
isolation, as measured by CE estimates, or jointly with discrimination as measured by overall
performance measures. When deciding for calibration-only assessment, the core decision
to be made is whether to measure top-label, marginal or canonical CE, as detailed in DG
5.4. If there is an unequal interest across classes (FP2.5.3), a well-interpretable estimator
of the marginal CE, such as CWCE, is recommended. Otherwise, the default option is to
select a well-interpretable estimator of the canonical CE (e.g., ECEXPE) and a corresponding
guaranteed upper bound (e.g., RBS), together with the a per-class estimator of marginal CE
(e.g., CWCE). Top-label calibration (as measured by ECE) is only recommended in rare cases,
as detailed in DG5.4.

Note that the selection of the same metric (e.g., CWCE) in both steps is a potential outcome of the
mapping. Crucially, metrics involving calibration assessment are generally prevalence-dependent.
Thus, comparative studies as described in U2 and U3 are generally restricted to one data set and,
if the prevalence of the data set does not represent the population of interest (see FP4.2), the
calibration quality of a classifier needs to be re-validated on each new study cohort (see Fig. SN 1.6).

Calibration is most commonly assessed for image-level classification tasks. Due to the com-
paratively sparse research basis in the other problem categories, no specific recommendations
are provided in our framework at this time. There are however, a few recent studies employing
calibration metrics in object detection [61, 79] and slightly more studies in semantic segmentation,
especially in the biomedical domain [55, 63, 71, 90].

Nevertheless, in theory, Subprocess S5 may also be traversed for object detection, instance
segmentation, and semantic segmentation. When traversing S5 for object-level tasks, the following
considerations should be noted:

e Calibration recommendations only apply to the classification part of object detec-
tors: As described in Suppl. Note 5.2, object detection and instance segmentation methods
commonly provide outputs beyond the predicted class score vector such as bounding box
coordinates or, depending on the method, ’intermediate objectness scores’ [87]. Thus, it is
important to note that when utilizing calibration recommendations in this framework for
object-level methods, the recommendations only apply to the classification output.

e Why considerations in image-level classification translate to object detection: When
validating discrimination performance, a fundamental conceptual difference between image
level and object level is the fact that True Negatives (TNs) are not defined in the latter case.
This difference does not translate to calibration, where only predictions of the model f (X) are
validated. As the background class is discarded from validation (see below), this means that
only True Positive (TP) and False Positive (FP) predictions are relevant for calibration, i.e., non-
matched predictions are considered while non-matched reference objects (False Negatives
(FNs)) are not. A further conceptual difference between object-level classification and image-
level classification is the former’s additional requirement of localization to distinguish TPs
and FPs. This aspect is inherently covered by calibration validation because non-matched
predictions are simply considered as additional FP errors (mistaking the ’true’ background
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Fig. SN 2.16. Computation of the Expected Calibration Error (ECE) based on the binning of predicted
class scores. The error is based on the discrepancy between the Accuracy per bin Accuracy(Bn,) =
1/|Bm| XieB,, 1(¥i = y;) and the average over predicted class scores per bin Confidence(By) =
1/|Bml XieB,, Pi- The final ECE score is obtained as the average over bin discrepancies weighted by the
number of samples |Bp,| per bin. Here, n denotes the total number of samples, j;denotes the predicted class
labels and y; the true class labels, 1 is the indicator function (1 if §; = y;, 0 otherwise), and p; refers to the
predicted class scores. The dashed diagonal line acts as a visual reference for a perfectly calibrated system,
where discrepancies between per-bin confidences and accuracies are zero.

class for one of the foreground classes), equivalently to the standard FP error case (mistaking
two classes).

Dealing with the background class: When validating classification performance in object-
level tasks, the model output predicting class scores for the background class is commonly
discarded (see Suppl. Note 5.2) [39], because rewarding correct background predictions con-
tradicts the task interest (there are no ’background objects’) and would be easily exploitable
(predicting high numbers of background objects). Further, penalization of background pre-
dictions is already ensured implicitly by considering them as FPs with respect to the true
foreground class. Discarding the background class leads to class prediction vectors that do not
sum to one, which is of no concern for validation as metrics do not rely on the probabilistic
interpretation of scores. These considerations translate directly to calibration validation,
which is equivalently exploitable by predicting high numbers of background objects. Here,
the background class is discarded from outputs, and calibration of outputs only refers to the
foreground class predictions (the actual "object detection’ outputs). Moreover, the calibration
conditions introduced above describe the matching of single entries across two distributions
and do not rely on their scores summing to one.

Non-applicability of the NLL on object level: There is one exception for object-level tasks
where metric recommendations differ when traversing S5: The NLL is not applicable. This is
because the NLL considers the predicted class score for the correct reference class (true class
probability’). For non-matched predictions, this ’true class’ is the background class, which
is discarded from validation as described above. In contrast, BS remains applicable and a
meaningful measure of CE under the recommended protocol (i.e., when only considering
foreground classes).
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2.7 Decision Guides

While the problem fingerprint helps exclude common metrics that are not suitable for the driving
problem, the final choice in each subprocess may not be unambiguous. In these cases, decision
guides support the users in making an educated decision that best matches their preferences.

2.7.1 Decision guide S2.
DG2.1: Weighted Cohen’s Kappa (WCK) versus Expected Cost (EC)

Summary of DG2.1: WCK versus EC

WCK EC

@ Designed for symmetric situations © Designed for asymmetric situa-

(guesses of two raters) tions

@ Limited interpretability © Good interpretability with nor-
malized variant

© Widely used © Not widely used in biomedical
image analysis

@ Lack of framework to identify and © Availability of framework to iden-

validate the decision rule applied to tify and validate the decision rule

class scores applied to class scores

@ Possibility of paradoxical results
Table SN 2.2. Comparison of Weighted Cohen’s Kappa (WCK) to Expected Cost (EC) in the context
of the decision guide DG2.1 for Subprocess S2. Context: unequal severity of class confusions (FP2.5.2
= TRUE), costs for class confusions available (FP2.5.3 = TRUE), and provided class prevalences reflect
the population of interest (FP4.2 = TRUE).

Both WCK (Fig. SN 3.18) and EC (Fig. SN 3.6) are metrics that allow for incorporating task-
specific penalties for confusions between individual pairs of classes. Common use cases for this
property are tasks with ordinal classes or diagnostic decisions with errors of varying clinical severity.
Importantly, however, Kappa statistics in general and WCK in particular were originally proposed
to compare annotations/guesses of two raters, which is a symmetric problem by nature. Validation
studies, on the other hand, involve the comparison of a prediction to a reference that approximates
the truth (asymmetric setting). Hence, unlike EC, WCK does not conceptually match the intended
comparison. For this reason and due to further favorable properties, we generally recommend
the usage of EC rather than WCK. When deciding between the two metrics, the following further
properties are of relevance:

e Interpretability: While both metrics can be interpreted as 'measures of (dis)agreement’,
the main difference is the fact that WCK provides this measure in reference to ’agreement
by chance’. The equivalent concept for EC is its normalized variant normalized EC (ECN),
where the disagreement measure is divided by a ’random performance’ measure. Due to
the conceptual similarity, it is more sensible to compare WCK to ECN. Both metrics are
prevalence-dependent due to relating model performance to a random performance reference.
Their main difference is the definition of the 'random reference’: In ECN this reference is
straightforward to interpret as the ’best possible naive classification system’ which always
predicts the most dominant class. The definition in WCK stems from its symmetric concept
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to compare the predictions of two raters. The random reference in this case is the probability
of both raters agreeing by chance. Using this definition in classification tasks results in
random reference systems that can be weaker than the naive system of ECN. Thus, the
random reference in WCK is less intuitive and arguably not useful in classification tasks (i.e.,
asymmetric settings).

e Undesired behaviour in practice: Using WCK with quadratic weights, often done for
ordinal tasks, has been found to lead to ’paradoxical results’, as detailed in [113].

e Popularity: WCK is widely used in the biomedical domain, whenever customized penalties
for class confusion are required. EC, on the other hand, is currently mostly found either in
statistical textbooks or in non-related domains such as speech recognition.

e Theoretical foundation: EC comes with a comprehensive theoretical foundation based
on Bayesian decision theory [40]. As a consequence, it is possible to analytically derive
the optimal decision rule applied to the predicted class scores (more generally: decision
region for more than two classes) and empirically validate the quality of this decision rule by
means of calibration assessment. This is an important property in this context because the
standard argmax-based decision rule (i.e., predicting the class with the highest class score) is
by definition not optimal in scenarios with unequal costs of misclassifications.

DG2.2: Balanced Accuracy (BA) versus Expected Cost (EC)

Summary of DG2.2: BA versus EC

BA EC

© Prevalence independence © Possibility of reflecting expected
prevalences in the target population

© Widely used © Not commonly known in biomed-

ical image analysis
Table SN 2.3. Comparison of Balanced Accuracy (BA) to Expected Cost (EC) in the context of the
decision guide DG2.2 for Subprocess S2. Context: Equal severity of class confusions (FP2.5.2 = FALSE),
either (1) unequal interest across classes (FP2.5.1 = TRUE) and no mismatch between class prevalences
and class importance (FP2.5.3 = FALSE), or (2) equal interest across classes (FP2.5.1 = FALSE) and
provided class prevalences do not reflect the population of interest (FP4.2 = FALSE).

When deciding between BA and EC in the provided context, two primary scenarios should be
distinguished:

Classes should contribute according to prevalence in the target application: Although the
user may have an inherently equal interest in all classes (FP2.5.1 = FALSE), reporting a metric score
to which all classes contribute equally may not necessarily be desired. Instead, the user may simply
be interested in the overall performance on a given data set and thus want classes to contribute
according to their prevalence in the target application. This is not straightforward in the provided
scenario because the data set at hand does not match the prevalences of the target population
(FP4.2 = FALSE). In this case, we recommend EC, because it offers a mechanism to explicit set
(expected) class prevalences directly in the formula. This strategy allows getting a glimpse of a
model’s performance on the target application while validating on the data at hand. Application of
EC in this way, however, is only possible if the prevalences can be specified upfront.
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Each class should contribute equally to the metric: In this case, compensation for poten-
tial class imbalance is required in order to ensure equal contribution from each class. Here, we
recommend BA as metric because it was designed for exactly this purpose. Although EC can be
configured to be identical to BA (Suppl. Note 2.1), we favor BA due to its widespread use.

EC also offers a complementary way to address class imbalance as it allows for the exchange of
the class priors directly in the formula: When the class priors upon application on a new data set
are known, they can be incorporated in EC. This can be useful for identifying the optimal decision
rule applied to predicted class scores on a new data set, as described in [40], essentially rendering
the re-calibration of class scores unnecessary. However, one might argue that class priors being
known upfront is quite a strong assumption for a new application.
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DG2.3: Balanced Accuracy (BA) versus Matthews Correlation Coefficient (MCC) versus
normalized EC (ECN)

Summary of DG2.3: BA versus MCC versus ECN

BA

© Inherent inter-
pretability with
respect to naive
classifier

© Implication of
equal class contribu-
tion

© Insensitive to
predictive  values
(Positive Predictive
Value (PPV) and
Negative Predictive
Value (NPV))

© Availability of
framework to iden-
tify and validate
decision rule applied
to class scores

© Good interpretabil-
ity

© Widely used

McCC

© Inherent inter-
pretability with
respect to naive
classifier

© Implication of
equal class contribu-
tion

© High scores ensure
high predictive val-
ues (PPV and NPV)

© Lack of frame-
work to identify and
validate the decision
rule applied to class
scores

© Limited inter-
pretability

© Fairly well-known
but not much used

ECN

© Inherent inter-
pretability with
respect to naive
classifier

© No establishment
of equal class contri-
bution

© Limited sensitivity
to predictive values
(PPV and NPV)

© Availability of
framework to iden-
tify and validate the
decision rule applied
to class scores

© Good interpretabil-
ity

© Not known or
used in the biomed-

ical imaging domain

although based on

well-studied statisti-

cal concepts
Table SN 2.4. Comparison of Balanced Accuracy (BA) to Matthews Correlation Coefficient (MCC) to
normalized EC (ECN) in the context of the decision guide DG2.3 for Subprocess S2. Context: Equal
severity of class confusions (FP2.5.2 = FALSE), either (1) unequal interest across classes (FP2.5.1 =
TRUE) and no mismatch between class prevalences and class importance (FP2.5.3 = FALSE) or (2)
equal interest across classes (FP2.5.1 = FALSE), provided class prevalences reflect the population of
interest (FP4.2 = TRUE), presence of class imbalance (FP4.1 = TRUE) and compensation for class
imbalances requested (FP2.5.5 = TRUE).

Three metrics are particularly attractive when class prevalences reflect the population of interest
but compensation for class imbalance is desired (FP4.1 = TRUE and FP2.5.5 = TRUE). These are MCC,
BA, and the normalized variant of EC, ECN. As described in Suppl. Note 1.3 (FP2.5.5 Compensation
for class imbalance requested), there are three effects of class imbalance that can be compensated
for.



Supplementary Notes — Metrics Reloaded 63

o Effect 1: Misleading metric values due to missing reference value for naive classifier
o Effect 2: Misleading metric values due to unequal contribution of classes
o Effect 3: Misleading metric values due to missing consideration of predictive values

While the most common multi-class metric, Accuracy, is subject to all three pitfalls when used in
imbalanced settings, this decision guide discusses the three aforementioned alternatives (BA, MCC,
and ECN) that compensate for one or more of these effects. The following aspects are relevant
when deciding between the three:

Compensating for Effect 1: All three metrics establish a fixed score for the performance of a
naive classifier, i.e., one that always predicts the most frequent class — which is a more realistic
baseline in class imbalanced scenarios — compared to an entirely random system. The corresponding
scores are 0 for MCC, 1 for ECN, and 1/C for BA, where C is the number of classes. However, the
nature of the different compensation methods is fundamentally different. Consider the following
confusion matrix of a binary classification system, as shown in Tab. SN 2.5:

Table SN 2.5. Confusion matrix illustrating Effect 1.

Prediction
Positive Negative
Positive | TP =100 FN=1
Negative | FP =100 | TN = 10,000

Actual

Respective metric values are BA: 0.99, MCC: 0.7, ECN: 1. Although all metrics feature fixed
values for a random classifier, the same system can be assessed differently, as it is being considered
‘near-perfect’ by BA (0.99), *fairly good’ by MCC (0.7), and "random’/’naive’ by ECN (1). Intuitively,
the BA assessment seems overly optimistic, which can be attributed to the fact that BA does not
compensate for Effect 3, as described in more detail below. On the other hand, the ECN assessment
appears overly strict, which can be attributed to the fact that ECN does not compensate for Effect 2
as described in more detail below.

Compensating for Effect 2: In balanced scenarios, all classes are weighted equally by common
discrimination metrics. In contrast, in imbalanced scenarios, common metrics such as Accuracy
are dominated by the frequent classes. Equal contribution of classes in this context would imply
that each class can contribute equally to the final metric score, irrespective of prevalence. This is
exactly what BA does by computing the average of individual class Sensitivities. An alternative
way of thinking about this compensation is tweaking the costs of misclassification errors by
assigning higher costs for errors in rare classes and vice versa. Hence, BA can be thought of as a
cost instantiation of EC if the costs are set proportional to the inverse of class prevalences (see
Suppl. Note 2.1). Importantly, the normalized variant of EC, ECN, does not generally compensate
for Effect 2, but merely rescales metric scores in a way that the value of 1 corresponds to a naive
classifier always predicting the most frequent class (see Effect 1). In other words, the rankings
obtained for a set of test cases would be the same for EC and ECN. Analogously to EC, it is also
possible to tweak the costs to compensate for Effect 2 in ECN, but the resulting metric would yield
no advantages over BA. Importantly, the fact that ECN does not compensate for Effect 2 implies
that if there is an unequal interest across classes (FP2.5.1 = TRUE), then ECN is the only correct
choice. Analogously to BA, MCC establishes equal contribution of classes by assessing individual
class sensitivities.
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Compensating for Effect 3: The predictive values (PPV and NPV) are an important aspect of
assessing the quality of a classification system. To showcase this importance, consider the following
confusion matrix of a binary classification task, as shown in Tab. SN 2.6:

Table SN 2.6. Confusion matrix illustrating Effect 3.

Prediction
Positive Negative
Positive TP =10 FN=1
Negative | FP = 100 | TN = 10,000

Actual

This system is assessed as ‘near-perfect’ by BA (0.95), ’better than random, but not really useful’
by MCC (0.29), and ‘'much worse than random’ by ECN (9.2).

This example shows that BA does not consider predictive values, thus yielding a near-perfect
score despite a low PPV of 0.09. This assessment could be considered a pitfall in many scenarios,
where the classification system would be fairly useless. Consider, for instance, a breast cancer
screening program where, based on the provided system, > 90% of all biopsies (True Positives (TPs)
+ False Positives (FPs)) would be unnecessary (FPs).

In contrast, the MCC score could be considered intuitive for many scenarios such as the screening
example. This is due to MCC explicitly considering all four basic rates True Positive Rate (TPR),
True Negative Rate (TNR), PPV, and NPV. Thus, MCC poses further requirements compared to BA,
which focuses only on Sensitivities. ECN also ensures high predictive values by design. In practice,
however, it is not always a good indicator for predictive values because of the sometimes overly
strict penalization of errors, as seen in the above example. In theory the weights in ECN could be
adjusted to simulate the behavior of predictive value-sensitive metrics like MCC, but this implies a
trial-and-error tuning process on each new task.

Identifying the optimal decision rule applied to predicted class scores: The different
strategies for identifying a decision rule applied to predicted class scores are described in FP2.6
(see Suppl. Note 1.3). In the multi-class setting, argmax-based decision rules (i.e., predicting the
class with the highest class score) are very common, but make arguably strong assumptions such
as calibrated scores and equal penalization of all misclassifications.

It should be noted here that metrics that can be viewed as instantiations of EC (in this case BA
and ECN) come with a theoretical framework on how to validate the decision rule, i.e., answering
the question “how much better could the classification performance have been with an optimal
decision rule?” [40]. MCC, on the other hand, lacks such a framework.

Interpretability: Arguably, BA features the most straightforward interpretation as the average
over individual class Sensitivities, with bounded scores [0, 1] and a fixed random reference at
1/C. ECN scores are also fairly interpretable (“the EC of the system in relation to the EC of a
naive system”), but scores are not bounded [0, o). Furthermore, the random reference could be
interpreted as ’too strict’ for many scenarios such as the provided example. As for MCC, a random
reference value is provided at 0 and the scores are bounded [-1,1], but all intermediate scores are
arguably less intuitive. The general interpretation of MCC would be that it is a metric that depends
on individual class Sensitivities and predictive values, i.e., a high MCC score guarantees all of these
being high and a low MCC score indicates that at least one of them is low.
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Popularity: BA is a widely used metric. MCC is fairly well-known but arguably not used as
much. ECN is used prominently in the field of speaker verification but has not been introduced
to the biomedical imaging or clinical community yet, although the statistical concepts it is based
upon are long-standing in Bayesian decision theory.

2.7.2  Decision guide S3.

DG3.1: Metric@(TargetMetric = TargetValue)

If a target value for a specific metric (typically Sensitivity; Fig. SN 3.16) is provided, the decision
rule applied to the predicted class scores is optimized such that the specific target value is reached
on a validation data set (Suppl. Note 5.4). Other metrics, depending on the target application, can
then be reported for that specific threshold. Example Specificity@(Sensitivity = 0.95): As illustrated
in Fig. SN 2.9, the decision rule is set such that a Sensitivity of 0.95 is achieved. Other metric values
(here Specificity; Fig. SN 3.17) can then be obtained from the corresponding fixed confusion matrix.
In the example, this yields the Specificity at the predefined Sensitivity level. Possible candidates
include Sensitivity (Fig. SN 3.16), Specificity (Fig. SN 3.17), PPV (Fig. SN 3.15), NPV, (Fig. SN 3.12)
and False Positives per Image (FPPI) (Fig. SN 3.8).

DG3.2: Net Benefit (NB) versus Expected Cost (EC)

Summary of DG3.2: NB versus EC

NB

© Decisions can be defined directly
based on predicted class scores, inter-
preted as risks

© Weighting of True Positive (TP)
against False Positive (FP) in risk per-
spective

© Lack of framework to validate the
decision rule applied to class scores

© Focus on reflectance of the (e.g., clin-
ical) interest in the scores

© Popular metric in clinical studies but
not common in image analysis

EC
© Decisions based on explicit defi-
nition of misclassification costs

© Weighting of False Positive (FP)
against False Negative (FN) in cost
perspective

© Availability of framework to val-
idate the decision rule applied to
class scores

© Inherent interpretability with re-
spect to naive classifier

© Not known or used in the biomed-
ical imaging domain although based
on well-studied statistical concepts

Table SN 2.7. Comparison of Net Benefit (NB) and Expected Cost (EC) in the context of the decision
guide DG3.2 for Subprocess S3. Context: FP2.6 = cost-benefit-based decision rule applied to predicted
class scores requested.

This decision guide is embedded in the framework in Subprocess S3, which guides the selection
of metrics that are reported separately for each class. In multi-class tasks (i.e., more than two classes
present) this reporting amounts to a one-versus-rest validation scheme. However, this scheme is
not intuitively applicable to a cost-benefit analysis (what are the costs and benefits of the 'rest’
class?), which is the concept behind decision rules of both metrics in this decision guide. Thus, for
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multi-class tasks we recommend to only proceed with the metrics selected in Subprocess S2 (e.g.,
EC or WCK) and not select any further metrics here to be reported in a one-versus-rest fashion, i.e..
we recommend to skip the guide.

Both NB (Fig. SN 3.11) and EC (Fig. SN 3.6) are linked to cost-benefit analysis [81] and are well-
suited when a cost-benefit-based approach for determining an appropriate decision rule applied
to the predicted class scores is desired (FP2.6 = cost-benefit-based). To this end, both require the
knowledge of task-dependent tradeoffs between benefits and costs, as detailed below. The following
aspects are relevant when deciding between EC and NB (note that cost-based decision rule applied
to predicted class scores is only considered for binary classification tasks in the scope of this work,
thus referred to as a cutoff in this context):

Cost versus risk perspective: Cost perspective: For EC, explicit costs for both basic misclassifi-
cations (FP, FN) need to be defined or estimated. The optimal decision rule (i.e., cutoff on predicted
class scores) that minimizes these costs can be analytically determined without data-based opti-
mization. Risk perspective: In contrast, NB does not require the costs to be defined explicitly. Instead,
predicted class scores are interpreted as probabilities or ’risks’ of certain model output scores
belonging to the positive class and the cutoff on the scores is defined directly on this scale based on
task interest (e.g., “only treat patients with cancer risk >10%”). This can be interpreted as an implicit
cost-benefit analysis resulting in a single intuitive risk score. However, it is also common for NB to
make this cost-benefit analysis more explicit and define the risk as a relation of the benefit of TPs
to the harms caused by FPs. A diagnostic test, for example, may lead to early identification and
treatment of a disease, but typically the process will also cause some patients without disease being
subjected to unnecessary further interventions. NB allows to consider such tradeoffs by putting the
benefits and harms of the test on the same scale so that they can be directly compared. A physician
may, for example, state that 10 FPs, resulting in unnecessary biopsies, are acceptable to find one
more cancer case (TP).

Decision curves: In most scenarios it is not possible to precisely define the costs or risks
associated with the task. For example, it is not straightforward to make an exact decision on how
many FPs would be acceptable to obtain one more TP. To compensate for this uncertainty, it is
common practice to plot NB over a “reasonable range of risk thresholds” resulting in so-called
decision curves [111]. This analysis allows assessing and comparing methods according to their NB
scores without relying on a single cutoff. Although not common practice, one could also generate
such curves for EC when expressing cost ratios as a risk score (i.e., switching from the cost to the
risk perspective).

Cutoff on predicted class scores: In NB, the cost-benefit-based cutoff, which is determined
directly from provided knowledge about the task and does not require data-based optimization,
is an explicit part of the metric computation. In contrast, EC allows to alternatively determine a
data-based cutoff by taking into account the provided costs in the metric calculation and minimizing
EC on a dedicated data split, if available. A further difference between the two metrics is the way
prevalence dependency is handled: EC isolates the class priors from the predicted class scores and
defines them as a parameter of the cutoff itself, such that all application dependent parameters
(costs and class priors) are part of the cutoff [40]. Upon deployment of a model on a new data set,
the threshold can simply be updated analytically. Note that this process only works under the
arguably strong assumption that the class priors of the new data set are known. In contrast, NB
considers risk scores that incorporate the class priors, implying that the threshold depends solely
on the cost-benefit tradeoff. As a consequence, when the class priors shift on a new data set, the
risk-cutoff in NB requires class scores to be re-calibrated. The latter might be a harder requirement
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because it requires a labeled validation set for re-calibration as opposed to requiring merely the
class priors of the new data set for a threshold update.

Interpretability: The following tradeoff exists between the two metrics regarding interpretabil-
ity: EC allows reporting a normalized version (ECN), which makes the metric scores interpretable
with regard to the performance of a random classifier. In contrast, in NB, the reference to a random
classifier is typically done manually (by comparing the two scores), because NB itself allows for an
interpretation as the ’proportion of net-TP’, which would get lost by normalization.

Calibration: Both metrics rely on the fact that predicted class scores are well-calibrated with
regard to a chosen cutoff. EC allows assessing this requirement by calculating the extra cost entailed
by miscalibration (or the potential for reducing cost by calibrating scores) [40]. The calibration
error here is measured as the increase of EC with the analytical, i.e., task interest-based, cutoff
compared to an empirical cutoff optimized on the data. Compared to related calibration errors (see
Suppl. Note 2.6), this technique assesses a weaker calibration condition, which is directly targeted
to the decision process at hand. For instance, even when assessing the relatively weak top-label
calibration condition by means of Expected Calibration Error (ECE) with two bins and the border
at the determined cutoff value, the distribution inside the bins would be considered, while EC only
focuses on how many more cases would have been on the 'correct side of the cutoff” if scores were
calibrated, without considering score distributions on either side of the cutoff.

Popularity: Neither NB nor EC are widely used in the biomedical image analysis community.
NB is a popular metric in clinical studies, while EC is currently not used but is part of a coherent
framework of intuitive metric formulations (linked to Accuracy, BA, and extends to multi-class
scenarios).

DG3.3: Positive Likelihood Ratio (LR+) versus Sensitivity

Summary of DG3.3: LR+ versus Sensitivity

LR+ Sensitivity

© Straightforward application in the @ Challenging application in the
case of an optimization-based decision case of an optimization-based deci-
rule (FP2.6) sion rule (FP2.6)

© Interpretation often reflecting inter- © Good interpretability

est in binary tasks
Table SN 2.8. Comparison of LR+ and Sensitivity in the context of the decision guide DG3.3 for
Subprocess S3. Context: FP2.6 = optimization- or argmax-based decision rule applied to predicted
class scores requested and provided class prevalences do not reflect the population of interest (FP4.2

- FALSE).

This decision guide helps deciding between LR+ and Sensitivity in the context of per-class
validation (Subprocess S3) with an optimization- or argmax-based decision rule applied to predicted
class scores (FP2.6).

LR+ (Fig. SN 3.14) is the likelihood ratio of the positive class. In a clinical example where the
quality of a diagnostic test is to be assessed, this could be interpreted as the ratio of the likelihood
of a diseased patient receiving a positive test result versus a healthy patient receiving a positive
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test result (P(t + |d+)/P(t + |d—), where t/d denotes a positive(+)/negative(-) test/disease status). In
other words: How much more likely is the occurrence of a positive test result for a diseased person
compared to a healthy person? The formal calculation for this metric boils down to the following
formula: LR+ = TPR / (1-TNR), where TPR/TNR are the Sensitivities of the positive/negative class.

In the provided context of this decision guide, where metrics are reported individually per
class, Sensitivity (Fig. SN 3.16) and LR+ convey similar information and there is no ’incorrect’
choice. Thus, the choice between the two can generally be made as the metric that is easier to
interpret in the given task: In binary classification tasks (e.g., the provided example), LR+ conveys
Sensitivities of both classes in a single score. Due to its intuitive and meaningful interpretation,
it is often reported in clinical studies. In multi-class settings (which, in this context, amount to a
one-versus-rest validation scheme), Sensitivities are generally easier to interpret, while the direct
interpretation of LR+ as a property of a (clinical) test does not apply.

In case the decision rule applied to predicted class scores is to be determined on the basis of
optimization on the target class, one additional consideration is of importance (FP2.6 = optimization-
based decision rule). When reporting Sensitivity per class, the decision rule can not be optimized
based solely on the single Sensitivity at hand because this would always yield a cutoff value of 1.
LR+ naturally overcomes this problem. Other possible workarounds include choosing a different
decision rule (FP2.6) or optimizing a weighted average over Sensitivity for all classes instead. The
latter option should only be considered if meaningful weights across classes can be defined (e.g.,
based on class importance).

DG3.4: Positive Likelihood Ratio (LR+) versus Sensitivity versus Fz Score

Summary of DG3.4: LR+ versus Sensitivity versus Fg Score

LR+ Sensitivity Fs Score

© Meaningful inter- © Generally good in- © Limited inter-
pretation in binary terpretability pretability

tasks

© [Inherent inter- © Inherent inter- @ No interpretability

pretability with
respect to naive
classifier

@ Insensitive to PPV

pretability with
respect to naive
classifier only when
averaging over
classes

@ Insensitive to PPV

with respect to naive
classifier

© High scores en-
sures high PPV

Table SN 2.9. Comparison of LR+, Sensitivity and F g Score in the context of the decision guide DG3.4
for Subprocess S3. Context: FP2.6 = optimization- or argmax-based decision rule applied to predicted
class scores requested and provided class prevalences reflecting the population of interest (FP4.2 =
TRUE).

In the context of this decision guide, prevalence dependency is not an exclusion criterion (see
FP4.2) and thus Fg Score (Fig. SN 3.7) can be considered as an alternative to Sensitivity-based
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metrics (Sensitivity and LR+, Figs. SN 3.16 and SN 3.14). Details for the decision between the latter
are provided in DG3.3; the present guide focuses on the pros and cons of opting for F4 Score.

Per-class validation is commonly performed in a one-versus-rest fashion, naturally introducing
class imbalance into the validation. Exceptions are binary scenarios with two balanced classes. For
this exception, no compensation for class imbalance is needed (FP2.5.5 = FALSE) and the choice
between Fy Score and Sensitivity-based metrics becomes less relevant, i.e., there are no obvious
incorrect choices. Thus, the decision can be made on the basis of which metric is easier to interpret
in a given task. For all other cases, the decision should be based on whether compensation for class
imbalance is required (FP2.5.5 = TRUE).

Compensation for class imbalance: As described in FP2.5.5 (and explained in more detail in
Suppl. Note 1.3, "Compensation for class imbalance"), there are three aspects of compensation for
class imbalance:

(1) Establishing a reference value for random performance: LR+ provides a fixed random
reference value at LR+ = 1, while for Sensitivity the scores of individual classes can vary
and only their average is fixed at “1/number of classes” (equivalent to BA). Fg Score does not
provide a reference value for random performance.

(2) Establishing equal class contribution: In the provided context (S3), the validation is
performed per class, such that this aspect is irrelevant.

(3) Establishing consideration of predictive values: This aspect is the main reason to opt for
Fg Score in this decision guide, because it is the only metric of the three where high scores
ensure a high PPV. In contrast, LR+ and Sensitivity are insensitive to PPV, which, depending
on the task interest, can substantially diminish their utility. An exemplary pitfall related to
this choice is the confusion matrix of a binary classification task, as shown in Tab. SN 2.6.
This classification system yields (for the two individual classes) Sensitivities of (90%, 99%)
and LR+ of (90, 90), respectively. Resulting F; Scores are (0.165, 0.995), indicating a low PPV
and thus unsatisfying performance for the rare positive class. This pitfall may be of practical
relevance in class-imbalanced tasks where FPs shall not be neglected. For example, in breast
cancer screening, the provided classifier would not be useful, because > 90% of all biopsies
(TP+FP) would be unnecessary (FP).

Interpretability: Out of the three, Sensitivity is arguably the easiest-to-interpret metric (excep-
tions are binary tasks, where LR+ might be preferable as detailed in DG3.3, see Tab. SN 2.8). Fg Score
can be interpreted as the harmonic mean of Sensitivity and PPV, which adds a layer of complexity
to the interpretation compared to Sensitivity. Thus, if the aspects discussed in “compensation for
class imbalance” are not relevant, Fz Score might not be the metric of choice.
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DG3.5: How to determine f in Fz Score

Summary of DG3.5:  in Fz Score

p<1 =1 f>1

© Higher weighting © Harmonic mean of © Higher weighting
of False Positive (FP) PPV and Sensitivity of False Nega-
penalties (Posi- tive (FN) penalties
tive Predictive (Sensitivity)

Value (PPV))

Table SN 2.10. Determining the hyperparameter of the Fg Score in the context of the decision
guide DG3.5 for Subprocess S3. Context: [Image-level classification (ImLC)]: FP2.6 = optimization- or
argmax-based decision rule applied to predicted class scores requested and provided class prevalences
reflecting the population of interest (FP4.2 = TRUE). [Object detection (ObD) or instance segmentation
(InS)]: Either no predicted class scores available (FP5.1 = FALSE) or FP2.6 = optimization- or argmax-
based decision rule applied to predicted class scores requested.

The Fg Score (Fig. SN 3.7) is defined as:

PPV - Sensitivit (1+p%) - TP
Fg=(1+f) — - ; / ; (3)
(p? - PPV) + Sensitivity (1 + f2) - TP + 2 - FN + FP

The most common choice is to set f§ to 1, resulting in equal weighting of FP and FN penalties. If
unequal penalization of class confusions is desired (see FP2.5.2), higher values of  result in higher
weights on FN penalties compared to FP penalties and thus imply a focus on Sensitivity compared
to PPV.

DG3.6: F; Score versus Panoptic Quality (PQ)
Summary of DG3.6: Fg Score versus PQ

Fs Score PQ
© Pure detection metric © Hybrid metric for assessing de-
tection and segmentation quality
Table SN 2.11. Comparison of Fg Score and Panoptic Quality (PQ) in the context of the decision

guide DG3.6 for Subprocess S3. Context: FP2.6 = optimization- or argmax-based decision rule applied
to predicted class scores and FP1.1 = instance segmentation (InS).

The F Score (Fig. SN 3.7) is a pure detection metric counting TP, FP, and FN detections on instance
level (specifically, it represents the harmonic mean of PPV (Fig. SN 3.15) and Sensitivity (Fig. SN 3.16;
see also [85]). The “segmentation aspect” of instance segmentation is here only incorporated via a
prior cutoff on the localization criterion operating on pixel level (e.g., “Intersection over Union (IoU)
> 0.5”). In case shifting the focus of validation more towards the segmentation quality of successfully
matched (TP) instances is desired, there are two options:
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(1) Complementary segmentation metric: One option is to select separate segmentation
metrics in addition to object detection metrics such as Fz Score on a per-instance basis (e.g.
“Dice Similarity Coefficient (DSC) per TP-instance”). This selection is naturally incorporated
in the instance segmentation recommendation (Fig. 2) by the subroutines S6 (Extended Data
Fig. 6) and S7 (Extended Data Fig. 7).

(2) Hybrid metric: An alternative is to select PQ (Fig. SN 3.13) instead of Fz Score, which
allows expressing both interests (detection performance and segmentation quality) in a
single score. Essentially, PQ is a modified F; Score, where TP instances do not count as “1”
in the calculation, but the “1” is replaced with the associated DSC score (range [0,1]) of
the instance. While combining the two aspects in a single score might be desirable, e.g.,
for method benchmarking or ranking, on the downside, such combined metrics make it
harder to trace back performance to individual aspects (in this case: object detection versus
segmentation; see Fig. SN 2.17).

Reference Prediction | Prediction 2
]
] Instances 1,2,3 .. Instances 1,2,3,4,5 B Instances 1,2,3

TP TP
FP

TP TP
: H o I g [

B rp

Segmentation quality Segmentation quality 3¢
Detection quality 3¢ Detection quality
PQ =0.75 = PQ =0.75

Fig. SN 2.17. Effect of assessing segmentation and detection quality in a single score. Prediction 1achieves
a high segmentation but low detection quality (with several False Positive (FP) predictions); vice versa for
Prediction 2 (only predicting True Positive (TP) instances; no FP but low segmentation quality). However, both
yield the same Panoptic Quality (PQ) score.
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2.7.3 Decision guide 54.
DG4.1: Area under the Receiver Operating Characteristic Curve (AUROC) versus Average
Precision (AP)

Summary of DG4.1: AUROC versus AP

AUROC AP

© Insensitive to Positive Predictive © High scores ensure high PPV in-
Value (PPV) under class imbalance cluding under class imbalance

© Inherent interpretability with re- © Prevalence-dependent reference
spect to naive classifier value for naive classifier

© Straightforward interpretability © Limited interpretability

Table SN 2.12. Comparison of Area under the Receiver Operating Characteristic Curve (AUROC)
and Average Precision (AP) in the context of the decision guide DG4.1 for Subprocess S4. Context:
availability of predicted class scores (FP5.1 = TRUE), FP1.1 = image-level classification (ImLC) and
provided class prevalences reflecting the population of interest.

. J

The comparison between the two concepts behind AUROC and AP, i.e., the comparison between
Receiver Operating Characteristic (ROC) curves and Precision-Recall (PR) curves has been exten-
sively studied [33]. In practice, the choice between the two metrics boils down to the following
aspects (if no clear choice can be made, we recommend reporting both metrics):

Compensation for class imbalance effects: Of relevance in the context of this decision guide
is pitfall 3 from FP2.5.5: "Missing consideration of predictive values" (more on this topic can be
found in Suppl. Note 1.3, "Compensation for class imbalance"). AUROC is based on the Sensitivities
of the two classes and does not consider predictive values. In class-imbalanced scenarios, this may
lead to pitfalls such as depicted in Fig. SN 2.18, where near-perfect AUROC scores hide the fact
that a system might have limited to no predictive utility. AP assesses the predictive value of the
positive class (PPV) and thus compensates for the undesired effects caused by class imbalance: In
the provided example, AP yields an intuitive score of 0.32, reflecting the low PPV and thus low
utility of the system in the context of the task. A technical explanation is given by the fact that
the high number of True Negatives (TNs) dominate and suppress the FPs in the calculation of the
TNR, thus yielding high scores for AUROC. A practical example for this pitfall might be a breast
screening program, where a high PPV is of great importance to prevent unnecessary biopsies (FPs).
The focus of AP on the positive class further has the effect that the resulting scores differ depending
on which of the two classes is defined as positive and negative. This is in contrast to AUROC,
which yields the same scores irrespective of this definition. The general approach for AP-based
assessment in class-imbalanced scenarios is to define the rare class as the positive class. The fact
that AP focuses on the positive class reflects the task interest of not letting rare (important) events
be dominated by frequent events in the metric score.

Interpretability: AUROC is easy to interpret as it simply represents the probability of a randomly
sampled positive case having a higher predicted class score than a randomly sampled negative case.
It further comes with a fixed reference value for the performance of a random classifier at 0.5. AP,
on the other hand, is harder to interpret and features no fixed random reference value. Instead, the
AP score of a random classifier is the prevalence of the positive class which varies on each data set.
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Implementations: For reasons described in [33], the PR curve is more complex to interpolate
compared to the ROC curve. This results in the existence of various implementations of AP, whereas
no such heterogeneities exist for AUROC.

Popularity: Although AUROC is the common choice for multi-threshold metrics, AP is also
widely known and used.

| positive class
1600 negative class

1400 -
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1000 4
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200 A

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9

AP =0.32

Fig. SN 2.18. Area under the Receiver Operating Characteristic Curve (AUROC) scores neglect the Posi-
tive Predictive Value (PPV) in class-imbalanced settings and might lead to misinterpretation of a model’s
discrimination quality. The figure shows the simulation outcome for a binary classification problem with
a low prevalence for the positive class. A clinical example of this scenario are cancer screening programs,
where most of the subjects are healthy. While AUROC is agnostic to the class prevalence and thus implies
near-perfect discrimination with a score of 0.95, the prevalence-dependent Average Precision (AP) allows
focusing on discrimination of the rare positive class by explicitly considering the PPV and yields an intuitive

score of 0.32.
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DG4.2: Average Precision (AP) versus Free-Response Receiver Operating Characteristic
(FROC) Score

Summary of DG4.2: AP versus FROC Score

Table SN 2.13. Comparison of Average Precision (AP) and Free-Response Receiver Operating Char-
acteristic (FROC) Score in the context of the decision guide DG4.2 for Subprocess S4. Context:
availability of predicted class scores (FP5.1 = TRUE) and FP1.1 = object detection (ObD) or instance
segmentation (InS).

AP FROC Score

© Standard metric in computer vision © Preference in clinical context due
community to its domain-centered approach
© Unawareness of data set sizes © Consideration of data set sizes
@ For filtering low confidence predic- © No consideration of low-
tions, a cutoff on confidence scores is confidence predictions

required

© Relatively good standardization of @ Lack of standardization
hyperparameters

The following aspects should be taken into account when deciding between AP (Fig. SN 3.20)

and FROC Score (Fig. SN 3.21):

e Community preferences: While AP constitutes the undisputed standard metric for object

detection and instance segmentation in the computer vision community, the FROC Score
is often favoured in the clinical context due to its easier interpretability despite its lack of
standardization (employed FPPI Scores vary across studies [10, 54, 92]). Thus, the decision
between the two metrics often boils down to a decision between a standardized and technical
validation versus an interpretable and application-focused validation.

Data set size awareness: In its default configuration, where AP is computed globally over
the entire data set, the metric is insensitive to performance per individual images. In contrast,
the FROC Score takes into account the total number of images in the data set (see also
Fig. SN 2.19). For example, given a data set and an AP as well as FROC score computed for
this data set, adding more ’empty’ images (i.e., images with no reference objects and no
model predictions) would lead to an improved FROC score, because FROC rewards the model
for correctly not predicting structures on these images. In contrast, the AP score would not
be affected, because globally no new TPs, FPs or FNs are added that would alter the metric
score. This property does not affect relative method comparison and can be related to the
underlying question "at which scale are matched objects (cardinalities) aggregated/counted?".
As described in Suppl. Note 2.4, AP can alternatively be configured to aggregate scores per
individual image, in which case the total number of images in the data set is considered
equally to FROC. [85] demonstrates how to apply AP and other object detection metrics
to, for example, clinical scenarios requiring per-image aggregation. FROC score is a hybrid
metric in this context, where Sensitivity is computed per data set while FPs are averaged over
single images (FPPI).
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o Dealing with low-confidence predictions: It is often desired to filter low confidence
predictions (e.g., objects with high confidence of being background) prior to metric computa-
tion. For AP computation, this requires a cutoff on the confidence score or upper limits of
considered predictions per image or per data set. For FROC, however, with typical values
of FPPI, such low-confidence predictions naturally go unconsidered, thus allowing to avoid
additional filtering measures.

o FPPI: Different FPPI values are used in the field for computing the FROC Score, yielding
non-standardized results (see Fig. SN 2.20). A potential default are the values 1/8, 1/4, 1/2, 1,
2, 4, 8, as used for multiple popular benchmarks [92, 108]. Here, lower FPPI values (smaller
than one) are weighted equally to higher FPPI values (greater than 1; four values each).
Deviation from this weighting might be appropriate depending on the application, but should
be explained. In the biostatistics community, areas under the curve are sometimes computed
constraining the FPPI range to [0,1] [88].

Dataset D1 Dataset D2
0 -
| |
s ] ] g
© | | B TP
3 | fe m FP S| |- } m FP |
o o
AP(D1) = AP(D2)
FPPI(D1) FPPI(D2)
FROC score(D1) FROC score(D2)

Fig. SN 2.19. Effect of the number of images per data set on the metric scores. The Average Precision (AP)
metric does not take into account the total number of images, yielding the same score for data sets D1 and
D2. The Free-Response Receiver Operating Characteristic (FROC) curve plots the average number of False
Positives per Image (FPPI) against the Sensitivity, therefore accounting for the number of images. The FPPI is
lower for D2, yielding a higher FROC score.
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Fig. SN 2.20. Effect of defining different ranges for the False Positives per Image (FPPI) used to draw the

Free-Response Receiver Operating Characteristic (FROC) curve for the same prediction (top). The resulting
FROC Scores change for different boundaries of the x-axis.
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2.7.4  Decision guide S5.
DG5.1: Kernel Calibration Error (KCE) versus Expected Calibration Error Kernel Density
Estimate (ECEXPE)

Summary of DG5.1: KCE versus ECEXPE

KCE ECEKPE

© Capture of isolated calibration qual- © Capture of isolated calibration

ity quality

© Unbiased estimator of canonical cal- © Potentially biased estimator of an

ibration error based on an alternative £, canonical calibration error (bias

distance function might be rendered neglectable by
future de-biasing schemes)

@ Bad interpretability, also due to neg- © Straightforward interpretability

ative output values of relative improvement

© Recent proposition, not widely used © Recent proposition, not widely
used

@ Depends on nontrivial configuration

choices of kernels and associated hy-

perparameters
Table SN 2.14. Comparison of Kernel Calibration Error (KCE) and Expected Calibration Error Kernel
Density Estimate (ECEXPE) in the context of the decision guide DG5.1 for Subprocess S5. Context:
FP2.7.2 = U2 - comparison of calibration performance across classifiers on the same task requested
and no mismatch between class prevalences and class importance (F2.5.3 = FALSE).

\. J

The context for this decision guide between KCE (Fig. SN 3.32) and ECEXPF (Fig. SN 3.31) is use
case 2 (U2) in Fig. SN 2.15: "comparing the calibration quality across multiple classifiers on the
same task."

General differences: Both KCE and ECEKPE are estimators of a canonical calibration error,
but measure this error based on different divergences, i.e., distance functions: ECEKXPE js based on
the £, norm and thus straightforward to interpret and configure. In contrast, KCE is based on the
“maximum mean discrepancy” and thus not interpretable (it may even take on negative values) and
requires nontrivial configuration of kernels as well as associated hyperparameters. On the other
hand, £, norm estimators such as ECEKPE gre inherently biased while KCE is an unbiased estimator.
Arguably, in the context of this decision guide (U2), interpretability of the calibration error estimate
is not required, since only a comparative, or relative assessment is requested rendering the unbiased
KCE the intuitive choice. However, recent research on £, norm estimators presents effective de-
biasing schemes [83], which might render the resulting bias neglectable in the near future and thus
make £, estimators such as ECEXPE j viable alternative for comparative calibration assessment.

Popularity: Calibration error estimates KCE and ECEXPE

that are not widely known in the biomedical community.

are both recently proposed measures
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BS

© Capture of effects
of (re-) calibration
methods on discrim-
ination performance
in addition to calibra-
tion quality

© Unbiased measure
of an £, norm canoni-
cal calibration error

© Straightforward
interpretability of rel-
ative improvement

© Established sta-
tistical concept

EKDE)

KCE
© Capture of isolated
calibration quality

© Unbiased estima-
tor of canonical cal-
ibration error based
on an alternative dis-
tance function

@ Bad interpretabil-
ity, also due to nega-
tive output values

© Recent proposi-
tion, not widely used

DG5.2: Brier Score (BS) versus Kernel Calibration Error (KCE) versus Expected Calibra-
tion Error Kernel Density Estimate (EC

Summary of DG5.2: BS versus KCE versus ECEXPE

ECEKDE
© Capture of isolated
calibration quality

© Potentially biased
estimator of an £,
canonical calibration
error (bias might be
rendered neglectable
by future de-biasing
schemes)

© Straightforward
interpretability of rel-
ative improvement
© Recent proposi-
tion, not widely used

with long history of
applications in many
fields of research
@ Depends on non-
trivial configuration
choices of kernels
and associated hyper-
parameters
Table SN 2.15. Comparison of Brier Score (BS), Kernel Calibration Error (KCE) and Expected Cal-
ibration Error Kernel Density Estimate (ECEXPE) in the context of the decision guide DG5.2 for
Subprocess S5. Context: U1 - FP2.7.2 = comparison of re-calibration methods for the same classifier
requested.

The context for this decision guide between BS (Fig. SN 3.28), ECEXPE (Fig. SN 3.31), and KCE
(Fig. SN 3.32) is use case 1 (U1) in Fig. SN 2.15: "comparing the effect of one or more re-calibration
methods on the same (fixed) classifier.

General differences: BS can be decomposed into discrimination and calibration terms, where
the calibration term exactly resembles the canonical calibration error (as defined in Suppl. Note 2.6).
As the purpose of the metric in the provided context is to assess the performance of different
re-calibration methods for the same classifier, a higher BS score also implies a better calibration in
the case of accuracy-preserving calibration methods. As a major difference to BS, KCE estimates the
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canonical calibration error directly. While this estimation is not biased (i.e., it is not dependent on
the data set size), the resulting estimates are not interpretable, that is, they only allow for relative
comparison on the same task (equivalently to BS). Further, KCE requires nontrivial configuration
of kernels as well as associated hyperparameters. In contrast to KCE, current estimators of £,
calibration error are biased, but are highly interpretable and straightforward to configure. Moreover,
recent developments in this line of research present effective de-biasing schemes [83], which might
render the resulting bias neglectable in the near future and thus make ¢, estimators such as ECEXP®
a viable alternative also for comparative calibration assessment.

Applicability: Generally, BS is attractive for ranking re-calibration methods that are guaranteed
to be accuracy-preserving (such as the common temperature scaling [44]). Otherwise, the metric
must be applied with care, because altered discrimination performance will dilute the focus on
calibration quality in the ranking. Note that it may also be desirable to capture the effect of (non-
accuracy-preserving) re-calibration methods on the discrimination performance. In such cases of
comprehensive assessment of re-calibration methods, it is also appropriate to apply BS. In contrast
to BS, calibration error estimators such as KCE and ECEXPE are capable of comparing the calibration
error of re-calibration while being agnostic to potential changes of discrimination performance
caused by the transformations. For the provided use case, this property allows the ranking of
non-accuracy-preserving transformations, such as recently proposed techniques employing spline
interpolations [45] or Gaussian processes [114], purely according to their calibration error while
ignoring their effects on the discrimination performance.

Interpretability: Defined as the root mean square error between predictions and references,
BS is bounded between [0, 1] and therefore straightforward to interpret as an overall measure.
However, as the calibration error is not isolated and scores are still conflated with the (same fixed)
discrimination performance, only a relative comparison of calibration errors is possible. KCE is
generally hard to interpret, also because it can yield negative values. ECEXPF as an estimator of ¢,
calibration error is straightforward to interpret.

Popularity: BS is a widely known metric for overall performance measures with a long history
of usage. Calibration error estimates KCE and ECEXPE are both recently proposed measures and
not widely known in the biomedical community.

Reasons to not recommend Negative Log Likelihood (NLL) in this context: NLL essen-
tially assesses a weighted version of the canonical calibration error as the logarithm leads to heavy
penalization of tail probabilities. As the implications of this weighting on calibration assessment
(as opposed to the overall performance measure) are not intuitive, we generally do not recommend
NLL in this use case.
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DGS5.3: Brier Score (BS) versus Negative Log Likelihood (NLL)

Summary of DG5.3: BS versus NLL

BS

@ Bounded penalization of errors
leads to preference of naive systems
in imbalanced settings

© Straightforward interpretability
as the mean squared error

© Established statistical concept
with long history of applications in
many fields of research

NLL

© Heavy penalization of extreme
scores (close to 0 or 1), thus abil-
ity to capture missing rare events.
General preference of conservative
models

© Difficult interpretability due to
lack of upper bound

© Established statistical concept
with long history of applications in
many fields of research

Table SN 2.16. Comparison of Brier Score (BS) and Negative Log Likelihood (NLL) in the context of
the decision guide DG5.3 for Subprocess S5. Context: FP2.7.2 = U3 - comparison of overall performance
across classifiers requested.

. J

The context for this decision guide between BS and NLL is use case 3 (U3) in Fig. SN 2.15:
"overall performance measure requested." Both BS (Fig. SN 3.28) and NLL (Fig. SN 3.33) are overall
performance measures, which capture discrimination and canonical calibration in a single score.

Penalization of errors: Like Accuracy, BS penalizes errors of all events equivalently irrespective
of the class prevalence. This implies that scores may drastically change when the prevalence changes
and thus renders BS a highly prevalence-dependent metric. For instance, in imbalanced scenarios,
a naive system that simply predicts the dominant class can receive a high BS, similarly to a high
Accuracy score. One strategy to cope with this is to divide the BS by the BS achieved with a
naive system, resulting in the normalized variant Brier Skill Score (BSS). Equivalently to ECN, this
transformation is a rescaling of scores to establish a 'naive baseline’ and enhance interpretability,
but errors are still penalized equivalently irrespective of class prevalence. In other words, equal
importance of classes (FP2.5.1) is not reflected in the metric, and missing a frequent event is still as
heavily penalized as missing a rare event although missing a rare event has a greater effect on the
respective class sensitivity. This results in a strict interpretation where the total amount of errors
has to be lower than the number of events in the rare class in order for a system to be considered
’better than random’.

Compared to squared error penalization in BS, the logarithm introduces a stronger penalization
of tail probabilities [84]. In consequence, overconfident predictions (such as a score of 1, implying
scores of 0 in the other classes) lead to higher losses. For example, predicting 0.001 rather than
0.01 (when the true class is ’1’) increases BS by ~ 2% and NLL by ~ 230% (for this single entry). A
practical effect of this penalty is a naturally higher penalization of naive systems in class imbalance
scenarios, addressing the pitfall of BS above. NLL is thus of potential interest in scenarios with
high class imbalance, where missing rare events would be heavily penalized, compared to BS which
is prone to favoring naive systems. Generally, the penalization effect can also be described as NLL
favoring more conservative models that avoid predictions of extreme class scores.
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Interpretability: BS is relatively straightforward to interpret as the mean squared error between
predictions and the reference. The resulting scores are bounded ([0, 1]). NLL is arguably harder to
interpret featuring logarithmic penalization of errors and thus no upper bound of the resulting
score (bounds: [0, oo])

Popularity: Both metrics are common statistical concepts and come with a long history of usage
in many fields of research.

DGS5.4: Expected Calibration Error (ECE)/ Root Brier Score (RBS) versus Class-wise Calibra-
tion Error (CWCE) versus Expected Calibration Error Kernel Density Estimate (ECEXPE)/
Class-wise Calibration Error (CWCE)/ Root Brier Score (RBS)

The decision between the sets of metrics boils down to determining whether predicted class
scores should be tested for top-label calibration (as measured by ECE, Fig. SN 3.30), marginal
calibration (as measured by CWCE, Fig. SN 3.29), or canonical calibration (as measured by ECEKPE
Fig. SN 3.31. If there is an unequal interest across classes (FP2.5.1), CWCE is the natural choice. In
this case we recommend both per-class and weighted reporting (by class importance). Note that
only aggregated reporting comes with the pitfall of unstable results, specifically in the case of few
samples or many classes. In the case of equal interest across classes, the key question is whether
the task interest is limited to the predicted scores that lead to the classification decision (top-label)
or whether there are reasons to request all predicted scores to be calibrated.

Notably, in binary classification tasks, the two conditions are equivalent [105].

Reasons for and against focusing on top-label calibration (ECE): The task interest focuses
on the decisions made by the classifier and only lies in the probabilities of the resulting decisions. In
case the underlying biomedical research question has a dedicated focus on the decision process, top-
label error might be the right choice, because it directly reflects this focus. Conflating the calibration
of decisions with other probabilities might be interpreted as washing out the task focus in this case.
Although it is common practice to assess calibration quality with ECE, this approach comes with
various pitfalls. Importantly, it is often ignored that top-label calibration implies an argmax decision
rule based on the predicted class scores, which is often not an optimal decision rule as discussed
in Suppl. Note 1.1 ("decision rule on predicted class scores’; see Fig. SN 1.1). Caution should also
be exercised if there is a mismatch between class prevalences and class importance (FP2.5.3) as
the top-label calibration is highly biased towards the high-prevalence classes. Furthermore, ECE
commonly relies on binning of class scores, which introduces a dependency of the resulting metric
score on the specific binning scheme. The number of bins is a configuration parameter that should
by no means be optimized on the final validation data. Note in this context that binning has been
shown to result in a more biased estimation compared to density estimation methods [83].

Reasons to extend the focus to all predicted scores (ECEXPE and CWCE): A common
perception is that the canonical calibration condition, which is the strongest condition considering
all predicted class scores, is the appropriate one in many application scenarios [40, 43, 83]. One
reason lies in the limitations of top-label calibration and associated binning estimators described
above. Another reason could be a broad task interest in all predictions beyond the classification
decision. In the clinical context, for instance, the risk for all potential outcomes might be relevant
for further treatment or shall be communicated to the patient. In such scenarios, calibration of
all probabilities might be of interest. Consider, for instance, a multi-way classification of tumor
categories, where one category is more aggressive than others. Even though the final prediction
of the system is ’benign lesion’, it might be of clinical interest to know (and communicate to the



82

patient) whether the probability for this outcome was 5% or 20%. While the primary calibration
metric for such scenarios should be ECEXPE as an estimate of the canonical calibration, it might
be of interest to additionally report marginal calibration (as measured by CWCE) separately for
each class. Notably, for these scenarios, alternatively splitting the problem into individual domain
questions that result in separate traversals for each class of interest should be considered (see Suppl.
Note 1.1).

Additional reporting of RBS (Fig. SN 3.34) as a guaranteed upper bound on the calibration
error: In top-label and canonical calibration, we recommend the additional reporting of RBS as a
guaranteed upper bound on the calibration error. As popular methods to assess calibration quality
such as ECE or ECEXPE are known to over- or underestimate the error [43], this guarantee provides
additional information, especially in safety-critical applications where the calibration error must
not be underestimated.

2.7.5 Decision guide S6.
DG6.1: Dice Similarity Coefficient (DSC) versus Intersection over Union (IoU)

Summary of DG6.1: DSC versus IoU

DSC IoU

© Identical to F; Score © Identical to Jaccard Index

© Close relation to IoU (see Eq. 5) © Close relation to DSC (see Eq. 4)

© Preference in medical community © Preference in computer vision commu-
nity

Table SN 2.17. Comparison of Dice Similarity Coefficient (DSC) and Intersection over Union (loU) in
the context of the decision guide DG6.1 for Subprocess S6. Context: no exclusive interest in the center
line of structures (FP2.3 = FALSE, FP3.3 = FALSE) and equal severity of class confusions (FP2.5.2 =
FALSE).

The DSC (Fig. SN 3.5) is identical to the F; Score on pixel level and closely related to the IoU
(Fig. SN 3.9), which, in turn, is identical to the Jaccard Index (see equations 4 and 5). The two
metrics will yield the same ranking of aggregated metric values in most applications (theoretically,
deviations are possible), such that there is no value in combining them. Commonly, the computer
vision community prefers the IoU, while the medical image community favors the DSC.

DSC 2IoU
P 4 DSC =
2-DSC ) 1+IoU

DG6.2: How to determine f in Fs Score

IoU = (5)

The Fg Score (Fig. SN 3.7) is defined as:

PPV - Sensitivity (1+p8%) - TP ©)
(B? - PPV) + Sensitivity ~ (1 + f82) - TP + 52 - FN + FP
The most common choice is to set f to 1, resulting in equal weighting of Sensitivity (Fig. SN 3.16) and
PPV (Fig. SN 3.15). Higher values of § result in higher weights on FN penalties (undersegmentation

in segmentation problems) compared to FP penalties (oversegmentation) and thus imply a focus on
Sensitivity compared to PPV.

Fﬂ=(1+ﬂ2)-
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2.7.6 Decision guide S7.
DG?7.1: Normalized Surface Distance (NSD) versus Boundary Intersection over Union (IoU)

Summary of DG7.1: NSD versus Boundary IoU

NSD

© Accounting for noisy images, limited
resolution or imprecise reference anno-
tations

© Influence of hyperparameter on
scores: distances below tolerance
threshold are considered TP

Boundary IoU

© Measurement of overlap between
predicted and reference contours up to
certain width

© Influence of hyperparameter on
scores: distance parameter determines
thickness of the considered boundary

Table SN 2.18. Comparison of Normalized Surface Distance (NSD) and Boundary Intersection over
Union (loU) in the context of the decision guide DG7.1 for Subprocess S7. Context: possibility of
spatial outliers in the reference annotation (FP4.3.2 = TRUE) or, if FALSE, FP2.5.6 = existence-based
penalization of outliers.

. J

The following aspects should be considered when deciding between NSD (Fig. SN 3.26) and
Boundary IoU (Fig. SN 3.23):

o Different research questions: Both metrics set the focus on the boundary/contour of
structures, but fundamentally differ in what they measure: NSD measures the DSC score on
the surface voxels (often interpreted as the ratio of correctly predicted contour), where the
strictness for what constitutes a correct boundary is controlled by a tolerance parameter.
This way, noise in the image, limited resolution, or imprecise reference annotations can be
accounted for. Boundary IoU directly measures the overlap between predicted and reference
contours (without tolerance) up to a certain width (which is controlled by a width parameter).
Thus, NSD is preferable if a tolerance accounting for imprecise annotations is requested.
Boundary IoU, on the other hand, is preferable if contour errors are thought of as crucial
inconsistencies that should be assessed, or if a wider area around the contour line is of interest
(dynamic transition to the classical IoU).

e Setting the hyperparameter: The NSD and Boundary IoU both require users to manually set
a hyperparameter. NSD: Boundary distances below the tolerance threshold will be considered
TP (deviations do not count as errors). This parameter can be set according to the inter-rater
variability or, if not available, heuristics. Boundary IoU: The distance parameter determines
the thickness of the considered boundary and thus also influences the sensitivity to contour
errors (the smaller the distance, the higher the sensitivity). This parameter can also be set
according to the inter-rater variability (here in order to capture potential inconsistencies, as
opposed to disregarding noise as in NSD) or, if not available, heuristics.
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DG?7.2: Mean Average Surface Distance (MASD) versus Average Symmetric Surface Dis-
tance (ASSD)

Summary of DG7.2: MASD versus ASSD

MASD ASSD

© Equal contribution of reference and @ Domination of the metric score by
prediction boundaries to the metric the larger contour

score

@ Possibility of misleading results

in corner cases (e.g., tiny prediction

closely located to the reference)
Table SN 2.19. Comparison of Mean Average Surface Distance (MASD) and Average Symmetric
Surface Distance (ASSD) in the context of the decision guide DG7.2 for Subprocess S7. Context:
FP2.5.6 = distance-based penalization of outliers with contour focus.

The ASSD (Fig. SN 3.22) puts all boundary distances (all distances from boundary A to boundary
B and all distances from boundary B to boundary A) in a list, then takes the mean (Fig. SN 2.21).
Thus, if one boundary is much larger than the other, this boundary will impact the mean much
more. The MASD (Fig. SN 3.25) computes the sum of the mean distances from boundary A to
boundary B and the mean distances from boundary B to boundary A. Therefore, the reference
and prediction boundaries contribute equally (see Fig. SN 2.21). While there are corner cases in
which MASD features disadvantages compared to ASSD as well (see Fig. SN 2.22), we generally
recommend MASD because of the aforementioned advantage.

( \o-
B

~— Min. distances from boundary
pixels inA to B

== Min. distances from boundary
pixels in B to A

| |

4 (a) Average Symmetric Surface Distance (ASSD) \ 4 (b) Mean Average Surface Distance (MASD) \

d(a,B) = min d(a,b) d(a,B) = min d(a,b)
@ IEZ)\d(a,B) +Esd(A’b) e 1 Y d@B) T dAb)
ASSD(AB) =***—zrTa MASD(AB) = 5 ("A‘ at ”T)
={nnn::J“Hi]} ={{nnn”|“}{::f:}}
N\ J U Y,

Fig. SN 2.21. Most commonly used distance-based segmentation metrics: (a) the Average Symmetric Surface
Distance (ASSD) and (b) the Mean Average Surface Distance (MASD). The term d(a, b) denotes the Euclidean
distance between boundary pixels a and b. Only the True Positives (TPs) are considered.
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Reference Prediction

ASSD =10.23
>>

MASD =5.20

Fig. SN 2.22. Corner case in which Mean Average Surface Distance (MASD) yields an undesired result. If
the Prediction is very small (here: one pixel) and located close to the reference boundary, the Mean Average
Surface Distance (MASD) will be much lower compared to the Average Symmetric Surface Distance (ASSD).

DG7.3: Hausdorff Distance (HD) versus X'” Percentile Hausdorff Distance (X*" Percentile HD)

Summary of DG7.3: HD versus X" Percentile HD

HD X" Percentile HD

© Sensitivity to spatial outliers © Compensation for spatial outliers
Table SN 2.20. Comparison of Hausdorff Distance (HD) and Xt" Percentile Hausdorff Distance
(X" Percentile HD) in the context of the decision guide DG7.3 for Subprocess S7. Context: FP2.5.6 =
distance-based penalization of outliers with outlier focus.

The HD (Fig. SN 3.24) calculates the maximum of all shortest distances for all points from
one object boundary to the other, which is why it is also known as the Maximum Symmetric
Surface Distance [120]. The X** Percentile HD calculates the X** percentile (e.g., 95% percentile,
the Hausdorff Distance 95th Percentile (HD95), Fig. SN 3.27) instead of the maximum, and should
therefore be used instead if spatial outliers should be disregarded (FP2.5.6, see Fig. SN 2.23).
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Reference Prediction
[l <— Annotation O r DSC = 0.95
error
loU = 0.90
HD=11.31
HD95 = 6.79
E] ASSD = 0.67

- MASD = 0.63
NSD = 0.88

Fig. SN 2.23. Effect of annotation errors/noise. A single erroneously annotated pixel may lead to a large
decrease in performance, especially in the case of the Hausdorff Distance (HD) when applied to small
structures. The Hausdorff Distance 95th Percentile (HD95), on the other hand, was designed to deal with
spatial outliers. Further abbreviations: Dice Similarity Coefficient (DSC), Intersection over Union (loU),
Average Symmetric Surface Distance (ASSD), Normalized Surface Distance (NSD).
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2.7.7 Decision guide S8.
DGS8.1: Mask Intersection over Union (IoU) versus Boundary IoU versus Intersection over
Reference (IoR)

Summary of DG8.1: Mask IoU versus Boundary IoU versus IoR

Mask IoU Boundary IoU IoR
© Focus on overlap © Focus on structure © Focus on overlap
boundaries
© Widely used © Recently proposed © Not well known
alternative; not well
known
@ Possible heavy pe- © Preferability in the
nalization of predic- case of a high ratio
tions in the case of of touching reference
a high ratio of touch- objects

ing reference objects
@ Over-penalization
of small structure
sizes in tasks with
high variability of
sizes (FP3.2)
@ Possibility of yield-
ing perfect value for
imperfect predictions
© Additional hyper-
parameter, which can
be determined based
on inter-rater wvari-
ability, for example
@ Canbe deceived by
large predictions
Table SN 2.21. Comparison of Mask Intersection over Union (loU), Boundary loU and Intersection
over Reference (IoR) in the context of the decision guide DG8.1 for Subprocess S8. Context: FP1.1 =
instance segmentation (InS).

In instance segmentation problems, it might be appropriate to base the localization criterion
on the corresponding target segmentation metric (custom criterion). For example, if the target
segmentation metric chosen in Subprocess S6 (Extended Data Fig. 6) is NSD, the localization
criterion could be defined accordingly. This may not always be possible, for example because the
target metric has no fixed upper bound (e.g., HD), rendering the setting of adequate localization
cutoffs challenging. An alternative strategy is to choose one of the common object detection
localization criteria.

The following aspects should be taken into account when deciding between Mask IoU (Fig. SN 3.9),
Boundary IoU (Fig. SN 3.23), and IoR (Fig. SN 3.37) in instance segmentation problems. We will
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first focus on the more subtle distinction between Mask IoU and Boundary IoU, and finally discuss
scenarios for potential usage of IoR:

Boundary versus Mask IoU

o Boundary focus: While Mask IoU measures the overlap of structures in general, Boundary
IoU allows to focus on the correctness of boundaries (FP2.1, see Fig. SN 2.24). Note that the
focus on boundaries also comes with pitfalls. Boundary IoU can even be deceived to result
in a perfect value of 1.0 despite an imperfect prediction (see Fig. SN 2.25).

o Small structures: Mask IoU over-penalizes small structures in tasks with high variability of
structure sizes (FP3.2) because boundary pixels increase linearly (or quadratically) with
size, while total pixels increase quadratically (or cubically) with size. Boundary IoU [22]
addresses this issue by selecting only pixels with a maximum distance of “d” with regard
to the boundary for validation (see Fig. SN 2.24).

e Hyperparameters: For the computation of Boundary IoU, the distance “d” constitutes an
additional and sensitive hyperparameter to be determined. It can be determined based on
inter-rater variability, for example.

e Popularity: While Mask IoU represents an established concept that is well-known to the
community, Boundary IoU is a recently proposed modification [22] that might thus require
specific introduction when used in validation.

IoR In the case of a high ratio of touching reference objects, ‘non-split errors’ (one prediction
overlaps multiple reference objects) might occur frequently. While the IoU criterion can
potentially heavily penalize this scenario resulting in FN and multiple FPs, a less severe
penalization might be desired, e.g., in the form of the Intersection over Reference (IoR)
[70]. ToR essentially considers the ratio of the area of a reference object that is covered by
a prediction (see Fig. SN 2.26), allowing for multiple TP matches of the same prediction.
Appropriate penalization in these cases is then ensured either by separating such errors as
‘merge errors’ [21], or by means of additional segmentation metrics. [oR shares the behaviour
of Mask IoU regarding the above discussions on boundaries and small structures. As a major
disadvantage, it can be deceived by large predictions. Widespread usage of IoR is currently
limited to the field of cell segmentation, where images with high density of structures are
present [70].
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Fig. SN 2.24. Compared to the Mask Intersection over Union (loU), the Boundary loU (third and fourth
column, representing two different thresholds) (1) specifically penalizes errors in the boundaries and (2) is
more invariant to structure sizes (top: large; bottom: small).

- Reference l:' Reference outline I Overlapping boundary
pixels
. Prediction
Reference Prediction
- Mask Boundary, distance = 2

" Mask loU =0.75 < Boundary loU = 1.00 %

Fig. SN 2.25. Example of a perfect Boundary Intersection over Union (loU) score for an imperfect prediction.
Overlapping pixels from the reference and prediction are shown in light blue. For a prediction with a hole in
the middle, the Boundary loU may result in a score of 1.00 if the distance to border contains all mask pixels
(here: distance = 2). However, the Mask loU spots the problem and yields a lower score.
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Fig. SN 2.26. In case of one prediction assigned to multiple reference objects, an assignment strategy needs
to be chosen. This may be based, for example, on the Intersection over Union (loU) > 0.5 strategy, which
may result in a heavy penalty (two False Negatives (FN) and one False Positive (FP)). Another option is
to use the Intersection over Reference (loR) > 0.5 strategy, which examines whether the prediction was
successfully assigned to the reference objects. In an additional step, the "non-split errors" will be penalized.

One prediction is assigned to
more than one reference object.

. Reference 1
D Reference 2
|:| Prediction

loU<0.5

loU<0.5

Y

r

|

IoU > 0.5 assignment strategy

m-
m-
-

~\

Heavy penalty for
what can be
interpreted as
one error

IoR > 0.5 assignment strategy

One prediction is successfully assigned to two reference objects.

Focus on object detection

Focus on instance segmentation

L TP ‘- P

TP+ non-split error

B

Explicitely penalize “non-split errors” next
to FP and FN in dedicated single-threshold
counting metric.

Penalize “non-split errors”
indirectly via low scores in
segmentation metrics.

J

Used abbreviations: False Negative (FN), False Positive (FP) and True Positive (TP).
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DG8.2: Mask Intersection over Union (IoU) > 0 versus Center Distance versus Point inside
Mask/Box/Approx

Summary of DG8.2: Mask IoU > 0 versus Center Distance versus Point inside

Mask/Box/Approx

Mask IoU > 0

© No hyperparameters
(standardized)

@ Strictness of criterion
cannot be varied

@ Potential large ambi-
guity of the predicted lo-
cation as only few pixels

Center Distance

© Distance threshold
must be provided

© Strictness of criterion
can be varied

© Good representation
of the object center
(FP2.3)

Point inside
Mask/Box/Approx

© No hyperparameters
(standardized)

@ Strictness of criterion
cannot be varied

© Relatively good rep-
resentation of tubular or
disconnected structures

overlap the reference

Table SN 2.22. Comparison of Mask Intersection over Union (loU) > 0, Center Distance and Point
inside Mask/Box/Approx localization criteria in the context of the decision guide DG8.2 for Subprocess
S8. Context: FP1.1 = object detection (ObD) problems in the case of either (1) FP4.4 = reference
annotations provided as exact outline and FP2.4 = a desired localization as only position or (2) FP4.4
= reference annotations provided as rough outline and FP2.4 = a desired localization as only position.
Note that Mask loU > 0 is only relevant for case (1).

When choosing a localization criterion for tasks where the mere existence of objects is of interest
(as opposed to the outlining of objects), the following aspects should be considered:

e Loose criterion: (only recommended if the reference is provided as exact outline (FP2.4))
The intuitive choice of a very loose IoU criterion (e.g., “IoU > 0 or “at least one pixel overlap”,
Fig. SN 3.9) comes with simplicity but implies the pitfall that the size of the predicted structure
is in theory unbounded, i.e., the predicted location can be ambiguous (see Fig. SN 2.27).

e Point-based criteria: A preferable alternative for the case of pure localization (without
interest in outlines) is to constrain the prediction to a single coordinate. A common criterion
for this scenario is the distance to the center point of the structure (Fig. SN 3.36; which can
also be of explicit interest, see FP2.3, Fig. SN 2.28). The center point?, however, might not be a
good reference for tubular structures (check FP3.3) or disconnected structures (check FP3.6).
In such cases (and if annotations are provided in the form of masks), a binary Point inside
Mask/Box/Approx criterion (Fig. SN 3.40) might be the better choice. On the other hand,
the Point inside Mask/Box/Approx criterion does not allow for a variation of the criterion’s
strictness (i.e., threshold). Application despite this shortcoming should be well-justified.

?Depending on what kind of information the center point is derived from, different definitions are possible as detailed in
Fig. SN 3.36.
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loU > 0: True positive (TP)
loU = 0: False positive (FP)

Reference Prediction
giﬁgznce . Prediction

loU=0.05>0TP ¥

Fig. SN 2.27. Effect of a loose Intersection over Union (loU) criterion. When defining a True Positive (TP) by
an loU > 0, the resulting localizations may be deceived by very large predictions.
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Fig. SN 2.28. Pitfalls of the Center Distance. (a) Ignoring overlap between objects. Both predictions have
the same distance to their corresponding reference center. The Center Distance, which requires a threshold
distance 7 between center points not be exceeded, does not take into account the overlap between objects.
However, the right prediction does not overlap the reference and should thus not be considered a True
Positive (TP). (b) Tubular structures. The Center Distance is not an ideal criterion because it implies that
the prediction shown would result in a False Positive (FP), although it hits the elongated structure. This could
be overcome by a Point inside Mask criterion.
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DGS8.3: Choose localization threshold

Summary DG8.3: Choose localization threshold

Lower thresholds Higher thresholds

© Interest in the existence of objects © Interest in precise localization

rather than their precise localization

© Small size of structures (FP3.1) © Dense distribution of structures in im-

ages (FP3.5)

© High variability of structure sizes

(FP3.2)

© 3D input images

© Uncertainties in the reference

(FP4.3.1)
Table SN 2.23. Choosing the localization threshold in the context of the decision guide DG8.3 for
Subprocess S8. This decision guide does not apply for Point inside Mask/Box/Approx criteria.

Note that most localization criteria require a threshold to be set (e.g., IoU > 0.5 counts as detected).
However, such cutoff renders the validity of results limited to the specific threshold. To increase
robustness of reported metrics, it is common practice in the computer vision community to average
metrics over multiple cutoff values (default for IoU criteria: from 0.5 until 0.9 in steps of 0.05). On
the other hand, certain properties of the underlying problem may limit the relevance of cutoff
values to lower or higher values.

The following properties might warrant validation with lower thresholds: interest in the existence
of objects rather than their precise localization, small size of structures (FP3.1), high variability
of structure sizes (FP3.2), 3D input images (as volume increases cubically with size, the desired
overlap ratio might require adaptation), uncertainties in the reference (FP4.3.1). Conversely, these
properties typically warrant validation at higher thresholds: interest in precise localization, dense
distribution of structures in images (FP3.5).

It should be noted that no threshold is needed for the Point inside Mask/Box/Approx and Mask
IoU > 0 criteria.
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2.7.8 Decision guide S9.
DG9Y.1: Assignment without predicted class probabilities on instance level

Summary DG9.1

"Localization crite- Greedy Matching Optimal (Hungarian)
rion" > 0.5 Matching

© Inherent avoid- © No necessity of so- © Necessity of sophisticated
ance of assignment phisticated strategies strategies

ambiguities

@ Unfeasibility if © Optimistic interpreta-
overlapping predic- tion/validation of ambigu-
tions are possible ous model outputs, but

might not represent the
most realistic approximation
of model performance
Table SN 2.24. Comparison of assignment strategies in the context of the decision guide DG9.1 for
Subprocess S9. Context: lack of predicted class scores (FP5.1 = FALSE).

The following aspects should be considered when selecting the assignment strategy:

e Matching via Overlap > 0.5 (Fig. SN 3.44): If overlapping predictions are not possible (FP5.4
= FALSE), sophisticated matching strategies are often avoided in the biomedical domain by
setting the threshold for the localization criterion (Mask IoU, Boundary IoU, or IoR) to >
0.5. With this strategy, assignment ambiguities are inherently avoided. However, if either
overlapping predictions are possible, a non-overlap based criterion is employed, or a criterion
with a threshold above 0.5 is not appropriate, one of the following strategies should be chosen.

o Greedy Matching (Figs. SN 3.41, SN 3.42): A greedy approach can be taken, in which each
reference is assigned to the best matching prediction. If predicted class scores are available
(FP5.1 = TRUE) this is typically achieved based on the class score ("Greedy by Score Matching”,
Fig. SN 3.41). In the given scenario with FP5.1 = FALSE, an intuitive alternative is to rank
predictions by the localization criterion score ("Greedy by localization criterion Matching”,
Fig. SN 3.42). Assignment is then achieved by stepping through the ranked list, matching the
current prediction with the most overlapping reference object, and removing the reference
object from the assignment process.

e Optimal (Hungarian) Matching (Fig. SN 3.43): The Hungarian algorithm optimizes the
matching between predictions and reference objects while minimizing a given cost function,
such as the average overlap for all matched pairs. Notably, this optimization generally leads
to optimistic interpretation/validation of ambiguous model outputs, but might not represent
the most realistic approximation of model performance upon application (see Fig. SN 2.29).
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Pre-assignment scenario
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Match the large prediction with the bottom reference,
so that the central reference remains free for the second prediction

Fig. SN 2.29. Comparison of Greedy versus Hungarian matching assignment strategies.

SUPPL. NOTE 3 STEP 3 - METRIC APPLICATION

Once a suitable metric pool has been generated, the chosen metrics must be applied to the given
data set. We recommend beginning with the setting of the global decision threshold in case metrics
based on a fixed cutoff on the predicted class scores (FP2.6; more generally: decision region for more
than two classes) have been selected, which is generally the case. In order to avoid overestimation of
algorithm performance, this threshold needs to be set globally for all classes and metrics, as detailed
in Suppl. Note 1.1. Once raw metric values have been computed for all metrics, metric values are
aggregated, potentially combined (for rankings) and reported according to the recommendations in
Tab. 2. Importantly, we support the user by providing cheat sheets for the entire pool of Metrics
Reloaded metrics that help find reference implementations and overcome metric-specific pitfalls
(Suppl. Note 3.1).
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3.1 Metrics Cheat Sheets

In this section, we present cheat sheets for the metrics deemed particularly relevant by the Metrics
Reloaded consortium. We provide a description along with the formula as well the respective value
range. For every metric, we indicate further important characteristics, such as the recommended
problem categories or potential prevalence dependency. Finally, we highlight our recommendations.
Many of the presented metrics rely on the confusion matrix, which is illustrated in Fig. SN 3.1.

BINARY CONFUSION MATRIX MULTI-CLASS CONFUSION MATRIX
Predicted Predicted
Positive  Negative
L True False n, N, .. n.n
__ ‘% | positive  negative = n 1B n n'
s Q| (1P (FN) 3 2|2 M|
) (@)
2 .f'z: True <
g negative nc1 ncz ncc nc.
2 ™) z[n[n,[..[n [N
BINARY EXAMPLE MULTI-CLASS WEIGHT MATRIX
. Predicted
A A oA A
A A4 ° =
A 4 A ° >
A TP A 46
. ° <
A FN A ™

Fig. SN 3.1. Schematic example of the confusion matrix for two and for C classes. For the latter case, we also
present a weight or cost matrix with weights w;; > 0 without loss of generality. For the binary confusion
matrix, we show an example illustrating the cardinalities for a prediction of triangles and circles.
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3.1.1 Discrimination metrics.
Counting metrics

ACCURACY

TP + TN _
TP +TN +FP +FN i

Accuracy =

VALUE RANGE: [0, 1] T

DEFINITION
[Tharwat, 2020]

DESCRIPTION
Accuracy measures the ratio of samples that were

correctly classified over all predictions made.
RECOMMENDED FOR

IMPORTANT RELATIONS LE L

Accuracy can be rewritten as [

- In binary situations: Accuracy = [Sensitivity - Prevalence  PREVALENCE DEPENDENCY ®
+ Specificity « (1-Prevalence)]

- BA = Accuracy, if classes are balanced MULTI-CLASS DEFINITION
- EC=1 - Accuracy for EC instantiated with 0-1-costs For C classes, Accuracy is defined as:
- ER=1 - Accuracy 1 &
- (W)CK =2+ Accuracy -1, if classes are balanced (and Accuracy= — X n i
using 0-1-costs) N =
- BM =2« Accuracy -1, if classes are balanced n,;: diagonalentries of the confusion

matrix; sum equals number of correctly
classified samples
N: total number of samples

RECOMMENDATIONS
- Accuracy should generally not be considered...
o ... in the presence of class imbalance unless class prevalences reflect the interest across
classes.
o ...if comparison of performance across data sets with different prevalences is desired.
o ... if class confusions are of unequal severity (examples: ordinal target classes, cost-benefit
analysis).
- Due to ease of interpretation and popularity, we specifically recommend it as a multi-class
metric if the compensation of class imbalances is not desired.

Fig. SN 3.2. Cheat Sheet for the Accuracy. The upward arrow in the value range indicates that higher values are
better than lower values. Abbreviations used in the figure: Balanced Accuracy (BA), Bookmaker Informedness
(BM), Cohen’s Kappa (CK), Expected Cost (EC), Error Rate (ER), False Negative (FN), False Positive (FP), Image-
level Classification (ImLC), Instance Segmentation (InS), Object Detection (ObD), Semantic Segmentation
(SemS), True Negative (TN), True Positive (TP), Weighted Cohen’s Kappa (WCK). Reference used in the figure:
Tharwat, 2020: [99]. We recommend Accuracy as a multi-class counting metric in Subprocess S2 (Extended
Data Fig. 2).
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BALANCED ACCURACY (BA)

BA =

(Sensitivity + Specificity) = % A

N [—

VALUE RANGE: [0, 1] T

DESCRIPTION RECOMMENDED FOR
BA measures the arithmetic mean of Sensitivities for ImLC Sems5 ObD InS
each class, i.e,, for each class, it measures the fraction of o
actual positive samples that were predicted as such.
ST PREVALENCE DEPENDENCY
[Tharwat, 2020] MULTI-CLASS DEFINITION
For C classes, BA is defined as the

IMPORTANT RELATIONS arithmetic mean of Sensitivities per
-J=2BA-1 class:
- (W)CK =2BA - 1, if classes are balanced (and using 1 € S

0-1-costs) BA=— X Sensitivity = — Y —ii

C ii=1 ' C i=1 N,

- Accuracy = BA, if classes are balanced i
- EC=1-BA, if EC costs are chosen such thatw,;=0and  n,: diagonalentries of the confusion
w,; = 1/(C,), where w, are the costs for a sample of matrix; sum equals number of correctly
actual class i that was predicted as class j, C is number iz s

. . n . : sum of entries of row i in the confusion
of classes and P, is prevalence of class i. " matrix

RECOMMENDATIONS
- BA should not be applied if...
o ... thereis an unequal interest across classes.
o ... predictive values should be assessed.
o ... class confusions are of unequal severity (examples: ordinal target classes, cost-benefit
analysis).
- Otherwise, it should specifically be considered...
o ... in the presence of high class imbalance in case there is an equal interest across classes.
o ... if acomparison of performance across data sets with different prevalences is desired.
- BA can be used to identify and validate the decision rule applied to predicted class scores.

Fig. SN 3.3. Cheat Sheet for the Balanced Accuracy (BA). The upward arrow in the value range indicates that
higher values are better than lower values. Abbreviations used in the figure: Image-level Classification (ImLC),
Instance Segmentation (InS), Object Detection (ObD), Semantic Segmentation (SemS), Cohen’s Kappa (CK),
Expected Cost (EC), Youden Index (J), Weighted Cohen’s Kappa (WCK). We recommend BA as a multi-class
counting metric in Subprocess S2 (Extended Data Fig. 2).
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CENTERLINE DICE SIMILARITY COEFFICIENT (cIDICE)

vity which are defined based on the skeletons of the
structures.

DEFINITION
[Shitetal., 2021]

RECOMMENDATIONS
- An overlap-based metric, such as cIDice, should be used in mos

ce.
- cIDice should be preferred over the standard DSC ...
o ... in the presence of tubular structures.
o ... if structure center lines are of particular interest.

are of interest.

i N Topology precision X Topology sensitivity )
|SP'edr\Ref\ T (S, Pred)= M
TPrec(SPred’ Ref)= T sens et | SRef|
Pred
= .
_ = JU T
1 |
Y
\_ >
. Ref ."Skeleton of Ref, S, cIDice(RefPred) = 2 .Tsens(SRef’ Pred) 'Tprec(SPred’ Ref)
D Pred I-"Skeleton of Pred, SPre Y Tsens(SRef’ Pred) + Tprec(SPred’ Ref)
BBRef ~ Pred -5, 0 Sl
VALUE RANGE: [0, 1] T
DESCRIPTION RECOMMENDED FOR
cIDice measures the overlap between two structures,
ideally tubular-shaped. The formula is similar to the DSC,
but relies on the topology precision and topology sensiti- ImLC SemS ObD InS

sessment. An exception is the case of consistently tiny structures along with a noisy referen-

- cIDice should generally be used in combination with a boundary-based metric if boundaries

t cases of segmentation as-

Fig. SN 3.4. Cheat Sheet for the centerline Dice Similarity Coefficient (cIDice). The upward arrow in the value
range indicates that higher values are better than lower values. Abbreviations used in the figure: Dice Similarity
Coefficient (DSC), Image-level Classification (ImLC), Instance Segmentation (InS), Object Detection (ObD),
Semantic Segmentation (SemS). We recommend cIDice as an overlap-based metric in Subprocess S6 (Extended

Data Fig. 6).
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DICE SIMILARITY COEFFICIENT (DSC)

Synonyms: Dice, Dice Coefficient, Serensen-Dice Coefficient, F, Score, Balanced F Score

N\
2 2ANnB
DSC(AB) = Z = | |
BB |Al+[B|
_ 2 PPV - Sensitivity
PPV + Sensitivity
. J
Al s@Aans VALUE RANGE: [0, 1] 1
DESCRIPTION IMPORTANT RELATIONS
DSC measures the overlap between two
structures. DSCis closely related to the loU = Jaccard index:
DEFINITION DSC = _2loU
[Dice, 1945] Il
DSCis equal to the F, Score (B =1in F, Score) at
RECOMMENDED FOR . B
pixel level.
ImLC SemS ObD InS
RECOMMENDATIONS
- An overlap-based metric (by default the DSC or loU) should be used in most cases of segmen-
tation assessment. An exception is the case of consistently tiny structures along with a noisy re-
ference.
- DSC should generally be used in combination with a boundary-based metric if boundaries are
of interest.
- DSC should generally not be considered if...
o ... thereis a high variability of structure sizes within an image or across images.
o ... inter-rater variability is requested to be compensated.
o ... over- and undersegmentation should be treated similarly.
- DSC should be considered as a metric in the medical community rather than in the computer
vision and biology communities (where the almost identical loU is preferred).

Fig. SN 3.5. Cheat Sheet for the Dice Similarity Coefficient (DSC). The upward arrow in the value range
indicates that higher values are better than lower values. Abbreviations used in the figure: False Negative
(FN), False Positive (FP), Image-level Classification (ImLC), Instance Segmentation (InS), Intersection over
Union (loU), Object Detection (ObD), Positive Predictive Value (PPV), Semantic Segmentation (SemS), True
Negative (TN), True Positive (TP). Reference used in the figure: Dice, 1945: [35]. We recommend DSC as an
overlap-based metric in Subprocess S6 (Extended Data Fig. 6).
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EXPECTED COST (EC)/NORMALIZED EC (ECN)

Synonyms: Expected prediction error, Expected loss

~ FN TP+FN _ FP | TP+FN
BC= Wi TP EN " TP+ TN+ FP+FN & "% TN+ FP TP+ TN +FP + FN
P\m:s Pidr PFG Ptc.r

= WmiSS. I ¢ - + WFA. M 1 -
P . FN (miss) rate, P,,: FP (false alarm) rate VALUE RANGE: [0, ) ¥
P, prior probability (prevalence) EC can be assumed to be positive if costs are non-negative,
w,_ . /w,, : (estimation of) costs of the respective errors; which can be done without loss of generality.

can be adjusted as a weighting of them.

DESCRIPTION

EC is a generalization of the probability of error (which is, in turn, 1 - Accuracy) for cases in which errors cannot all be
considered to have equally severe consequences. It is defined as the expectation of the cost, where the cost incurred on
a certain sample depends on the sample's class and the decision made for that sample. In practice, the expectation can
be estimated as a simple average of the costs over the evaluation samples.

EC describes the weighted sum of error rates. It can be used to measure discrimination and calibration in one score.

VARIANT

Normalized EC (ECN): normalizes EC by the EC of a naive system.

DEFINITION RECOMMENDED FOR

[Bishop and Nasrabadi, 2006; Hastie et al., 2009; Ferrer, 2022]

IMPORTANT RELATIONS ImLC sems o110 InS
- BA=1-EC, if costs are chosen such that w,, = 0 for all i and w,= .

1/(C-P), where w, are the costs for a sample of actual class i that was
predicted as class j, C is number of classes and P, is prevalence of

classi.
?
- Accuracy = 1 - EC, if using 0-1-costs i USRI RIS £ .
- Sensitivity, = EC, if costs are set w,, = 1 for that single i and 0 other- Both options are possible depending on how

wise the priors are set in the definition of the metric.

- Specificity, = EC, if costs are set w,; = 1allj=iand 0 otherwise

n ,;:entry of the confusion matrix for row i and column j, i.e, samples of actual class i that have been
predicted as class |

n,.:sum of entries of row i of the confusion matrix

- w ,;: costs for the entry of the confusion matrix for row i and columnj, i.e., the cost for predicting a

] sample of actual class i that was predicted as class j

flo P prevalence of class i;
usually (n, /N), butin some cases one might want to plug in P, directly from a target application

MULTI-CLASS DEFINITION
For C classes, EC is defined as:

n
EC= 2?:1 2f=1pi.wii.n

RECOMMENDATIONS

- ECis generally recommended as multi-class counting metric due to its flexibility in handling costs and prevalences.

- Itis specifically recommended if problem-specific error costs are available, because it naturally integrates these in the
metric score.

- If class confusions are of unequal severity (examples: ordinal target classes), it is our default recommendation as mul-
ti-class counting metric.

- In binary settings, it is well-suited as a per-class counting metric in case a cost-benefit-based decision rule is desired for
converting predicted class scores to decisions.

- The prevalences P, can be set according to the expected prevalences in the target population (if known) in case the
class prevalences of a data set do not match the prevalences of the target population.

- EC can be used as the basis for decomposing the system performance into discrimination and calibration components.

- EC can be used to identify and validate the decision rule applied to predicted class scores.

Fig. SN 3.6. Cheat Sheet for the Expected Cost (EC)/normalized EC (ECN). The downward arrow in the value
range indicates that lower values are better than higher values. Abbreviations used in the figure: Balanced
Accuracy (BA), Image-level Classification (ImLC), Instance Segmentation (InS), Object Detection (ObD),
Semantic Segmentation (SemS). References used in the figure: Bishop and Nasrabadi, 2006: [15], Ferrer 2022:
[40], Hastie et al., 2009: [48]. We recommend EC as a per-class counting metric in Subprocess S2 (Extended
Data Fig. 2).
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FB SCORE

PPV « Sensitivity
32+ PPV + Sensitivity

F, Score= (1+B?)

_ (1+p?) + TP B (1+p%)*
© (1+B) TP+ P2« FN+FP ] ]
VALUE RANGE: [0, 1] (1+p7) + B +
DESCRIPTION RECOMMENDED FOR
The F; Score weights PPV (FP) and Sensitivity (FN) ImLC  SemS  ObD In

with the parameter (3. o o o o

The special case of 3 = 1 is the harmonic mean of PPV PREVALENCE DEPENDENCY [ )
and Sensitivity and is a common metric in segmenta-

tion problems (here usually referred to as DSC). In

segmentation problems, F, Score weights the penaliz- DEFINITION

ation of oversegmentation (FP) and undersegmentati- [Van Rijsbergen, 1979;
on (FN) with the parameter (3. Chinchor 1992]
IMPORTANT RELATIONS

DSC=F,,ifB=1,IoU=F,/2-F),if =1

RECOMMENDATIONS
- F, Score should generally not be considered ...
o ... in the presence of class imbalance unless class prevalences reflect the interest across
classes (ImLC).
o ...if comparison of performance across data sets with different prevalences is desired
(ImLC).
° ... in the case of a high variability of structure sizes within an image or across images
(SemS, InS).
o ... if inter-rater variability is requested to be compensated (SemS, InS).
o ... if the comparability relative to a naive classifier should be provided.
- Otherwise, the F, Score is specifically recommended as per-class counting metriciif ...
o ... the task is object detection because unlike most popular per-class counting metrics,
Fﬁ Score does not require TN.
° ... an optimization or argmax-based decision rule should be applied.
o ... no predicted class scores are available.
o ... high metric values should imply a high PPV.
- In segmentation tasks, F, Score with 8 # 1 should be considered if over- and undersegmen-
tation are of unequal severity (Sems, InS).
- In InS tasks, the object-level F, Score should be considered if the detection quality should
be assessed independently from the segmentation quality.

Fig. SN 3.7. Cheat Sheet for the Fg Score. The upward arrow in the value range indicates that higher
values are better than lower values. Abbreviations used in the figure: Dice Similarity Coefficient (DSC), False
Negative (FN), False Positive (FP), Image-level Classification (ImLC), Instance Segmentation (InS), Intersection
over Union (loU), Object Detection (ObD), Positive Predictive Value (PPV), Semantic Segmentation (SemS),
True Negative (TN), True Positive (TP). References used in the figure: Chinchor 1992: [23], Van Rijsbergen,
1979: [109]. We recommend Fg Score as a per-class counting metric in Subprocess S3 (Extended Data Fig. 3).
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FALSE POSITIVES PER IMAGE (FPPI)

Image 1 Image n

; '_,-‘_’7 Sensitivity required

% by application
FP FP A Inferred FPPI
I I (FPPl@Sensitivity)
FPPI
Average FP
i e LR VALUE RANGE: [0, ) T
DESCRIPTION . RECOMMENDED FOR
FPPI measures the number of FPs per image. It was
originally proposed for the calculation of the FROC
Score. While not yet standardized, FPPI could also be ImLC SemS ObD InS
used as a metric of its own for a given value of Sensiti- o ()
vity, derived from the FROC curve.
DEFINITION
[Van Ginneken et al., 2010; Bandos et al., 2009] PREVALENCE DEPENDENCY
RECOMMENDATIONS

- FPPI should generally not be considered ...
o ... if a standardized metric value is needed.
° ... as a standalone metric as it only measures a single entity (FPs) of the method.
- Otherwise, it should especially be considered ...
° ... in combination with complementary metrics using the concept Metric@(TargetMetric
=TargetValue) (e.g., FPPI@Sensitivity = 0.95; see glossary).
o ... in aclinical context given its easy interpretation. In this case, combination with com-
plementary metrics, such as Sensitivity, is required (as done in the FROC Score).
o ... if correctly predicting no objects on empty images should be rewarded in the score.
- If empty images should be ignored, AP should be used instead of the FROC Score.

Fig. SN 3.8. Cheat Sheet for the False Positives per Image (FPPI) [8, 108]. The upward arrow in the value
range indicates that higher values are better than lower values. Abbreviations used in the figure: False
Positive (FP), Free-Response Receiver Operating Characteristic (FROC), Image-level Classification (ImLC),
Instance Segmentation (InS), Object Detection (ObD), Semantic Segmentation (SemS). References used in
the figure: Van Ginneken et al., 2010: [108], Bandos et al., 2009: [8]. We recommend FPPI as a per-class
counting metric in Subprocess S3 (Extended Data Fig. 3) for target value-based optimization using the concept
Metric@(TargetMetric = TargetValue) (e.g., FPPI@Sensitivity = 0.95; see glossary in Suppl. Note 5.4).
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INTERSECTION OVER UNION (loU)

Synonyms: Jaccard Index, Tanimoto Coefficient

) loUAB) = ——
H-N-=
|A N B _ |AnB|
|Al+|B|-[ANB] |A U B
_ PPV - Sensitivity
\ ) PPV + Sensitvity - PPV « Sensitivity
WA e @ ane VALUE RANGE: [0, 1]
RECOMMENDED FOR
DESCRIPTION ImLC SemS ObD InS
loU measures the overlap between two structures. It is o o

often referred to as Box loU when comparing bounding
boxes, Mask loU when comparing segmentation masks,
or Approx loU when comparing approximations of ob- IMPORTANT RELATIONS
jects beyond bounding boxes. DSC =
loU= ——— loU= —*
2-DSC 2- F‘3
for =1

DEFINITION
[Jaccard, 1912]

RECOMMENDATIONS
- An overlap-based metric (by default DSC or IoU) should be used in most cases for segmentati-
on assessment. An exception is the case of consistently tiny structures along with a noisy refe-
rence.
- loU should generally be used in combination with a boundary-based metric if boundaries are
of interest.
- loU should generally not be considered if...
o ... thereis a high variability of structure sizes within an image or across images.
o ... inter-rater variability is requested to be compensated.
° ... over- and undersegmentation should be treated similarly.
- loU should be considered as a metric in the computer vision and biology communities rather
than in the medical community (which prefers the almost identical DSC).

Fig. SN 3.9. Cheat Sheet for the Intersection over Union (loU). The upward arrow in the value range indicates
that higher values are better than lower values. Abbreviations used in the figure: Dice Similarity Coefficient
(DSC), Image-level Classification (ImLC), Instance Segmentation (InS), Object Detection (ObD), Positive
Predictive Value (PPV), Semantic Segmentation (SemS). Reference used in the figure: Jaccard, 1912: [52]. We
recommend loU as an overlap-based metric in Subprocess S6 (Extended Data Fig. 6).
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MATTHEWS CORRELATION COEFFICIENT (MCC)

Synonyms: Phi Coefficient

. - - .
3 B |
VALUE RANGE: [-1, 1] T

A value of 0 refers to a prediction which is not better than random guessing.

TP-TN-FP-FN
(TP +FP)(TP + FN)(TN + FP)(TN + FN)

MCC =

DESCRIPTION RECOMMENDED FOR

MCC measures the correlation between the actual and ImLC SemS ObD InS
the predicted class. [ )

DEFINITION

[Matthews, 1975] PREVALENCE DEPENDENCY @
IMPORTANT RELATIONS

MCC can be rewritten as:

MCC =-\/ PPV . Sensitivity « Specificity « NPV --\/(1 - PPV) « (1 - Sensitivity) « (1 - Specificity) « (1 - NPV)

MCC s equivalent to the geometric mean of Markedness and Informedness.

MULTI-CLASS DEFINITION n,,; entry of the confusion

For C classes, MCC can be defined as: matrix for row i and
¢ < S . N . column j i.e., samples
MCC = zi=1zj=1zk=ln“ My My M of actual class i that

were predicted as

1]211 (ch=1nij)(z i‘|i'¢izjc'=1 ny) ‘/Zfﬂ(zf:mj )(Z ii# ZJ'C'=‘ M) clas]

RECOMMENDATIONS
- MCC should not be used/used with care if...
o ... class confusions are of unequal severity (example: ordinal target classes).
o ... the provided class prevalences do not reflect the population of interest.
o ... there is a mismatch between class prevalences and class importance.
° ... compensation for class imbalance is not requested.
- Otherwise, MCC should be used as a multi-class metric specifically if all basic error rates (Sensi-
tivity, Specificity, PPV, NPV) should be captured in one score.
- MCC scores should be carefully interpreted in the presence of class imbalance as the distributi-
on becomes skewed [Zhu 2020].

Fig. SN 3.10. Cheat Sheet for the Matthews Correlation Coefficient (MCC). The upward arrow in the value
range indicates that higher values are better than lower values. Abbreviations used in the figure: Image-
level Classification (ImLC), Instance Segmentation (InS), Negative Predictive Value (NPV), Positive Predictive
Value (PPV), Object Detection (ObD), Semantic Segmentation (SemS). References used in the figure: Matthews,
1975: [69], Zhu, 2020: [122]. We recommend MCC as a multi-class counting metric in Subprocess S2 (Extended
Data Fig. 2).
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NET BENEFIT (NB)

- TP ) FP ( P, )
TP+TN+FP+FN  TP+TN+FP+FN \1-P,

_ 2
. I :

Cost-benefit analysis:
~9 unnecessary biopsies for one
detected lesion are acceptable

= Exchange rate=1/9 6

= (%)

VALUE RANGE: [-1, 1] T 0

DESCRIPTION

NB validates the quality of a model intended to support a specific clinical decision. NB gives the
‘net’ proportion of TPs that results from a prediction. This is equivalent to the proportion of TPs in
the absence of FPs. For its calculation, NB considers a task-related risk threshold (= exchange rate
between the benefit of TPs and harm of FPs).

When varying the risk threshold over a‘reasonable range’ of possible thresholds, plotting NB by
risk threshold yields a decision curve. It is a strictly proper performance measure.

RECOMMENDED FOR
ImLC SemS ObD InS

DEFINITION
[Vickers and Elkin, 2006]

RELATIONS

NB can be reformulated as:

NB = Sensitivity « Prevalence -

('| o Spec]ﬁcity) . (] - Prevalence ) o PREVALENCE DEPENDENCY? .

"odds at the threshold"

RECOMMENDATIONS

- NB should be considered if (1) the predicted class scores indicate the risk associated with a
case belonging to a particular class and (2) there is a (range of reasonable) task-related risk
threshold(s) or problem-specific penalties.

- If problem-specific penalties can be provided, these can be used to calculate the decision
threshold, see [Pauker & Kassirer, 1975].

Fig. SN 3.11. Cheat Sheet for the Net Benefit (NB). The upward arrow in the value range indicates that higher
values are better than lower values. Abbreviations used in the figure: False Negative (FN), False Positive
(FP), Image-level Classification (ImLC), Instance Segmentation (InS), Object Detection (ObD), Semantic
Segmentation (SemS), True Negative (TN). References used in the figure: Pauker and Kassirer, 1975: [81],
Vickers and Elkin, 2006: [110], Vickers et al., 2016: [111]. We recommend NB as a per-class counting metric in
Subprocess S3 (Extended Data Fig. 3).
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NEGATIVE PREDICTIVE VALUE (NPV)

N

NPV= ——""—— = if Prevalence =0.5

TN +FN

Specificity ¢ (1 - Prevalence)

cortected — Specificity « (1 - Prevalence) + (1 - Sensitivity) ¢ Prevalence
VALUE RANGE: [0, 1] T

NPV

DESCRIPTION c REgo""SN‘ENDgg Ao .
NPV represents the probability of a negative prediction L em D I
corresponding to an actual negative sample. o

IMPORTANT RELATIONS PREVALENCE DEPENDENCY @
NPV is the complement of FOR (False omission rate):

NPV'=1-FOR DEFINITION

NPV is used as a component of MCC. [Tharwat, 2020]

RECOMMENDATIONS
- NPV should not be used....
° ... as a standalone metric but should always be reported together with Specificity or PPV.
o ... for comparisons across data sets with different prevalences or in imbalanced settings,
where the prevalence-corrected NPV is more appropriate.
- Otherwise, NPV should especially be considered ...
° ... in combination with complementary metrics using the concept Metric@(TargetMetric =
TargetValue) (e.g., NPV@Specificity = 0.95; see glossary)
o ... if ease of interpretation or popularity are of particular relevance.

Fig. SN 3.12. Cheat Sheet for the Negative Predictive Value (NPV). The upward arrow in the value range
indicates that higher values are better than lower values. Abbreviations used in the figure: False Negative (FN),
False Omission Rate (FOR), False Positive (FP), Image-level Classification (ImLC), Instance Segmentation (InS),
Object Detection (ObD), Positive Predictive Value (PPV), Semantic Segmentation (SemS), True Negative (TN).
Reference used in the figure: Tharwat, 2020: [99]. We recommend NPV as a per-class counting metric in Sub-
process S3 (Extended Data Fig. 3) for target value-based optimization using the concept Metric@(TargetMetric
= TargetValue) (e.g., NPV@Sensitivity = 0.95; see glossary in Suppl. Note 5.4).
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PANOPTIC QUALITY

(- Ref 3
Pred B
(TP) Ref
Pred =
(TP)
Pred Ref
(FP)—(FN) - —
e 0
|
Ni FPY =

'D-I- Reference (Ref) instances
[ Predicted (Pred) instances

VALUE RANGE: [0, 1] T

z:(Ref, Pred)eTP IOU(Ref/ Pred)
ITP|+ 0.5 [FP|+ 0.5 |[FN|
2(Ref, Pred)c TP loU(Ref, Pred) . ITP|
TP ITP|+ 0.5 [FP|+ 0.5 [FN|
- J o\ y
M Vv
Segmentation quality Detection quality

loU(I, 1) +1ou( ]

(L [l
lie=l )]

Tl 05 (B 05 |

DESCRIPTION
PQ assesses segmentation and detection quality in one metric. The segmentation quality is mea-
sured by averaging the loU scores of all TP instances. The detection quality is measured by the F,
Score. While in the F,Score, each TP counts as "1", PQ replaces this "1" score in the numerator with
the loU score of each TP.
The F, Score as a detection metric implies two cutoffs:

1. aprior cutoff on a localization criterion for matching and

2. aprior cutoff on object class scores to generate a confusion matrix.
In this context, PQ can be interpreted as making the localization quality in F, Score explicit (1)
and thus only relying on the cutoff on class scores (2).

RECOMMENDED FOR
DEFINITION ObD

[Kirillov et al., 2019]

InS

ImLC SemS

RECOMMENDATIONS

PQ should be considered if the detection and segmentation quality should be assessed in a
single score, e.g., when the overall best model needs to be selected, which can naturally not be
done based on two separate metrics. For comprehensive validation, individual detection and
segmentation performance should also be reported.

Fig. SN 3.13. Cheat Sheet for the Panoptic Quality (PQ). The upward arrow in the value range indicates that
higher values are better than lower values. Abbreviations used in the figure: Average Precision (AP), False
Negative (FN), False Positive (FP), Free-Response Receiver Operating Characteristic (FROC), Image-level
Classification (ImLC), Instance Segmentation (InS), Intersection over Union (loU), Object Detection (ObD),

Semantic Segmentation (SemS), True Positive (TP). Reference used in the figure: Kirillov et al., 2019: [56].
recommend PQ as a per-class counting metric in Subprocess S3 (Extended Data Fig. 3).

We
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POSITIVE LIKELIHOOD RATIO (LR+)

Synonymes: Likelihood ratio positive, Likelihood ratio for positive results

LRy = Sen5|t|.\/|t¥ _ .
1 - Specificity

VALUE RANGE: [0, ) T
DESCRIPTION RECOMMENDED FOR
LR+ indicates the factor by which a positive prediction ImLC SemS ObD InS
occurs more frequently among actual positive samples .
than among actual negative samples. In a clinical ex-
ample where the quality of a diagnostic test is to be as- PREVALENCE DEPENDENCY
sessed, this could be interpreted as how much more
likely a positive test result is for a diseased person com- DEFINITION
pared to a healthy person (the higher the better). [Attia, 2003]

RECOMMENDATIONS
- LR+ should not be considered if...
o ... predictive values (PPV, NPV) are of interest.
° ... a cost-benefit-based analysis is desired.
- Otherwise, we recommend it as a per-class counting metric ...
o ... for a comparison across data sets given its prevalence independence.
o ... in the presence of class imbalances.
o ... if the comparison with respect to a naive classifier is desired.

Fig. SN 3.14. Cheat Sheet for the Positive Likelihood Ratio (LR+). The upward arrow in the value range
indicates that higher values are better than lower values. Abbreviations used in the figure: Image-level
Classification (ImLC), Instance Segmentation (InS), Object Detection (ObD), Positive Predictive Value (PPV),
Semantic Segmentation (SemS). Reference used in the figure: Attia, 2003: [6]. We recommend LR+ as a
per-class counting metric in Subprocess S3 (Extended Data Fig. 3).
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POSITIVE PREDICTIVE VALUE (PPV)

Synonym: Precision

PPV = TP = if Prevalence =0.5

TP + FP

: Sensitivity ¢ Prevalence
corrected - Sansitivity « Prevalence + (1 - Specificity) « (1 - Prevalence)

VALUE RANGE: [0, 1] T

DESCRIPTION RECOMMENDED FOR

PPV represents the probability of a positive prediction ImLC SemS ObD InS
corresponding to an actual positive sample. () [ ) [ )
IMPORTANT RELATIONS

PPV is the complement of FDR (False discovery rate): PREVALENCE DEPENDENCY

PPV =1-FDR

PPV is used as part of many other metrics such as F, DEFINITION

Score and MCC. [Tharwat, 2020]
RECOMMENDATIONS

- PPV should not be used....
o ... as a standalone metric but should always be reported together with Sensitivity or NPV.
o ... for comparisons across data sets with different prevalences or in imbalanced settings,
where the prevalence-corrected PPV or alternatively the positive Likelihood ratio (LR+) are
more appropriate.
o ... atimage level in case of many images with empty predictions (ObD, InS).
- Otherwise, PPV should especially be considered ...
o ... in combination with complementary metrics using the concept Metric@(TargetMetric =
TargetValue) (e.g., PPV@Sensitivity = 0.95; see glossary)
o ... if ease of interpretation or popularity are of particular relevance.

Fig. SN 3.15. Cheat Sheet for the Positive Predictive Value (PPV). The upward arrow in the value range
indicates that higher values are better than lower values. Abbreviations used in the figure: False Discovery
Rate (FDR), False Positive (FP), Image-level Classification (ImLC), Instance Segmentation (InS), Positive
Likelihood Ratio (LR+), Matthews Correlation Coefficient (MCC), Negative Predictive Value (NPV), Object
Detection (ObD), Semantic Segmentation (SemS), True Positive (TP). Reference used in the figure: Tharwat,
2020: [99]. We recommend PPV as a per-class counting metric in Subprocess S3 (Extended Data Fig. 3) for target
value-based optimization using the concept Metric@(TargetMetric = TargetValue) (e.g., PPV@Sensitivity =
0.95; see glossary in Suppl. Note 5.4).
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SENSITIVITY

Synonyms: Recall, True Positive Rate (TPR), Hit Rate

e TP
Sensitivity = ————— =
Y= TP +EN
VALUE RANGE: [0, 1] T
DESCRIPTION RECOMMENDED FOR
Sensitivity measures how good a method is in ImLC SemS  ObD InS
classifying truly positive samples as positive. [ ) [ ) [ )

IMPORTANT RELATIONS

Sensitivity = 1 - False Negative Rate (FNR)

Sensitivity is used as part of many other metrics, e.g., BA, DEFINITION
BM, FB Score, LR+, MCC and more. [Tharwat, 2020]

PREVALENCE DEPENDENCY

RECOMMENDATIONS
- Sensitivity should not be considered ...
° ... as a standalone metric but should always be reported together with Specificity or PPV.
o ...atimage level in case of many images with empty reference (ObD, InS).
- Otherwise, Sensitivity should especially be considered ...
° ... in combination with complementary metrics using the concept Metric@(TargetMetric =
TargetValue) (e.g., Specificity@Sensitivity = 0.95; see glossary).
o ... for comparisons across data sets with different prevalences given its prevalence indepen-
dence.
o ... in the presence of class imbalances.
o ... if ease of interpretation or popularity are of particular relevance.

Fig. SN 3.16. Cheat Sheet for the Sensitivity. The upward arrow in the value range indicates that higher
values are better than lower values. Abbreviations used in the figure: Bookmaker Informedness (BM), False
Negative (FN), Image-level Classification (ImLC), Instance Segmentation (InS), Positive Likelihood Ratio (LR+),
Matthews Correlation Coefficient (MCC), Object Detection (ObD), Semantic Segmentation (SemS), True
Positive (TP). Reference used in the figure: Tharwat, 2020: [99]. We recommend Sensitivity as a per-class
counting metric in Subprocess S3 (Extended Data Fig. 3) for target value-based optimization using the concept
Metric@(TargetMetric = TargetValue) (e.g., Specificity@Sensitivity = 0.95; see glossary in Suppl. Note 5.4).
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SPECIFICITY

Synonymes: Selectivity, True Negative Rate (TNR)

TN
Specificity = =
PeCey =" "IN+ FP
VALUE RANGE: [0, 11 T -
DESCRIPTION RECOMMENDED FOR
Specificity measures how good a method is in ImLC SemS ObD InS
classifying truly negative samples as negative. o
IMPORTANT RELATIONS PREVALENCE DEPENDENCY

Specificity = 1 - False Positive Rate
Specificity is used as part of many other metrics, e.g., BA, DEFINITION
BM, LR+, MCC and more. [Tharwat, 2020]

RECOMMENDATIONS
- Specificity should not be used....
° ... as a standalone metric but always be reported together with Sensitivity or NPV.
o ...atimage level in case of many images with empty reference.
- Otherwise, Specificity should especially be considered ...
o ... in combination with complementary metrics using the concept Metric@(TargetMetric =
TargetValue) (e.g., Specificity@Sensitivity = 0.95; see glossary)
o ... for comparisons across data sets with different prevalences given its prevalence indepen-
dence.
o ... in the presence of class imbalances.
o ... if ease of interpretation or popularity are of particular relevance.

Fig. SN 3.17. Cheat Sheet for the Specificity. The upward arrow in the value range indicates that higher
values are better than lower values. Abbreviations used in the figure: Bookmaker Informedness (BM), False
Positive (FP), Image-level Classification (ImLC), Instance Segmentation (InS), Positive Likelihood Ratio (LR+),
Matthews Correlation Coefficient (MCC), Object Detection (ObD), Semantic Segmentation (SemS), True
Negative (TN). Reference used in the figure: Tharwat, 2020: [99]. We recommend Specificity as a per-class
counting metric in Subprocess S3 (Extended Data Fig. 3) for target value-based optimization using the concept
Metric@(TargetMetric = TargetValue) (e.g., Specificity@Sensitivity = 0.95; see glossary in Suppl. Note 5.4).
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WEIGHTED COHEN’S KAPPA (WCK)

Synonyms: Weighted Cohen’s Kappa Coefficient, Weighted Kappa Statistic,
Weighted Kappa Score

W, W, + W, +w,
wek=_PoPe  ow W TP+ w, TN + w, FP +w, FN i B o o
= e, Py = =

TP+TN +FP+FN
b m
" (TP + FP)(TP + FN) (TN + FP)(TN + FN) (FN + FP)(FN +TN) (FP+TP)(FP +TN)
p.= W, + Wy + Wy + Wy
& TP+TN+FP+FN TP +TN+FP+FN TP +TN+FP+FN TP+TN +FP +FN
=Wy + Wiy + Wey + Wep

VALUE RANGE: [-1,1] T
Avalue of 0 refers to a prediction which is not better than random guessing.
w,, /w, /w,,/w,, : (estimation of) costs of the respective cardinalities; can be adjusted as a weighting of them.

DESCRIPTION RECOMMENDED FOR

WCK calculates the.de_-gree o_f agreement t?etween the ImLC Sems ObD InS
reference and prediction while incorporating the agree-

ment resulting from chance. WCK is a generalization of [

CK with 0-1 weights.

DEFINITION PREVALENCE DEPENDENCY [ )
[Cohen, 1960]

IMPORTANT RELATIONS

- WCKis a generalization of CK = [2 « Prevalence - (1-Prevalence) - (Sensitivity + Specificity- 1)] / [Prevalence? +
(1-Prevalence)? + (1-2 « Prevalence) - (Prevalence - Sensitivity - (1-Prevalence) « Specificity)], and equal for
0-1-weights

- For a Prevalence of 50% and weights of 1, WCK=J= 2BA -1

- Accuracy = (WCK + 1)/2, for 0-1-weights and balanced classes

- BA = (WCK + 1)/2, for 0-1-weights and balanced classes

MULTI-CLASS DEFINITION

C C n..n .
For C classes, WCK can be defined as: WCK:1-(2?212?:1"‘“;'”ij)/(21:12,-:lwij° INZ ’)

n,:entry of the confusion matrix for row i and columnj,  n : sum of entries of row i of the confusion matrix

i.e. samples of actual class i that were predicted n_:sum of entries of column j of the confusion matrix
asclass w ,,: costs for the entry of the confusion matrix for row i
N: total number of samples and column j, i.e., the cost for samples of actual class i

that were predicted as class j

RECOMMENDATIONS

- WCK has the rare advantage of being able to incorporate unequal costs for class confusions.
However, we generally recommend EC over WCK for this use case due to the former’s strong
theoretical foundation and straightforward behaviour.

- WCK should generally not be considered in the presence of class imbalance unless class preva-
lences reflect the interest across classes.

Fig. SN 3.18. Cheat Sheet for the Weighted Cohen’s Kappa (WCK). The upward arrow in the value range
indicates that higher values are better than lower values. Abbreviations used in the figure: Balanced Accuracy
(BA), Cohen’s Kappa (CK), False Negative (FN), False Positive (FP), Image-level Classification (ImLC), Instance
Segmentation (InS), Object Detection (ObD), Semantic Segmentation (SemS), True Negative (TN), True
Positive (TP). Reference used in the figure: Cohen, 1960: [27]. We recommend WCK as a multi-class counting
metric in Subprocess S2 (Extended Data Fig. 2).
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Multi-threshold metrics

AREA UNDER THE RECEIVER OPERATING CHARACTERISTIC CURVE (AUROC)

Synonyms: AUC (Area under Curve), AUC - ROC (Area Under The Curve - Receiver
Operating Characteristics), C-Index, C-Statistics

Threshold = 0.4

: ROC
] - .~ curve
! :E _ = [Noskill
Scan over S hreshold <
thresholds S =04 -
v _“ AUROC
FN -7
T 1 17 T 1T T T T T 1T 1 - Specificity

00 01 02 03 04 05 06 07 08 09 10

Predicted class scores
VALUE RANGE: [0, 1] T

An AUROC value of 0.5 refers to a prediction which is not better than random guessing.

DESCRIPTION RECOMMENDED FOR
AUROC measures the area under the ROC curve and in- ImLC SemS ObD InS
dicates how well the probabilities of the positive class .

are separated from those of the negative class. In other
words, AUROC represents the probability of a randomly

sampled positive case having a higher predicted class DEFINITION
score than a randomly sampled negative case. [Hanley and McNeil, 1982]
RECOMMENDATIONS

- AUROC is our recommended default multi-threshold metric for ImLC due to its ease of interpre-
tation (also with respect to a naive classifier).
- AUROC should be applied with care ...
o ... in the presence of class imbalance, unless class prevalences reflect the interest across
classes.
o ... if predictive values (PPV/NPV) are of interest.
- Otherwise, it should specifically be considered in the case of relatively balanced data due to
ease of interpretation and popularity.

Fig. SN 3.19. Cheat Sheet for the Area under the Receiver Operating Characteristic Curve (AUROC). The
upward arrow in the value range indicates that higher values are better than lower values. Abbreviations used
in the figure: False Negative (FN), False Positive (FP), Image-level Classification (ImLC), Instance Segmentation
(InS), Object Detection (ObD), Receiver Operating Characteristic (ROC), Semantic Segmentation (SemS),
True Negative (TN), True Positive (TP). Reference used in the figure: Hanley and McNeil, 1982: [47]. We
recommend AUROC as a multi-threshold metric in Subprocess S4 (Extended Data Fig. 4).
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AVERAGE PRECISION (AP)

Thresho.ld =05 Precision-Recall
1 (PR) curve
- <
8 Threshold = 0.5
Scan over S AP
™ ™ thresholds L .
Q inter-
FN | Wos polation
T T T T T T T T Recall = Sensitivity
00 01 02 03 04 05 06 07 08 09 10
Predicted class scores VALUE RANGE: [0, 1] T

DESCRIPTION

AP measures the interpolated area under the PR curve. It differs from the well known ROC curve
and the associated AUROC metric by measuring Sensitivity in combination with PPV instead of in
combination with Specificity. This replacement has the effect that TNs are not explicitly consid-
ered by the PR curve and AP. Ignoring TN can be desirable in settings with a dominating nega-
tive class and thus large amounts of TN suppressing a focus on the rare positive class. A promi-
nent example are tasks with imbalanced classes such as those with retrieval character, where
AUROC is typically not applied, because the large amount of TNs leads to an insensitivity to
subtle performance changes for the rare positive class.

IMPORTANT RELATIONS
The mean Average Precision (mAP) is a commonly used extension which measures the average
of the AP over multiple classes.

RECOMMENDED FOR
ImLC SemS ObD InS DEFINITION
‘ . ‘ [Lin et al., 2014; Everingham et al. 2015]
RECOMMENDATIONS

- AP is our default recommended multi-threshold metric for ObD and InS.
- AP should generally not be considered...
o ... for a comparison across data sets given its dependency on the prevalence-dependent
PPV.
o ... if the performance on single images is important given that AP is computed over the full
data set.
- Otherwise, it should specifically be considered...
o ... in the case of class imbalances (but should be used with care given its prevalence de-
pendency).
o ... if a standardized metric (difference to FROC) is required.

Fig. SN 3.20. Cheat Sheet for the Average Precision (AP). The upward arrow in the value range indicates
that higher values are better than lower values. Abbreviations used in the figure: False Negative (FN), False
Positive (FP), Image-level Classification (ImLC), Instance Segmentation (InS), Mean Average Precision (mAP),
Object Detection (ObD), Positive Predictive Value (PPV), Precision-Recall (PR), Semantic Segmentation (SemS),
True Negative (TN), True Positive (TP). References used in the figure: Lin et al., 2014: [64], Everingham et al.,
2015: [38]. We recommend AP as a multi-threshold metric in Subprocess S4 (Extended Data Fig. 4).
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FREE-RESPONSE RECEIVER OPERATING CHARACTERISTIC (FROC) SCORE

Image 1 Image n
Threshold = 0.5
Sensitivity Sensitivity
T 1T T T T T T T
00 01 02 03 04 05 06 07 08 09 1.0 Average
Predicted class scores Sensitivity
perimage

Scan over thresholds

FROC
curve
Threshold

VALUE RANGE: [0, 0*) T
e * Depending on the area of calculation. Versions which
Score use numerical integration have a value range of [0, «0),
while often FPPI thresholds are limited to [0, 1].

Sensitivity

DESCRIPTION RECOMMENDED FOR
FROC Score approximates the area under the FROC ImLC Serns ObD InS
curve, which plots the Sensitivity as a function of the o o

average number of FPPL. It thus indicates how well the
probabilities of the positive class are separated from
those of the negative class while considering object-le-
vel information.

DEFINITION
[Van Ginneken et al., 2010]

RECOMMENDATIONS
- FROC Score should not be considered...
o ... if a highly standardized metric is desired.
- Otherwise, FROC Score should specifically be considered...
o ... inaclinical context given its user-centric interpretation (explicit tradeoff between FPPI
and Sensitivity).
o ... iflow confidence FP predictions should be rejected.
- It should be noted that FROC@FPPI suffers from non-standardization but allows for flexible
weighting of clinically interesting operating points.

Fig. SN 3.21. Cheat Sheet for the Free-Response Receiver Operating Characteristic (FROC). The upward arrow
in the value range indicates that higher values are better than lower values. Abbreviations used in the figure:
False Negative (FN), False Positive (FP), False Positives per Image (FPPI), Image-level Classification (ImLC),
Instance Segmentation (InS), Object Detection (ObD), Semantic Segmentation (SemS), True Negative (TN),
True Positive (TP). Reference used in the figure: Van Ginneken et al., 2010: [108]. We recommend FROC as a
multi-threshold metric in Subprocess S4 (Extended Data Fig. 4).
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Boundary-based metrics

AVERAGE SYMMETRIC SURFACE DISTANCE (ASSD)

Synonym: Weighted bilateral mean contour distance

4 N
d(a,B) = min d(a,b)
be
]~ " S d@B)+ T dbA)
acA beB
ASSD(A,B) =

|Al+|B|

. T Uzl

— Min. distances from boundary
pixelsin Ato B

> Min. distances from boundary
pixels in Bto A VALUE RANGE: [0, «0)

DESCRIPTION
ASSD measures the average of all shortest boundary distances between contour A to any point
on contour B and vice versa, symmetrically.

RECOMMENDED FOR
DEFIN.ITION ImLC SemS ObD InS
[Yeghiazaryan,
Varduhi and Voiculescu, 2015] . .
RECOMMENDATIONS

- Boundary-based metrics such as ASSD should generally be reported together with an over-
lap-based metric.
- We generally recommend MASD over ASSD for boundary-based penalization of spatial outliers
with contour focus.
- ASSD should not be used ...
o ... if the sizes of reference and predictions potentially vary a lot.
o ... if inter-rater variability should be compensated.
o ... to compare relationships between boundaries of many dense objects.
- For missing value handling, an advanced strategy should be defined, for example by setting the
penalty equal to the largest distance within an image.

Fig. SN 3.22. Cheat Sheet for the Average Symmetric Surface Distance (ASSD). The downward arrow in the

value range indicates that lower values are better than higher values. Abbreviations used in the figure: Image-

level Classification (ImLC), Instance Segmentation (InS), Object Detection (ObD), Semantic Segmentation
(SemS). Reference used in the figure: Yeghiazaryan, Varduhi and Voiculescu, 2015: [119]. We recommend
Average Symmetric Surface Distance (ASSD) as a boundary-based metric in Subprocess S7 (Extended Data
Fig. 7).
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BOUNDARY INTERSECTION OVER UNION (BOUNDARY I0U)

Boundary distance d -

' , Boundary
‘ Y loU(A,B)

= =
0-0--
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within width d from [A[+[B,|-IA "B,
d d d d
boundary
_ IA,nB,|
= AN B, |A, UB,|

VALUE RANGE: [0, 1] T

DESCRIPTION
Boundary loU measures the overlap between the predicted and reference boundaries up to a
predefined width d.

RECOMMENDED FOR
DEFINITION ImLC SemsS ObD InS
[Cheng et al., 2021] ' '

RECOMMENDATIONS
- Boundary-based metrics such as Boundary loU should generally be reported together with an
overlap-based metric.
- Boundary loU should specifically be considered if...
o ... structure boundaries are of particular interest.
° ... boundary errors should be penalized as severe inconsistencies.
o ... spatial outliers should be penalized by their existence rather than their distance.
- The hyperparameter d influences the Boundary loU score and denotes the thickness of the
considered boundary. It should be chosen according to inter-rater variability, for example. For
sufficiently large d, Boundary loU is equal to Mask loU.

Fig. SN 3.23. Cheat Sheet for the Boundary Intersection over Union (loU). The upward arrow in the value
range indicates that higher values are better than lower values. Abbreviations used in the figure: Image-
level Classification (ImLC), Instance Segmentation (InS), Mean Average Surface Distance (MASD), Object
Detection (ObD), Semantic Segmentation (SemS). Reference used in the figure: Cheng et al., 2021: [22]. We
recommend Boundary loU as a boundary-based metric in Subprocess S7 (Extended Data Fig. 7).
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HAUSDORFF DISTANCE (HD)

Synonyms: Maximum Symmetric Surface Distance, Hausdorff Metric,
Pompeiu-Hausdorff Distance

d(a,B) = min d(a,b)
beB

A HD(A,B)=max{ d(a,B), d(b,A)}

- =] ) wod Lt H e

— Min. distances from boundary
pixelsin Ato B
> Min. distances from boundary
pixels in Bto A VALUE RANGE: [0, )

DESCRIPTION
HD is the largest of all the distances from a point on one boundary to the closest point on the
other boundary.

RECOMMENDED FOR
DEFINITION ImLC SemS ObD InS
[Huttenlocher, 1993] . .
RECOMMENDATIONS
- Boundary-based metrics such as HD should generally be reported together with an overlap-ba-
sed metric.

- We generally recommend the xth percentile of the HD over HD for boundary-based penalizati-
on of spatial outliers with outlier focus.

- However, HD should be considered if spatial outliers should be heavily penalized.

- HD should not be used if inter-rater variability should be compensated.

- For missing value handling, an advanced strategy should be defined, for example by setting the
penalty equal to the largest distance within an image.

Fig. SN 3.24. Cheat Sheet for the Hausdorff Distance (HD). The downward arrow in the value range indicates
that lower values are better than higher values. Abbreviations used in the figure: Image-level Classification
(ImLC), Instance Segmentation (InS), Object Detection (ObD), Semantic Segmentation (SemS). Reference
used in the figure: Huttenlocher, 1993: [50]. We recommend HD as a boundary-based metric in Subprocess S7
(Extended Data Fig. 7).
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MEAN AVERAGE SURFACE DISTANCE (MASD)

Synonym: Mean Surface Distance

d(a,B) = min d(a,b)
beB
( Y d@B) X dbA) )
beB

acA

D A MASD(A,B):%

+
[A] [BI

. J

— Min. distances from boundary
pixels in Ato B

> Min. distances from boundary
pixels in B to A VALUE RANGE: [0, »0) ¢

DESCRIPTION
MASD measures the mean of the averages over all shortest distances from all sampled points on
one boundary to any other point on another boundary.

RECOMMENDED FOR
DEFINITION ImLC SemS ObD InS
[Benes and Zitova, 2015] ‘ .

RECOMMENDATIONS

- Boundary-based metrics such as MASD should generally be reported together with an over-
lap-based metric.

- We generally recommend MASD as a boundary-based penalization metric with contour focus
over ASSD.

- MASD should not be used if inter-rater variability should be compensated.

- For missing value handling, an advanced strategy should be defined, for example by setting the
penalty equal to the largest distance within an image.

Fig. SN 3.25. Cheat Sheet for the Mean Average Surface Distance (MASD). The downward arrow in the value
range indicates that lower values are better than higher values. Abbreviations used in the figure: Average
Symmetric Surface Distance (ASSD), Image-level Classification (ImLC), Instance Segmentation (InS), Object
Detection (ObD), Semantic Segmentation (SemS). Reference used in the figure: Benes and Zitova, 2015: [11].
We recommend MASD as a boundary-based metric in Subprocess S7 (Extended Data Fig. 7).
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NORMALIZED SURFACE DISTANCE (NSD)

Synonyms: Normalized Surface Dice, Surface Distance, Surface Dice, Surface DSC
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DESCRIPTION

NSD measures the DSC on boundary pixels with an uncertainty margin. The degree of strictness
for what constitutes a correct boundary is represented by the tolerance parameter t. Only
boundary parts within the border regions defined by 1 are counted as TP. NSD therefore captu-
res known uncertainties in the reference and allows acceptable deviations from the reference for
the predicted boundary.

RECOMMENDED FOR
DEFINITION ImLC SemS ObD InS
[Nikolov et al., 2021] ’ .

RECOMMENDATIONS
- Boundary-based metrics such as NSD should generally be reported together with an over-
lap-based metric.
- NSD is our default boundary-based metric in case annotation imprecisions should be compen-
sated for.
- NSD should be considered if ...
o ... structure boundaries are of particular interest.
o ...annotation imprecisions should be compensated.
o ... spatial outliers should be penalized by their existence rather than their distance.
- The hyperparameter T denotes the tolerated distance between reference and prediction below
of which pixels are considered TP. It should be chosen according to inter-rater variability, for ex-
ample.

Fig. SN 3.26. Cheat Sheet for the Normalized Surface Distance (NSD). The upward arrow in the value range
indicates that higher values are better than lower values. Abbreviations used in the figure: Dice Similarity
Coefficient (DSC), Image-level Classification (ImLC), Instance Segmentation (InS), Object Detection (ObD),
Semantic Segmentation (SemS), True Positive (TP). Reference used in the figure: Nikolov et al., 2021: [80]. We
recommend NSD as a boundary-based metric in Subprocess S7 (Extended Data Fig. 7).
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X™ PERCENTILE OF HAUSDORFF DISTANCE

e N EXAMPLE: 95™ percentile
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DESCRIPTION

The x* percentile of the Hausdorff Distance (HD) measures the xt" percentile of all the distances
from a point on one boundary to the closest point on the other boundary. A common value is
x =95 (HD95).

RECOMMENDED FOR
DEFINITION ImLC SemS ObD InS
[Huttenlocher, 1993] . .

RECOMMENDATIONS
- Boundary-based metrics such as the xt" Percentile of HD should generally be reported together
with an overlap-based metric.
- We generally recommend the x* Percentile of HD as a boundary-based penalization metric with
outlier focus.
- The x*" Percentile of HD should not be used ...
o ... if inter-rater variability should be compensated.
o ... in SemS cases where multiple entities are represented within an image.
- For missing value handling, an advanced strategy should be defined, for example by setting the
penalty equal to the largest distance within an image.

Fig. SN 3.27. Cheat Sheet for the Xth Percentile Hausdorff Distance (X! Percentile HD). The downward
arrow in the value range indicates that lower values are better than higher values. Abbreviations used in
the figure: Hausdorff Distance (HD), Image-level Classification (ImLC), Instance Segmentation (InS), Object
Detection (ObD), Semantic Segmentation (SemS). Reference used in the figure: Huttenlocher, 1993: [50]. We
recommend Xt* Percentile HD as a boundary-based metric in Subprocess S7 (Extended Data Fig. 7).
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3.1.2 Calibration metrics.

BRIER SCORE (BS)/BRIER SKILL SCORE (BSS)

VALUE RANGE: [0, 2]

.I N C
BS= — z 2 (pik_yik)z
N i=1 k=1

p,.: predicted probability for sample x,and class k

N: number of samples
y,,-outcome; y, = 1ify.is equal to k and 0 otherwise

C: number of classes

DESCRIPTION RECOMMENDED FOR
BS ist the mean squared error of a predicted class

ImL D |
score and the actual outcome, thus assessing discri- WS ST el )
mination and calibration in one joint score. It is a ®
proper scoring rule.

VARIANT
Brier Skill Score (BSS) normalizes BS by theBS of a TYPE OF CALIBRATION

naive system.
Top-label  Marginal  Canonical
DEFINITION o

[Gneiting and Raftery, 2007]

RECOMMENDATIONS
- BS should be considered if ...
o ... discrimination and calibration performance should be simultaneously assessed in one
score.
o ... the true posterior probabilities, i.e., the “risks” for individual cases are of interest.
o ... astraightforward interpretation of relative improvement is desired.
- BS should carefully be used ...
o ... inimbalanced settings as the bounded penalization of errors leads to preference of naive
systems.
o ... for classes with unequal severity of confusions (e.g. ordinal classes).

Fig. SN 3.28. Cheat Sheet for the Brier Score (BS)/Brier Skill Score (BSS). The downward arrow in the value
range indicates that lower values are better than higher values. Abbreviations used in the figure: Brier
Skill Score (BSS), Image-level Classification (ImLC), Instance Segmentation (InS), Object Detection (ObD),
Semantic Segmentation (SemS). An introduction to calibration and corresponding terminology can be found
in Suppl. Note 2.6. Reference used in the figure: Gneiting and Raftery, 2007: [41]. We recommend BS/Brier
Skill Score (BSS) as a calibration metric in Subprocess S5 (Extended Data Fig. 5).
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CLASS-WISE CALIBRATION ERROR (CWCE)
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DESCRIPTION RECOMMENDED FOR
CWCE is an estimator of the marginal calibration ImLC SemS ObD InS

error applying binning to estimate the observed pro-

babilities corresponding to a confidence range. It can

be reported per class or in an aggregated fashion

with class-specific weights reflecting prevalence or

importance of classes, for example. TYPE OF CALIBRATION
DEFINITION Top-label  Marginal ~ Canonical

[Kull et al,, 2019; Kumar et al., 2019] o

RECOMMENDATIONS
- CWCE should generally not be considered...
o ... for small sample sizes (CWCE is dependent on the sample size).
o ... if the canonical calibration error should be assessed.
- Otherwise, CWCE should be considered...
o ... for a class-wise calibration assessment.
° ... inthe case of an unequal interest across classes.
- Itis generally advisable to report the CWCE both per class and in an aggregated fashion.
- In the case of small sample sizes, the number of bins should be adjusted and additional met-
rics capturing canonical calibration (KCE or RBS) should be reported as well.

Fig. SN 3.29. Cheat Sheet for the Class-wise Calibration Error (CWCE). The downward arrow in the value
range indicates that lower values are better than higher values. Abbreviations used in the figure: Image-level
Classification (ImLC), Instance Segmentation (InS), Kernel Calibration Error (KCE), Object Detection (ObD),
Root Brier Score (RBS), Semantic Segmentation (SemS). An introduction to calibration and corresponding
terminology can be found in Suppl. Note 2.6. References used in the figure: Kumar et al., 2019: [60], Kull et al.,
2019: [59]. We recommend CWCE as a calibration metric in Subprocess S5 (Extended Data Fig. 5).
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EXPECTED CALIBRATION ERROR (ECE)
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DESCRIPTION DEFINITION
ECE is an estimator for the L top-label calibration [Naeini et al., 2015]

error. For a binned estimation, it is the weighted

average of the absolute difference between the RECOMMENDED FOR
average predicted class score (Confidence) of the ImLC SemS ObD InS
top label per bin B_ and the corresponding fraction .
of correct predictions (Accuracy).

TYPE OF CALIBRATION
VARIANT Top-label  Marginal  Canonical
The marginal variant of ECE is CWCE. o
RECOMMENDATIONS

- ECE should generally not be considered...
o ... for small sample sizes (ECE is dependent on the sample size).
o ... if the canonical or marginal calibration error should be assessed.
- Otherwise, ECE should be considered...
o ... if the top-label calibration error should be assessed (especially in binary settings, where it
equals the marginal and canonical calibration error).
- ECE should be reported together with RBS, which gives an unbiased upper bound of the cano-
nical calibration error.

Fig. SN 3.30. Cheat Sheet for the Expected Calibration Error (ECE). The downward arrow in the value range
indicates that lower values are better than higher values. Abbreviations used in the figure: Image-level
Classification (ImLC), Instance Segmentation (InS), Object Detection (ObD), Semantic Segmentation (SemS).
An introduction to calibration and corresponding terminology can be found in Suppl. Note 2.6. Reference
used in the figure: Naeini et al., 2015: [74]. We recommend ECE as a calibration metric in Subprocess S5
(Extended Data Fig. 5).
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EXPECTED CALIBRATION ERROR KERNEL DENSITY ESTIMATE (ECE*"¥)

ECEoE= | % Ziijk(f(xj)l f(x))e, i

N 2 25 k(f(x), fx)) o

N: number of samples

k: kernel, e.g. Dirichlet kernel [Popordanoska et al., 2022]

f(x): predicted probability vector, y,: outcome (one-hot encoded)
e : C-dimensional vector with y -th entry being 1, else 0

p

p: determines which L  calibration error is desired; typically p € {1, 2} VALUE RANGE: [0, 2] ¥
DESCRIPTION RECOMMENDED FOR

ECEXE is an estimator for the canonical calibration ImLC SemS ObD InS
error. It uses a kernel density estimate in contrast to ()

the binning strategy applied by the standard ECE.
TYPE OF CALIBRATION

DEFINITION Top-label  Marginal ~ Canonical
[Popordanoska et al., 2022] .
RECOMMENDATIONS

- ECE*®t should generally not be considered...
o ... for small sample sizes (ECE*"tis dependent on sample size).
o ... for very large numbers of classes or unequal interest across classes. In such cases, CWCE
should be considered instead.
- Otherwise, ECE**Eshould be considered...
o ... for quantifying the canonical calibration error.
- ECEX®E should be reported together with RBS, which gives an unbiased upper bound on the
canonical calibration error.

Fig. SN 3.31. Cheat Sheet for the Expected Calibration Error Kernel Density Estimate (ECEXPE). The downward
arrow in the value range indicates that lower values are better than higher values. Abbreviations used in the
figure: Class-wise Calibration Error (CWCE), Image-level Classification (ImLC), Instance Segmentation (InS),
Object Detection (ObD), Root Brier Score (RBS), Semantic Segmentation (SemS). An introduction to calibration
and corresponding terminology can be found in Suppl. Note 2.6. Reference used in the figure: Popordanoska
et al., 2022: [83]. We recommend ECEKPE a5 a calibration metric in Subprocess S5 (Extended Data Fig. 5).
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KERNEL CALIBRATION ERROR (KCE)

12
KCE = (E ((ey - f(x))" k(f(x), f(x‘))(e - f(x9) ))
A~ K
Example estimator: KCE = ((2) > Z ( f(x T k(f(X) f(x ))(eyj - f(XJ)))

i=1 j=i+l

2

N: number of samples; k: matrix-valued kernel; f(x): predicted probability vector;
y;: outcome;e ;: C-dimensional vector with y -th entry being 1, else 0

VALUE RANGE: Kernel dependent; in expectation > 0 but estimator can be arbitrarily negative

DESCRIPTION RECOMMENDED FOR
KCE measures a canonical calibration error based on ImLC SemS ObD InS
an alternative distance function, the “maximum .

mean discrepancy” (MMD). It is based on a mat-
rix-valued kernel k.

KCE is an unbiased estimator of the calibration error
measured by MMD. TYPE OF CALIBRATION

DEFINITION Top-label  Marginal ~ Canonical
[Widmann et al., 2019; Gruber and Buettner, 2022] ‘

RECOMMENDATIONS
- KCE should generally not be considered...

o ... for unequal interest across classes. In such a case, CWCE should be considered instead.

o ... for interpreting calibration performance (absolute values) as it is relatively hard to in-
terpret (for example compared to BS), also due to negative output values.

- KCE should be considered...

o ... for a canonical calibration assessment if interpretability of absolute values is not of key
interest. This holds especially true for comparative calibration assessment as KCE is an un-
biased estimator of the calibration error measured by MMD.

o ... in the presence of small sample sizes and a large number of classes as it is an unbiased
estimator and therefore also well-suited.

- KCE should be configured carefully as it depends on nontrivial configuration choices of ker-
nels and associated hyperparameters.

Fig. SN 3.32. Cheat Sheet for the Kernel Calibration Error (KCE). The downward arrow in the value range
indicates that lower values are better than higher values. Abbreviations used in the figure: Brier Score
(BS), Image-level Classification (ImLC), Instance Segmentation (InS), Object Detection (ObD), Semantic
Segmentation (SemS). An introduction to calibration and corresponding terminology can be found in Suppl.
Note 2.6. References used in the figure: Gruber and Buettner, 2022: [43], Widmann et al., 2019: [115]. We
recommend KCE as a calibration metric in Subprocess S5 (Extended Data Fig. 5).
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NEGATIVE LOG LIKELIHOOD (NLL)

Synonym: Cross Entropy Loss

N C
NLL=-% Z E ~log(p,,) VALUE RANGE: [0, «0) 4

p,.: predicted probability for sample x. and class k

N: number of samples
y,.;outcome; y. = 1ify.is equal to k and 0 otherwise

C: number of classes

DESCRIPTION RECOMMENDED FOR

NLL is the negative logarithm of a predicted class ImLC SemS ObD InS
score and the actual outcome. It is a proper scoring ()

rule that can be used to measure the discrimination

and calibration quality in one joint score. TYPE OF CALIBRATION
DEFINITION Top-label  Marginal ~ Canonical
[Cybenko et al., 1998] [ )
RECOMMENDATIONS

- NLL should be considered if ...
o ... calibration and discrimination should be assessed in a single score for comparative cali-
bration assessment.
o ... extreme scores should be heavily penalized.
- NLL should not be used ...
o ... for classes with unequal severity of confusions (e.g. ordinal classes).
o ... if an easy interpretation is desired (it has no upper bound).

Fig. SN 3.33. Cheat Sheet for the Negative Log Likelihood (NLL). The downward arrow in the value range
indicates that lower values are better than higher values. Abbreviations used in the figure: Image-level
Classification (ImLC), Instance Segmentation (InS), Object Detection (ObD), Semantic Segmentation (SemsS).
An introduction to calibration and corresponding terminology can be found in Suppl. Note 2.6. Reference
used in the figure: Cybenko et al., 1998: [31]. We recommend NLL as a calibration metric in Subprocess S5
(Extended Data Fig. 5).
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ROOT BRIER SCORE (RBS)

1 A VY VALUE RANGE: [0,42 14
RBS =& 231 k; P, -Y.)

p,.: predicted probability for sample x. and class k
y,,-outcome; y, = 1ify.is equal to k and 0 otherwise

N: number of samples
C: number of classes

DESCRIPTION RECOMMENDED FOR
RBS is the square root of the mean squared error of ImLC SemS ObD InS
a predicted class score and the actual outcome. ()

It represents a robust upper bound of the canonical
calibration error.

TYPE OF CALIBRATION

DEFINITION Top-label ~ Marginal  Canonical

[Gruber and Buettner, 2022] .

RECOMMENDATIONS
RBS should be considered as a guaranteed upper bound of the canonical calibration error and
should be reported together with ECE/ECE*CE,

Fig. SN 3.34. Cheat Sheet for the Root Brier Score (RBS). The downward arrow in the value range indicates
that lower values are better than higher values. Abbreviations used in the figure: Expected Calibration
Error (ECE), Expected Calibration Error Kernel Density Estimate (ECEKDE), Image-level Classification (ImLC),
Instance Segmentation (InS), Object Detection (ObD), Semantic Segmentation (SemS). An introduction to
calibration and corresponding terminology can be found in Suppl. Note 2.6. Reference used in the figure:
Gruber and Buettner, 2022: [43]. We recommend RBS as a calibration metric in Subprocess S5 (Extended Data
Fig. 5).
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3.1.3 Localization criteria.

BOUNDARY INTERSECTION OVER UNION (BOUNDARY IOU)

Boundary distance d -
5 . Boundary

- =
loU(A,B) .
A Pixels of structure A n + D -

within width d from

boundary
| __ 1A,
B Pixels of structure B =
within width d from |Ad|+|Bd|-|Aded|
boundary
_|A,nB,l
= A N B, |A, U B,
VALUE RANGE: [0, 1] 1
LOCALIZATION CRITERION

.Z‘CZ
B<rr

DESCRIPTION

Boundary loU measures the overlap between the predicted and reference boundaries up to a
predefined width d. Combined with a localization threshold 7 it can be used as a localization cri-
terion.

RECOMMENDED FOR

DEFINITION ImLC SemsS ObD InS
[Cheng et al., 2021] .

RECOMMENDATIONS

- Boundary loU should be considered as localization criterion if structure boundaries are of parti-
cular interest.

- The hyperparameter d influences the Boundary loU score and denotes the thickness of the
considered boundary. It should be chosen according to inter-rater variability, for example. For
sufficiently large d, Boundary loU is equal to Mask loU.

Fig. SN 3.35. Metric profile of the Boundary loU (localization criterion). The upward arrow in the value
range indicates that higher values are better than lower values. Abbreviations used in the figure: Image-level
Classification (ImLC), Instance Segmentation (InS), Object Detection (ObD), Semantic Segmentation (SemS).
Reference used in the figure: Cheng et al., 2021: [22]. We recommend Boundary Intersection over Union (loU)
as a localization criterion in Subprocess S8 (Extended Data Fig. 8).
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CENTER DISTANCE

. Reference Prediction
—3¢ o
$2 Reference center ¢ Prediction center
d<z VALUE RANGE OF CENTER DISTANCE: [0, %) 4

DESCRIPTION

The Center Distance measures the (typically Euclidean) distance between the reference and pre-

dicted center point of an object. The prediction is considered as a hit if the distance is smaller

than a predefined threshold 1. Depending on what kind of information the center point is deri-

ved from, different definitions are possible, for instance:

- Geometric center of the box/approximation shape,

- Geometric center of a binary mask, i.e., average of positions of all pixels/voxels,

- Center of mass of a binary mask overlaid with the original image, i.e., weighted average of posi-
tions of all pixels/voxels with weight equal to (or derived from) the intensity of a particular pi-

xel/voxel.
RECOMMENDED FOR
DEFINITION ImLC SemS ObD InS
[Gurcan et al., 2010] ‘
RECOMMENDATIONS

- The Center Distance is our default recommendation if the reference object is merely represen-
ted by its position.
- Center Distance should not be considered as a localization criterion...
o ... in the presence of tubular-shaped objects.
o ... if the overlap between objects or their boundaries are of interest.
- Otherwise, we specifically recommend it as a localization criterion if the desired granularity of
localization is only the position.
- The localization threshold should be chosen carefully in an application-specific manner.

Fig. SN 3.36. Cheat Sheet for the Center Distance. The downward arrow in the value range indicates that
lower values are better than higher values. Abbreviations used in the figure: False Negative (FN), False
Positive (FP), Image-level Classification (ImLC), Intersection over Union (loU), Instance Segmentation (InS),
Object Detection (ObD), Semantic Segmentation (SemS). Reference used in the figure: Gurcan et al., 2010:
[46]. We recommend Center Distance as a localization criterion in Subprocess S8 (Extended Data Fig. 8).
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INTERSECTION OVER REFERENCE (loR)

Synonyms: Pixel-level Sensitivity

IoR(A,B) = . = [AnBI VALUE RANGE: [0, 1] T

B A

LOCALIZATION CRITERION

. J
Al s@Aans

DESCRIPTION

IoR measures the overlap between two structures. It is defined as the pixel-level Sensitivity and
only considers the FN pixels (not the FPs). The metric is rather uncommon for segmentation as-
sessment, but combined with a localization t threshold it can be used as a localization criterion.

RECOMMENDED FOR
DEFINITION ImLC SemS ObD InS
[Maska et al., 2014] .

RECOMMENDATIONS

- loRis a rather uncommon metric/localization criterion, which we do not generally recommend
as it can yield extremely misleading results in the case of large predictions.

- loR should be preferred over loU as localization criterion in InS in the case of touching structu-
res, in which one prediction may overlap multiple reference objects. In this case, assignment of
one prediction to multiple reference objects must be enabled and a penalty for this type of al-
gorithm error (“non-split error”) introduced (see Fig. SN 2.26).

Fig. SN 3.37. Cheat Sheet for the Intersection over Reference (IoR). The upward arrow in the value range
indicates that higher values are better than lower values. Abbreviations used in the figure: Image-level
Classification (ImLC), Instance Segmentation (InS), Object Detection (ObD), Semantic Segmentation (SemsS).
Reference used in the figure: Maska et al., 2014: [68]. We recommend IoR as a localization criterion in
Subprocess S8 (Extended Data Fig. 8).
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MASK/BOX/APPROX INTERSECTION OVER UNION (MASK/BOX/APPROX loU)

Synonyms: Jaccard Index, Tanimoto Coefficient

B
B+

|A B =|Amm
|Al+|B|-|A B |A U B

PPV . Sensitivity
) PPV + Sensitvity - PPV « Sensitivity

\
Al s@Aans

J

loU(A,B) =

LOCALIZATION CRITERION

.Z‘I::
.<1::FP

DESCRIPTION RECOMMENDED FOR

loU measures the overlap between two structures (see ImLC SemS ObD InS

above). Combined with a localization threshold, it is a . .

common localization criterion. It is often referred to as

Box loU when comparing bounding boxes, Mask loU

when comparing segmentation masks, or Approx loU IMPORTANT RELATIONS

when comparing approximations of objects beyond DSC

bounding boxes. loU= ———  loU= —£
2-DSC 2-F

DEFINITION hrB=1ﬁ

[Jaccard, 1912]

RECOMMENDATIONS
- loU is our default recommended localization criterion if a rough outline of the target structures
is desired (in contrast to scenarios in which only the position is of importance).
- loU should not be used ...
o ... if contour agreement is important for deciding on a match between predicted and refe-
rence object.
o ... to approximate disconnected or tubular structures as boxes (Box loU).
- Otherwise, it is specifically well-suited if overlap is a meaningful measure of how well an object
has been located.
- The localization threshold should be chosen carefully in an application-specific manner.

Fig. SN 3.38. Metric profile of the Mask/Box/Approx Intersection over Union (loU) (localization criterion).
Abbreviations used in the figure: Image-level Classification (ImLC), Instance Segmentation (InS), Object
Detection (ObD), Positive Predictive Value (PPV), Semantic Segmentation (SemS). Reference used in the
figure: Jaccard, 1912: [52]. We recommend Mask/Box/Approx loU as a localization criterion in Subprocess S8
(Extended Data Fig. 8).
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MASK INTERSECTION OVER UNION (MASK loU) > 0

Synonyms: Jaccard Index > 0, Tanimoto Coefficient > 0

)\ Mask loU(AB) = ———
H-N-2
|ANB| _ |AnB|
|Al+IBl-lA~Bl ~ [AUB
_ PPV - Sensitivity
L ) PPV + Sensitvity - PPV « Sensitivity

BAls@Aans 0 MaskloU=0

o . .

RECOMMENDED FOR

DESCRIPTION ImLC  SemS  ObD InS
Mask loU generally measures the overlap between two o
segmentation masks and is a common localization cri-
terion. Mask loU > 0 is a special case of a very loose
localization criterion, in which only one pixel overlaps. IMPORTANT RELATIONS

ou= —2C_ jou= i
DEFINITION 2-DsC 2-F,
[Wack et al., 2012; Jaccard, 1912] forp=1

RECOMMENDATIONS
- Mask loU > 0 should not be used if ...
o ... the predicted location is of importance.
° ... a high amount of overlap with the reference structure is required.
o ... very large predictions are likely.
- Otherwise, it is specifically well-suited as an intuitive loose localization criterion if the predicted
object should only be characterized by its rough position (e.g., center point), i.e., if outlining
structures or massive overlap with the reference is not important.

Fig. SN 3.39. Metric profile of the Mask Intersection over Union (loU) > 0. Abbreviations used in the figure:
False Positive (FP), Image-level Classification (ImLC), Instance Segmentation (InS), Object Detection (ObD),
Positive Predictive Value (PPV), Semantic Segmentation (SemS). References used in the figure: Jaccard, 1912:
[52], Wack et al., 2012: [112]. We recommend Mask loU > 0 as a localization criterion in Subprocess S8
(Extended Data Fig. 8).
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POINT INSIDE MASK/BOX/APPROXIMATION
. Reference

€ Predicted point

VALUE RANGE: {True, False}

DESCRIPTION

The Point inside Mask/Box/Approximation is a localiza- RECOMMENDED FOR
tion criterion that defines a point-based prediction as a
hit as long as it is |n5|d<? the reference object, W'hICh' ImLC SemsS ObD InS
may be a mask, bounding box, or other approximation

of a structure. .
DEFINITION

https://cada.grand-challenge.org/Assessment/

RECOMMENDATIONS
- The Point inside Mask/Box/Approximation criterion should be considered as a localization
criterion...
o ... if only a rough estimate of the object location is required.
o ... for complex shapes, e.g., tubular objects.
- It should be noted that the Point inside Mask/Box/Approximation criterion does not allow to

adjust the localization strictness. If such a property is desired, a different localization criteri-
on should be chosen, such as Box/Approx loU.

Fig. SN 3.40. Cheat Sheet for the Point inside Mask/Box/Approximation. Abbreviations used in the figure:
Dice Similarity Coefficient (DSC), Image-level Classification (ImLC), Instance Segmentation (InS), Object
Detection (ObD), Positive Predictive Value (PPV), Semantic Segmentation (SemS). Reference used in the
figure: https://cada.grand-challenge.org/Assessment/. We recommend Point inside Mask/Box/Approximation
as a localization criterion in Subprocess S8 (Extended Data Fig. 8).
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3.1.4 Assignment strategies.

GREEDY (BY SCORE) MATCHING
E B

1) Rank predictions 2) Compute localization 3) Assign predictionto  4) Remove

by predicted criterion between all reference with highest assigned
class scores; the predicted and reference localization criterion. reference
highest score objects Start with first rank. object
receives the first N\ J
rank. v
REPEAT
DESCRIPTION

In the Greedy (by Score) Matching, all predictions in an image are ranked by their predicted
class scores and iteratively (starting with the highest probability) assigned to the reference
object with the highest localization criterion for this prediction. The selected reference
object is subsequently removed from the process as it can not be matched to any other pre-
diction.

. DEFINITION

?
NEED FOR PREDICTED CLASS SCORES? [Everingham et al., 2015]

RECOMMENDATIONS

This assignment strategy is the state of the art in the computer vision community. When de-
ciding which prediction should be assigned to a reference object, it is intuitive to select the

one with the highest confidence (i.e., class score), as this is the one the model was most cer-
tain about.

Fig. SN 3.41. Cheat Sheet for the Greedy (by Score) Matching. Reference used in the figure: Everingham
et al., 2015: [39]. We recommend Greedy (by Score) Matching as an assignment strategy in Subprocess S9
(Extended Data Fig. 9).
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GREEDY (BY LOCALIZATION CRITERION) MATCHING
E i

1) Compute localization 2) Assign reference to 3) Remove
criterion between all prediction with highest assigned
predicted and reference localization criterion. reference
objects object
: I\ ey,
A4
REPEAT
DESCRIPTION

If no predicted class scores are available, the Greedy (by Score) Matching can be replaced
with the Greedy (by Localization Criterion) Matching. For this strategy, the reference with
the highest localization criterion for a predicted object is matched.

DEFINITION

?
NEED FOR PREDICTED CLASS SCORES? [Maier-Hein et al,, 2022]

RECOMMENDATIONS

When no confidence scores (i.e., predicted class scores) are available, selecting the predicti-
on that overlaps most with the reference is the natural choice. Of note, this assignment stra-
tegy is currently not used in the field.

Fig. SN 3.42. Cheat Sheet for the Greedy (by Localization Criterion) Matching. Reference used in the figure:
Maier-Hein et al., 2022: [66]. We recommend Greedy (by Localization Criterion) Matching as an assignment
strategy in Subprocess S9 (Extended Data Fig. 9).
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OPTIMAL (HUNGARIAN) MATCHING
[ ] =
=

1) Compute localization 2) Use cost function to find the
criterion between all optimal assignment of predictions
predicted and reference and references based on the
objects localization criterion.
DESCRIPTION

The Optimal (Hungarian) Matching is associated with a cost function, usually depending on
the localization criterion, which is minimized to find the optimal assignment of predictions
and reference.

DEFINITION

NEED FOR PREDICTED CLASS SCORES? [Kuhn, 1955]

RECOMMENDATIONS

If the application at hand provides a dedicated cost function as to which assignments
should be penalized, this strategy is the natural choice. In most cases, however, an adequate
cost function would need to be defined by the user which can often not be justified given
the available, more intuitive assignment strategies.

Fig. SN 3.43. Cheat Sheet for the Optimal (Hungarian) Matching. Reference used in the figure: Kuhn et al.,
1955: [58]. We recommend the Optimal (Hungarian) Matching as an assignment strategy in Subprocess S9
(Extended Data Fig. 9).
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MATCHING VIA OVERLAP > 0.5

PREREQUISITE: Overlapping predictions are not possible.

TR

1) Compute overlap-based  2) If the overlap is greater than 0.5, 3) Remove assigned
localization criterion assign prediction to the reference. reference object
between all predicted and W Y,
reference objects N/
REPEAT
DESCRIPTION

If there are no overlapping predictions, complex assignment strategies can be avoided by
simply setting the localization criterion to loU > 0.5.This strategy inherently avoids
matching conflicts, because any secondary prediction would by definition have an overlap
< 0.5 of the same reference object.

DEFINITION

?
NEED FOR PREDICTED CLASS SCORES? [Everingham et al.,, 2006]

RECOMMENDATIONS
- This assignment strategy should not be applied if ...
o ... overlapping predictions are possible.
° ... anon-overlap based criterion is employed.
o ... an loU threshold lower than 0.5 is requested for localization.
- Otherwise, it represents a simple and intuitive localization criterion that inherently avoids
matching conflicts and thus the need for a dedicated assignment strategy. This criterion is
often used in the cell segmentation domain.

Fig. SN 3.44. Cheat Sheet for the Matching via Overlap > 0.5. Reference used in the figure: Everingham et al.,
2006: [37]. We recommend Matching via Overlap > 0.5 as an assignment strategy in Subprocess S9 (Extended
Data Fig. 9).
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SUPPL. NOTE4 RECOMMENDATIONS FOR SELECTED USE CASES

We instantiated the framework for several biological and medical image analysis use cases. The list
of use cases with a link to the figures representing the recommendations is provided below:

4.1 Image-level classification

The following use cases have been instantiated for image-level classification problems. The resulting
metric recommendations can be found in Fig. SN 4.1, while Figs. SN 4.5-SN 4.7 provide a detailed
overview of the recommendations for the use cases in the metric selection Subprocesses S2-S5.

ImLC-1 Frame-based sperm motility classification from microscopy time-lapse video of human
spermatozoa [49]

ImLC-2 Disease classification in dermoscopic images [26, 104]

ImLC-3 Classification of the overall autophagy stage for a collection of cells [75, 121]

ImLC-4 Diagnostic standard plane classification in ultrasound images [9]

ImLC-5 Identification of new lesions in brain multi-modal magnetic resonance imaging (MRI)
images of patients with multiple sclerosis (MS) [29, 57]

ImLC-6 Breast cancer classification in mammography images [62]

ImLC-7 Multi-class cardiac disease classification in MRI images [13]
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IMAGE-LEVEL CLASSIFICATION

ID SCENARIO SAMPLE POTENTI
INPUT IMAGE OUPUT

ImLC-1  Frame-based sperm motility clas-
sification from microscopy
time-lapse video

of human spermatozoa Multi-class counting metric (S2): BA

Per-class counting metric (S3): LR+
ImLC-2 Disease classification in

. Dermatofibroma: 0.6 Multi-threshold metric (S4): AUROC
dermoscopic images Melanocytic nevus: 0.2
BasalrleellTr::ia;g;:u: 00 Calibration metric (S5): ECE (top-label) and RBS

Actinic keratosis: 0.0
Benign keratosis: 0.0
Vascular lesion: 0.1

ImLC-3 Classification of overall
autophagy stage for a
collection of cells

T Multi-class counting metric (52): MCC

Transport to

lysosomes: 0.2 Per-class counting metric (S3): LR+
Degradation: 0.1

et Multi-threshold metric (S4): AUROC

products: 0.0

No calibration metric (S5)

No multi-class counting metric (52)
(only per-class validation)

ImLC-4 Diagnostic standard plane
classification in ultrasound
images

Spine (sag.): 0.65
Background: 0.165,
Femur 0.01,3VV 0.01,

Spliailcor) O3 Multi-threshold metric (S3): AUROC

RVOT 0.05, LVOT 0.05

Per-class counting metric (S4):
Sensitivity@Specificity

Calibration metric (S5) needed if used in interactive
imaging guidance mode: CWCE
ImLC-5 Identification of new lesions in Multi-class counting metric (52): EC
brain multi-modal MRI images of

patients with MS Lesion: 0.9 Per-class counting metric (53): F, Score

No lesion: 0.1

Multi-threshold metric (S4): AP

Calibration metric (S5): BS (for comparative
calibration assessment and assessment of
interpretability of model outputs)

No multi-class counting metric (52)
(only per-class validation)

ImLC-6  Breast cancer classification in
mammography images

Per-class counting metric (S3): NB

Multi-threshold metric (S4): AP

Calibration metric (S5): BS
(for comparative calibration assessment)

ImLC-7  Multi-class cardiac disease

Multi-class counting metric (S2): Accuracy
classification in MRl images

Per-class counting metric (S3): Sensitivity

Hypertrophic
| cardiomyopathy: 0.1, ) .
| Abnormal right Multi-threshold metric (S4): AUROC

ventricle:0.1

No calibration metric (S5)

ABBREVIATIONS
AP Average Precision

AUROC Area Under the Receiver Operating Characteristic Curve ~ CWCE Class-wise Calibration Error LR+ Positive Likelihood Ratio
BA Balanced Accuracy EC Expected Cost MCC Matthews Correlation Coefficient
BS Brier Score ECE Expected Calibration Error RBS Root Brier Score

Fig. SN 4.1. Instantiation of the framework with recommendations for concrete biomedical image-
level classification problems. (ImLC-1) Frame-based sperm motility classification from microscopy time-
lapse video of human spermatozoa [49]. (ImLC-2) Disease classification in dermoscopic images [26, 104].
(ImLC-3) Classification of the overall autophagy stage for a collection of cells [75, 121]. (ImLC-4) Diagnostic
standard plane classification in ultrasound images [9]. (ImLC-5) Identification of new lesions in brain
multi-modal magnetic resonance imaging (MRI) images of MS patients [29, 57]. (ImLC-6) Breast cancer
classification in mammography images [62]. (ImLC-7) Multi-class cardiac disease classification in MRI
images [13].
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4.2 Semantic segmentation

The following use cases have been instantiated for semantic segmentation problems. The resulting
metric recommendations can be found in Fig. SN 4.2, while Figs. SN 4.10-SN 4.11 provide a detailed
overview of the recommendations for the use cases in the metric selection Subprocesses S6 and S7.

SemS-1 Embryo segmentation from microscopy images [98]

SemS-2 Liver segmentation in computed tomography (CT) images [1, 94]

SemS-3 Labeling of invasive/non-invasive/benign lesions in breast whole slide imaging (WSI)
(2]

SemS-4 Cortical structure segmentation from 3D MRI images [19]

SemS-5 Aneurysm segmentation in time-of-flight magnetic resonance angiography (TOF-MRA)
images [100]
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MANTIC SEGMENTATION

SCENARIO SAMPLE RECOMMENDED
INPUT IMAGE OUPUT IMAGE

SemS-1  Embryo segmentation from
microscopy images

SemS-2  Liver segmentation in CT
images

Overlap-based metric (S6): DSC
Boundary-based metric (S7): NSD

Specific property-related metric:

~
>
Liver segmentation: Absolute Volume Difference

-

SemS-3  Labeling of invasive/non-
invasive/ benign lesions on
breast WSIs

Overlap-based metric (S6): F, Score

No boundary-based metric (S7) recommended
(possibility of overlapping or touching structures)

SemS-4  Cortical structure
segmentation from 3D
MRl images

Overlap-based metric (S6): cIDice
Boundary-based metric (S7): NSD
Specific property-related metric:

Local and average cortical thickness

SemS-5 Aneurysm segmentation in

TOF-MRA images Overlap-based metric (S6): DSC

Boundary-based metric (57): HD95

ABBREVIATIONS
cIDice Centerline Dice Similarity Coefficient

DSC Dice Similarity Coefficient
HD95 95th Percentile Hausdorff Distance
NSD Normalized Surface Distance

Fig. SN 4.2. Instantiation of the framework with recommendations for concrete biomedical semantic
segmentation problems. (SemS-1) Embryo segmentation from microscopy images [98]. (SemS-2) Liver seg-
mentation in computed tomography (CT) images [1, 94]. (SemS-3) Labeling of invasive/non-invasive/benign
lesions in breast whole slide imaging (WSI) [2]. (SemS-4) Cortical structure segmentation from 3D magnetic
resonance imaging (MRI) images[19]. (SemS-5) Aneurysm segmentation in time-of-flight magnetic resonance
angiography (TOF-MRA) images [100].
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4.3 Object detection

The following use cases have been instantiated for object detection problems. The resulting metric
recommendations can be found in Fig. SN 4.3, while Figs. SN 4.6-SN 4.9 provide a detailed overview
of the recommendations for the use cases in the metric selection Subprocesses S3 - S4, S8 - S9.

ObD-1 Cell detection and tracking during the autophagy process in time-lapse microscopy
[75, 121]

ObD-2 MS lesion detection in multi-modal brain MRI images [29, 57]

ObD-3 Polyp detection in colonoscopy videos with predefined sensitivity of 0.95 [12, 89]

ObD-4 Mitosis detection in histopathology images [7]

ObD-5 Lung nodule detection in CT images [3, 4, 25]
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1) SCENARIO SAMPLE RECOMMENDED
INPUT IMAGE PUT IMAGE

ObD-1 Cell detection and tracking
during the autophagy process in
time-lapse microscopy videos

Per-class counting metric (S3):
FPPI'@Sensitivity = 0.95

ObD-2 MS lesion detection in multi-mod- Multi-threshold metric (S4): FROC Score

al brain MRIimages Localization criterion (S8): Box loU
Assignment strategy (S9):

Greedy (by Score) Matching

Set double assignments to FP

' Polyp detection: the FP are determined pervideo
‘(=t patltent), not per frame (= image level), reflecting clinical
interest.

ObD-3 Polyp detection in colonoscopy
videos with predefined sensitivity
of 0.95

ObD-4 Mitosis detection in

Per-class counting metric (S3): F, Score
histopathology images

No multi-threshold metric (54) needed
(predicted class scores not available)

Localization criterion (58): Center Distance
Assignment strategy (S9):

Greedy (by Center Distance) Matching

Set double assignments to FP

ObD-5 Lung nodule detection in CT Per-class counting metric (S3):
images PPV@Sensitivity = 0.90

Multi-threshold metric (S4): AP
Localization criterion (58): Box loU
Assignment strategy (S59):

Greedy (by Score) Matching
Set double assignments to FP

ABBREVIATIONS

FP False Positive

AP Average Precision FROC Free-Response Receiver Operating Characteristic
Box loU Box Intersection over Union PPV Positive Predictive Value

Fig. SN 4.3. Instantiation of the framework with recommendations for concrete biomedical object
detection problems. (ObD-1) Cell detection and tracking during the autophagy process in time-lapse
microscopy [75, 121]. (ObD-2) Multiple sclerosis (MS) lesion detection in multi-modal brain magnetic
resonance imaging (MRI) images [29, 57]. (ObD-3) Polyp detection in colonoscopy videos with predefined
sensitivity of 0.95 [12, 89]. (ObD-4) Mitosis detection in histopathology images [7]. (ObD-5) Lung nodule
detection in computed tomography (CT) images [3, 4, 25].
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4.4 Instance segmentation

The following use cases have been instantiated for instance segmentation problems. The resulting
metric recommendations can be found in Fig. SN 4.4, while Figs. SN 4.6-SN 4.11 provide a detailed
overview of the recommendations for the use cases in the metric selection Subprocesses S3 - S4, S6
- S9.

InS-1 Instance segmentation of neurons from the fruit fly in 3D multi-color light microscopy
images [67, 72, 101]

InS-2 Surgical instrument instance segmentation in colonoscopy videos [65]

InS-3 Cell nuclei instance segmentation in time-lapse light microscopy for cell tracking [103]

InS-4 MS lesion segmentation in multi-modal brain MRI images [29, 57]
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ID

InS-1

InS-2

InS-3

InS-4  MS lesion segmentation
in multi-modal brain MRI

Instance segmentation of neurons
from the fruit fly in 3D multi-color
light microscopy images

Surgical instrument instance
segmentation in colonoscopy

Cell nuclei instance segmentation
in time-lapse light microscopy for

INSTANCE SEGMENTATION

SAMPLE RECOMMENDED
INPUT IMAGE OUPUT IMAGE

ABBREVIATIONS

AP Average Precision
Boundary loU Boundary Intersection over Union

cIDice Centerline Dice Similarity Coefficient

DSC Dice Similarity Coefficient

FROC Free-Response Receiver Operating Characteristic
FP False Positive

Per-class counting metric (S3): F, Score
Multi-threshold metric (S4): AP
Overlap-based metric (56): cIDice

S Boundary-based metric (57): NSD
Localization criterion (S8):
Neuron segmentation: Mask loU

Instrument segmentation: Boundary loU

Assignment strategy (S9): Greedy (by Score)
Matching, set double assignments to FP

Per-class counting metric (S3): F Score

No multi-threshold metric (S4) needed
(predicted class score not available)

Overlap-based metric (S6): loU

No boundary-based metric (S7) needed
(no interest in structure boundaries)

Localization criterion (S8): IoR

Assignment strategy (S9): Matching via loR > 0.5
Set double assignments to FP

Per-class counting metric (S3):
FPPl@Sensitivity = 0.95

Multi-threshold metric (S4): FROC Score
Overlap-based metric (56): DSC
Boundary-based metric (S7: NSD
Localization criterion (S8): Boundary loU

Assignment strategy (S9): Greedy (by Score)
Matching, set double assignments to FP

FPPI False Positives Per Image

IoR Intersection over Reference

loU Intersection over Union

Mask loU Mask Intersection over Union
NSD Normalized Surface Distance

PSR Proper Scoring Rules

Fig. SN 4.4. Instantiation of the framework with recommendations for concrete biomedical instance
segmentation problems. (InS-1) Instance segmentation of neurons from the fruit fly in 3D multi-color light
microscopy images [67, 72, 101]. (InS-2) Surgical instrument instance segmentation in colonoscopy videos
[65]. (InS-3) Cell nuclei instance segmentation in time-lapse light microscopy for cell tracking [103]. (InS-4)
Multiple sclerosis (MS) lesion segmentation in multi-modal brain magnetic resonance imaging (MRI) images

[29, 57].
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Fig. SN 4.5. Instantiation of Subprocess S2 for the selection of multi-class counting metrics with
recommendations for concrete biomedical problems. Included use cases: (ImLC-1) Frame-based sperm
motility classification based on microscopy time-lapse video containing human spermatozoa [49]. (ImLC-2)
Disease classification in dermoscopic images [26, 104]. (ImLC-3) Classification of the overall autophagy
stage for a collection of cells [75, 121]. (ImLC-5) Identification of new lesions in brain multi-modal magnetic
resonance imaging (MRI) images of multiple sclerosis (MS) patients [29, 57]. (ImLC-6) Breast cancer classifi-
cation in mammography images [62]. (ImLC-7) Multi-class cardiac disease classification in MRI images [13].



150

Per-class counting

I metric requested

Check
FP1.1  Problem

z category?

Availability Zp Decision No decision rule applied

of predict- |, | Fp2:6 rule applied [,
ed class > >
scores?

Check Decision rule

Fp26 applied to Target value-
predicted Optimization- OR based
class scores? argmax-based (only for binary
problems)
No decision rule applied
Target value-based
(only for binary d
problems) -
o
Optimization- OR Cost-benefit-based
argmax-based (only for binary problems) ObD-3
Select Metric@(TargetMetric = smfufemy
Select from EC, NB TargetValue)
Metric@(TargetMetric =
TargetValue)

Check
—>| Fp1y Problem

[A eteson

Provided class
prevalences reflect
the population of
interest?

Select Select from
F‘ Score F‘ Score, PQ

Select Select from

LR+, Sensitivity LR+, Sensitivity, F, Score |

&

Add selected metric(s)
for each class

&

Add selected metric(s)
foar each class

Per-class counting metric
selection completed

Return to main process (Fig. 2)

Fig. SN 4.6. Instantiation of Subprocess S3 for the selection of per-class counting metrics with
recommendations for concrete biomedical problems. Included use cases: (ImLC-1) Frame-based sperm
motility classification from microscopy time-lapse video of human spermatozoa [49]. (ImLC-2) Disease
classification in dermoscopic images [26, 104]. (ImLC-3) Classification of the overall autophagy stage for
a collection of cells [75, 121]. (ImLC-4) Diagnostic standard plane classification in ultrasound images [9].
(ImLC-5) Identification of new lesions in brain multi-modal magnetic resonance imaging (MRI) images of
multiple sclerosis (MS) patients [29, 57]. (ImLC-6) Breast cancer classification in mammography images [62].
(ImLC-7) Multi-class cardiac disease classification in MRl images [13]. (ObD-1) Cell detection and tracking
during the autophagy process in time-lapse microscopy [75, 121]. (ObD-2) MS lesion detection in multi-modal
brain MRI images [29, 57]. (ObD-3) Polyp detection in colonoscopy videos with predefined sensitivity of
0.95 [12, 89]. (ObD-4) Mitosis detection in histopathology images [7]. (ObD-5) Lung nodule detection in
computed tomography (CT) images [3, 4, 25]. (InS-1) Instance segmentation of neurons from the fruit fly in
3D multi-color light microscopy images [67, 72, 101]. (InS-2) Surgical instrument instance segmentation in
colonoscopy videos [65]. (InS-3) Cell nuclei instance segmentation in time-lapse light microscopy with a
subsequent goal of cell tracking [103]. (InS-4) MS Lesion segmentation in multi-modal brain MRI images
[29, 57].
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Fig. SN 4.7. Instantiation of Subprocess S4 for the selection of multi-threshold metrics with rec-
ommendations for concrete biomedical problems. Included use cases: (ImLC-1) Frame-based sperm
motility classification from microscopy time-lapse video of human spermatozoa [49]. (ImLC-2) Disease
classification in dermoscopic images [26, 104]. (ImLC-3) Classification of the overall autophagy stage for
a collection of cells [75, 121]. (ImLC-4) Diagnostic standard plane classification in ultrasound images [9].
(ImLC-5) Identification of new lesions in brain multi-modal magnetic resonance imaging (MRI) images of
multiple sclerosis (MS) patients [29, 57]. (ImLC-6) Breast cancer classification in mammography images [62].
(ImLC-7) Multi-class cardiac disease classification in MRl images [13]. (ObD-1) Cell detection and tracking
during the autophagy process in time-lapse microscopy [75, 121]. (ObD-2) MS lesion detection in multi-modal
brain magnetic resonance imaging (MRI) images [29, 57]. (ObD-3) Polyp detection in colonoscopy videos with
predefined sensitivity of 0.95 [12, 89]. (ObD-5) Lung nodule detection in computed tomography (CT) images
[3, 4, 25]. (InS-1) Instance segmentation of neurons from the fruit fly in 3D multi-color light microscopy
images [67, 72, 101]. (InS-2) Surgical instrument instance segmentation in colonoscopy videos [65]. (InS-4)
MS lesion segmentation in multi-modal brain MRI images [29, 57].
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Fig. SN 4.8. Instantiation of Subprocess S5 for the selection of calibration metrics with recommen-
dations for concrete biomedical problems. Included use cases: (ImLC-1) Frame-based sperm motility
classification from microscopy time-lapse video of human spermatozoa [49]. (ImLC-2) Disease classification
in dermoscopic images [26, 104]. (ImLC-4) Diagnostic standard plane classification in ultrasound images [9].
(ImLC-5) Identification of new lesions in brain multi-modal magnetic resonance imaging (MRI) images of
multiple sclerosis (MS) patients [29, 57]. (ImLC-6) Breast cancer classification in mammography images [62].
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Fig. SN 4.9. Instantiation of Subprocess S6 for the selection of overlap-based metrics with recom-
mendations for concrete biomedical problems. (SemS-1) Embryo cell segmentation from microscopy
images [98]. (SemS-2) Liver segmentation in computed tomography (CT) images [1, 94]. (SemS-3) Labeling
of invasive/ non-invasive/ benign lesions in breast whole slide imaging (WSI) [2]. (SemS-4) Cortical structure
segmentation from 3D magnetic resonance imaging (MRI) images[19]. (SemS-5) Aneurysm segmentation in
time-of-flight magnetic resonance angiography (TOF-MRA) images [100]. (InS-1) Instance segmentation of
neurons from the fruit fly in 3D multi-color light microscopy images [67, 72, 101]. (InS-2) Surgical instrument
instance segmentation in colonoscopy videos [65]. (InS-3) Cell nuclei instance segmentation in time-lapse
light microscopy for cell tracking [103]. (InS-4) MS lesion segmentation in multi-modal brain MRI images
[29, 57].
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Fig. SN 4.10. Instantiation of Subprocess S7 for the selection of boundary-based metrics with rec-
ommendations for concrete biomedical problems. (SemS-1) Embryo segmentation from microscopy
images [98]. (SemS-2) Liver segmentation in computed tomography (CT) images [1, 94]. (SemS-3) Labeling
of invasive/non-invasive/benign lesions in breast whole slide imaging (WSI) [2]. (SemS-4) Cortical structure
segmentation from 3D magnetic resonance imaging (MRI) images[19]. (SemS-5) Aneurysm segmentation in
time-of-flight magnetic resonance angiography (TOF-MRA) images [100]. (InS-1) Instance segmentation of
neurons from the fruit fly in 3D multi-color light microscopy images [67, 72, 101]. (InS-2) Surgical instrument
instance segmentation in colonoscopy videos [65]. (InS-3) Cell nuclei instance segmentation in time-lapse

light microscopy for cell tracking [103]. (InS-4) MS lesion segmentation in multi-modal brain MRl images
[29, 57].



Supplementary Notes — Metrics Reloaded

=

Exact outline

155

Localization criterion > 3 Object detection (ObL
requested =3 Instance segmentation (In:

P o Repeat for
¢ cachclass

Check N
FP1.1  Problem

z category? Decision guide

Select from
Boundary loU,
Mask loU, IoR,

Custom criterion

Check G anularity of

provided reference

annotations?

¥

Check
FP2.4

Desired

granularity of
localization?

Only Rough
position < > outline
Select from Select

Box/Approx loU

Center Distance,
Mask loU > 0, Point
inside Mask/Approx

Select from Select
Center Distance,
Point inside Box/Approx

%) —Only position

Rough
outline

Select
Center Distance

Check  pesired

" granularity of
localization?

Only
position

Rough
outline

Box/Approx loU

&>

it

Choose selected localization
criterion for current class

W

Choose localization threshold |------ Decision guide 8.3

2 T

Localization criterion
selection completed

Return to main process (Fig. 2)

Fig. SN 4.11. Instantiation of Subprocess S8 for the selection of localization criteria with recommen-
dations for concrete biomedical problems. (ObD-1) Cell detection and tracking during the autophagy
process in time-lapse microscopy [75, 121]. (ObD-2) multiple sclerosis (MS) lesion detection in multi-modal
brain magnetic resonance imaging (MRI) images [29, 57]. (ObD-3) Polyp detection in colonoscopy videos
with predefined sensitivity of 0.9 [12, 89]. (ObD-4) Mitosis detection in histopathology images [7]. (ObD-5)
Lung nodule detection in computed tomography (CT) images [3, 4, 25]. (InS-1) Instance segmentation of
neurons from the fruit fly in 3D multi-color light microscopy images [67, 72, 101]. (InS-2) Surgical instrument
instance segmentation in colonoscopy videos [65]. (InS-3) Cell nuclei instance segmentation in time-lapse
light microscopy for cell tracking [103]. (InS-4) MS lesion segmentation in multi-modal brain MRI images

[29, 57].
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Fig. SN 4.12. Instantiation of Subprocess S9 for the selection of assignment strategies with recommen-
dations for concrete biomedical problems. (ObD-1) Cell detection and tracking during the autophagy
process in time-lapse microscopy [75, 121]. (ObD-2) multiple sclerosis (MS) Lesion detection in multi-modal
brain magnetic resonance imaging (MRI) images [29, 57]. (ObD-3) Polyp detection in colonoscopy videos
with predefined sensitivity of 0.95 [12, 89]. (ObD-4) Mitosis detection in histopathology images [7]. (ObD-5)
Lung nodule detection in computed tomography (CT) images [3, 4, 25]. (InS-1) Instance segmentation of
neurons from the fruit fly in 3D multi-color light microscopy images [67, 72, 101]. (InS-2) Surgical instrument
instance segmentation in colonoscopy videos [65]. (InS-3) Cell nuclei instance segmentation in time-lapse
light microscopy for cell tracking [103]. (InS-4) MS lesion segmentation in multi-modal brain MRI images

[29, 57].
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SUPPL. NOTE5 TERMINOLOGY AND NOTATION

5.1 Symbol References

Symbol Explanation

O Start of a process

o End of a process

Read general
instructions Task to be performed by the user
(App. B.1)

Select
multi-class
counting metric Subprocess

Task with reference to problem fingerprint

Check  Possibility of
{E@R)\ overlapping or Exclusion criterion
z touching target

structures.

CANDIDATES:

DsC
cIDice
F, Score
IoU

Select q e q
A metric/criterion/strategy is selected

Exclusive gateway: An exclusive gateway (or XOR-gateway) allows the user to make a decision.
: It can have multiple outgoing sequence flows. It is used when several conditions are mutually

Pool of options the user can choose from in the respective step

exclusive and only one selection is possible.

An exclusive gateway is also used to join multiple incoming flows together and improve the
readability of the diagram.

Group

ABBREVIATIONS
BA Balanced Accuracy Notes
MCC Matthews Correlation Coefficient

]
I Decision guide 2.1 Further information

R fe .
Lot ) The respective step needs to be repeated for each class

Fig. SN 5.1. Overview of symbols used in the process diagrams. The notation used in the process
diagrams originates from Business Process Model and Notation (BPMN).
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5.2 Expected formats of reference and algorithm output

Image-level Classification: The metric mapping expects the following format for image-level
classification with C classes: For each image I there is a reference annotation y; that either
indicates the class for the image (y; € {1, ...,C}), or, in the case of multi-label classification,
indicates presence for each class (y; € {0, 1}€). If the algorithm does not provide predicted
class scores (FP5.1 = FALSE), the algorithm output should be provided in an identical format.
Otherwise, for each image I, the continuous class scores for each of the classes (f; € [0, l]C),
indicating the predicted class probability, should be provided.

Semantic Segmentation We assume the reference annotation and the algorithm output to
be in the same coordinate system with identical spacing. The metric mapping expects the
following format for semantic segmentation with C classes: For each pixel P there is a
reference annotation yp that either assigns a single class to P (yp € {1,...,C}) or, in case
of possible multiple labels per pixel, indicates assignment for each class (yp € {0, 1}€). As
for the algorithm output, for each pixel P there is expected to be either a single prediction
(@p € {1,...,C}) or, in case of multiple possible labels per pixel, a prediction for each class
(Gp € {0,1}°). Some segmentation metrics require structure boundaries. For each class,
boundaries are expected to be provided as a list of boundary pixels for both the reference
and the prediction.

Object detection: The metric mapping expects the following format for object detection with
C classes: For each object O the reference consists of a tuple (yo, lo), where yo € {1,..,C}
indicates the class of the object and lp is some location information (box, center point, radius,
etc.). The algorithm output for an object prediction O is expected to comprise a tuple (7o, Io)
as well, where 7o indicates a single predicted class (§o € {1, .., C}) optionally accompanied
by an associated predicted class score (¢p € [0,1]). Note that methods usually provide a
predicted class score for the background class as well, but this score is typically discarded
in validation as there are no "background objects" [39]. See FP5.1 in case no predicted class
score is provided. lo is expected to provide location information about the prediction in a
similar format as the reference (box, center point, radius, etc.). In case reference objects are
represented by rough outlines (FP4.3) we assume that the chosen shapes (e.g., bounding
box or ellipsoid) represent the underlying object adequately. Particular attention needs to
be given to this aspect if objects feature a tubular shape (FP3.3) or can potentially appear
disconnected (FP3.6).

Instance Segmentation The metric mapping expects the following format for instance seg-
mentation with C classes: For each object O the reference consists of a tuple (yo, mop), where
yo € {1,..,C} indicates the class of the object and mp € {0, 1}™W is a binary pixel map
per instance matching the size of the image (height H and width W) and indicating pixel-
wise location. The algorithm output for an object prediction O is expected to comprise a
tuple (Jo, o), where, similarly to object detection, jjo indicates a single predicted class
(Jo € {1, ..,C}) optionally accompanied by an associated predicted class score (¢p € [0, 1]).
mo denotes a binary pixel map per instance analogously to mo. For both the reference and the
predictions, structure boundaries should be provided as a list of boundary pixels separately
for each instance. Note that annotations from semantic segmentation (not distinguishing
instances of the same class) can be transformed to the instance segmentation format via
connected component analysis (in case of purely non-touching and connected instances).
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In case the provided reference annotations deviate from the expected format, matching can be
achieved via various measures (e.g., aggregation of pixel-level reference to required image-level
reference).

5.3 Acronyms

Al artificial intelligence

AP Average Precision

ASSD Average Symmetric Surface Distance

AUC Area under the curve

AUROC Area under the Receiver Operating Characteristic Curve
BA Balanced Accuracy

BM Bookmaker Informedness

BPMN Business Process Model and Notation

BS Brier Score

BSS Brier Skill Score

CE Calibration Error

CK Cohen’s Kappa

clDice centerline Dice Similarity Coefficient

CT computed tomography

CWCE Class-wise Calibration Error

DSC Dice Similarity Coefficient

EC Expected Cost

ECE Expected Calibration Error

ECEKXPE Expected Calibration Error Kernel Density Estimate
ECN normalized EC

EQUATOR Enhancing the QUAlity and Transparency Of health Research
ER Error Rate

FN False Negative

FP False Positive

FPPI False Positives per Image

FDR False Discovery Rate

FOR False Omission Rate

FROC Free-Response Receiver Operating Characteristic
HD Hausdorff Distance

HD95 Hausdorff Distance 95th Percentile

ImLC Image-level Classification

InS Instance Segmentation

IoU Intersection over Union

IoR Intersection over Reference

J Youden Index

KCE Kernel Calibration Error

LR+ Positive Likelihood Ratio

mAP Mean Average Precision

MASD Mean Average Surface Distance

MCC Matthews Correlation Coefficient

MICCAI Medical Image Computing and Computer Assisted Interventions
MK Markedness
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ML machine learning

MONAI Medical Open Network for Artificial Intelligence
MRI magnetic resonance imaging

MS multiple sclerosis

NaN ’Not a Number’

NB Net Benefit

NLL Negative Log Likelihood

NPV Negative Predictive Value

NSD Normalized Surface Distance

ObD Object Detection

O:E ratio Observed:Expected ratio

PPV Positive Predictive Value

PQ Panoptic Quality

PHI Protected Health Information

PR Precision-Recall

PSR Proper Scoring Rule

RBS Root Brier Score

RI Rand Index

ROC Receiver Operating Characteristic

ROI Region of Interest

SemS Semantic Segmentation

TN True Negative

TNR True Negative Rate

TOF-MRA time-of-flight magnetic resonance angiography
TP True Positive

TPR True Positive Rate

Vol Variation of Information

WCK Weighted Cohen’s Kappa

WSI whole slide imaging

X!" Percentile HD X‘" Percentile Hausdorff Distance
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5.4 Glossary

¢ Bounding box: A bounding box is a rectangle, typically the smallest possible, drawn around
and completely surrounding an object to be detected.

e Calibration plot: A calibration plot, also referred to as reliability diagram, is a visualization
of the calibration ability of a model’s outputs (see e.g., [44]). Specifically, the diagram allows
to diagnose a model’s general bias towards "overconfident” or "underconfident" predictions
by visualizing the deviation from perfect calibration (diagonal line in the plot) for different
output scores. The diagram also acts as the basis for further diagnostic measurements such
as the calibration slope.

e Challenge: A challenge is an international competition, commonly hosted by individual
researchers, an institute, or a professional society, that aims to comparatively assess the
performance of competing algorithms on an identical data set, and thus serves to validate
them. This validation is a crucial step towards the translation of an algorithm into practice.

e Classification task: A classification task is the task of giving categorical labels to an image
or parts thereof. We distinguish classification at different scales, e.g., at image level, pixel
level or object level.

e Confidence: See Predicted class scores.

¢ Continuous class scores: See Predicted class scores.

e Decision rule: A rule transforming continuous predicted class scores into discrete classifi-
cation decisions. This rule amounts to setting a simple cutoff value in binary classification
problems but is more complex to define in multi-class problems (for more information see
Suppl. Note 1.1).

e Evaluation: See Validation.

e Hierarchical structure of classes/data: A hierarchical structure of classes/data is present
when classes or data are dependent on each other or paired, e.g., when data have been derived
from the same patient, or from the same center. It requires interpretation and statistical
efforts different from those suitable for independent data.

e Hyperparameter: A hyperparameter is a parameter whose value is optimized to control
the training of an algorithm. In contrast to other parameters, it is not derived through the
training process itself, but rather set before the training procedure.

e Inference: In the context of ML, inference denotes the processing of data by an algorithm to
produce the desired output.

¢ Instance: An instance refers to a dedicated object, structure or entity in an image, such as
an individual cell, tumor or medical instrument.

o Image-level classification: Image-level classification is the assignment of one or multiple
category labels to an entire image, as detailed in Suppl. Note 1.1.

¢ Instance segmentation: Detection and delineation of each distinct object of a particular
class in an image, as detailed in Suppl. Note 1.1.

¢ Instantiation: Instantiation here refers to the act of creating a specific application case of a
general principle/framework.

e Macro/micro averaging: Macro averaging is the process of computing a metric (e.g., Sensi-
tivity) for each class and subsequently averaging the metric scores. Micro averaging is the
process of aggregating an average metric score over all classes.

e Meta-information: Meta-information refers to data about an image that is not explicitly
contained within the image, e.g., Protected Health Information (PHI) data about the patient
in radiology images.
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Metric: Metrics are the measures according to which performance of algorithms is quantified
and validated. Depending on the domain-specific validation goal and property of interest, we
distinguish between different types of metrics, e.g., reference-based vs. non-reference based
(see Reference/Reference-based metrics). Metrics can further be subdivided into different
families based on their mathematical properties.

Metric@(TargetMetric = TargetValue): (e.g., Specificity@(Sensitivity = 0.95)): Once a
cutoff value for the predicted class probabilities has been set in such a way that the target
metric value is achieved (here: target metric Sensitivity with a target value of 0.95), other
metric values (here: Specificity) are obtained from the corresponding fixed confusion matrix.
In the example, this yields the Specificity at the predefined Sensitivity level.

Object detection: Detection and localization of structures of one or multiple categories in
an image, as detailed in Suppl. Note 1.1.

(Output) Calibration: In application scenarios that involve interpreting the raw algorithm
output (specifically the predicted class scores), output calibration can be used to obtain a
reliable measure of confidence associated with the decision (see description of FP2.7 in Suppl.
Note 1.2).

Precision: Precision is a term used differently in different scientific communities. In the
medical community, for example, it commonly refers to the confidence of an output. Here,
we use the term to denote the Positive Predictive Value (PPV).

Predicted class scores: Modern neural network-based approaches usually output pre-
dicted class scores (also referred to as continuous class scores, confidence scores or pseudo-
probabilities) between 0 and 1 for every image/object/pixel and class, indicating the probability
of the image/object/pixel belonging to a specific class.

Prediction: Prediction refers to the output of an algorithm. It is not used in the temporal
sense in this paper.

Problem category: Biomedical image analysis problems can be subdivided into problem
categories according to the procedures performed. The category a problem falls into informs
the appropriate choice of metrics. In this paper, we focus on four problem categories: Image-
level classification, Semantic Segmentation, Object Detection, and Instance Segmentation.
Pseudo-probabilities: See Predicted class scores.

Reference/Reference-based metrics: We assume that the validation process is based on
the comparison of the algorithm output and a reference (sometimes called gold standard),
which is assumed to be close or equal to the correct result — the (often forever unknown)
ground truth. In terms of metrics, we distinguish between reference-based metrics [53], which
use the image-based reference, and non-reference-based metrics that assess complementary
properties, such as runtime, memory consumption, or carbon footprint.

Reliability diagram: See calibration plot.

Semantic segmentation: Assignment of one or multiple category labels to each pixel in an
image, as detailed in Suppl. Note 1.1.

Structure instance: See Instance.

Training/Test case: The data sets used in the process of algorithm development and val-
idation comprise training/test cases. A case refers to the data (typically an n-dimensional
image, possibly enhanced with clinical context information) that is required for an algorithm
to produce one result (e.g., a segmentation or classification). A training case refers to a data
set that includes reference annotations and is thus used for training an algorithm. A test case
refers to a data set that is used for performance assessment
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e Type 1 and Type 2 error: A type 1 error is a False Positive (FP) result, e.g., a false detection
of something that is not present. A type 2 error is a False Negative (FN) result, e.g., a non-
detection of something that is present.

e Validation: Validation is the process of assessing that the validated algorithm is effectively
doing what it is expected to do and what it was developed for, for example that a segmentation
method is actually segmenting. Evaluation is the process of assessing that the algorithm is
valuable, i.e., that it brings quantifiable added value for the clinical user in a dedicated clinical
context [51].
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