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Supplementary Note 1: Mathematical derivations and proofs

1.1 Proof of correlated spectral sampling

Correlated spectral sampling generates a set of timeseries xi[t] with arbitrary frequency spec-

tra |Xi|2 and arbitrary spatial structure given by the covariance matrix, C. To show that

{x1[t], . . . , xN [t]} have the desired spatial structure, we show that for any i, j, E[corr(xi[t], xj [t])] =

Ci,j . As an intermediate step, we show that E[corr(xi[t], xj [t])] = corr(<(Xi[k]),<(Xj [k]))).

Let xi[t] and xj [t] be two of the timeseries resulting from this algorithm. Note that, for

large N , corr(xi[t], xj [t]) = cov(xi[t], xj [t])/(var(xi[t]) · var(xj [t]))1/2, where var and cov are

the empirical estimates of the variance and covariance, respectively. We �rst seek to expand

cov(xi[t], xj [t]), var(xi[t]), and var(xj [t]). Without loss of generality, we may assume that xi[t]

and xj [t] have a mean of 0, as their mean does not in�uence the spatial or temporal structure

of the set of timeseries, so we can estimate cov(xi[t], xj [t]) = 1/N
∑

t xi[t]xj [t].

Recall thatXi[k] is the discrete Fourier transform F(xi[t]). We denote the even and odd com-

ponents xei [t] = F−1(<(X[k]) and xoi [t] = F−1(i=(X[k]). Thus, our estimator of the covariance

can be written as

cov(xi[t], xj [t]) = 1/N

(∑
t

xei [t]x
e
j [t] +

∑
t

xei [t]x
o
j [t] +

∑
t

xoi [t]x
e
j [t] +

∑
t

xoi [t]x
o
j [t]

)
.

For the even part of the function,
∑

t x
e
i [t]x

e
j [t] =

∑
t x

e
i [t]x

e
j [t], and by Parseval's theorem,

this equals 1/N
∑

k <(Xi[k])<(Xj [k]). This can be written as 1/N
∑

k <(Xi[k])<(Xj [k]) =

cov(Xi[k], Xj [k]). By the same logic,
∑

t x
o
i [t]x

o
j [t] = cov(<(Xi[k]),<(Xj [k])).

The real and imaginary components of Xi[k] are independent by construction, which means

E[
∑

t x
e
i [t]x

o
j [t]] = 0 and E[

∑
t x

o
i [t]x

e
j [t]] = 0. Thus, we can rewrite the covariance estimator as

E[cov(xi, xj)] = 1/N(cov(<(Xi[k]),<(Xj [k])) + 0 + 0 + cov(<(Xi[k]),<(Xj [k])))

= 2 · cov(<(Xi[k]),<(Xj [k]))/N.

This gives E[var(xi)] = E[cov(xi, xi)] = 2 · var(<(Xi[k]))/N , so

E[corr(xi[k], xj [k])] =
2 · cov(<(Xi[k]),<(Xj [k]))/N√

2 · var(<(Xi[k]))/N ·
√

2 · var(<(Xj [k]))/N

=
cov(<(Xi[k]),<(Xj [k]))√

var(<(Xi[k])) ·
√
var(<(Xj [k])

= corr(<(Xi[k]),<(Xj [k])).
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A similar procedure applies to the imaginary component of Xi[k]. �

We now show that E[corr(<(Xi[k]),<(Xj [k]))] = Ci,j . We note that, by construction, aRi [k]

and |Xi[k]|2 are independent, and that E(aRi [k]) = 0, meaning E[<(Xi[k])] = E[|Xi[k]|aRi [k])] =

E[|Xi[k]|] · E[aRi [k]] = 0. This allows us to expand as before, giving

E[corr(<(Xi[k]),<(Xj [k]))] =

E

[∑
k

(|Xi[k]||Xj [k]|)aRi [k]aRj [k]

]

E

[∑
k

(|Xi[k]|aRi [k])2

]1/2
· E

[∑
k

(|Xj [k]|aRj [k])2

]1/2

Because aRi [k] and aRj [k] have mean 0 and variance 1 and have correlation equal to approxi-

mately Σi,j , the product a
R
i [k]aRj [k] has an expected value of Σi,j . By construction, (aRi [k]aRj [k])

and (|Xi[k]||Xj [k]|) are independent, so

E

[∑
k

|Xi[k]||Xj [k]|aRi [k]aRj [k]

]
= Σi,j · E

[∑
k

|Xi[k]||Xj [k]|

]
= Σi,j ·

∑
k

|Xi[k]||Xj [k]|

When i = j, Ci,j = 1. By the same logic,

E

[∑
k

(|Xi[k]|aRi [k])2

]1/2
· E

[∑
k

(|Xj [k]|aRj [k])2

]1/2
=

(∑
k

|Xi[k]|2
)1/2

·

(∑
k

|Xj [k]|2
)1/2

,

and so

E[corr(xi, xj)] = Σi,j ·

∑
k

|Xi[k]||Xj [k]|

(∑
k

|Xi[k]|2
)1/2

·

(∑
k

|Xj [k]|2
)1/2

= Σi,j · sim(|Xi[k]|, |Xj [k]|)

= Ci,j . �

1.2 Relationship between TA-∆1 and power spectrum

Suppose we have a �nite timeseries x[t] with discrete Fourier transform X[k]. We claim that its

TA-∆1 is

corr(x[t], x[t+ 1]) =
1∑N−1

k=1 |X[k]|2

N−1∑
k=1

|X[k]|2 cos(2πk/N).

Let ACF (x)[τ ] denote the autocovariance of X at lag τ , i.e. cov(x[t], x[t + τ ]). By the

Wiener-Khinchin theorem, ACF (x)[τ ] is the inverse Fourier transform of an estimate of the
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power spectrum, |X[k]|2. Without loss of generality, let us suppose x[t] has zero mean, and

hence, X[0] = 0, so that

ACF (x)[τ ] =
N−1∑
k=1

|X[k]|2ei2πkτ/N .

Because x[t] is real, ei2πkτ/N = cos(2πkτ/N). Making the approximation that var(x[t]) =

var(x[t+ 1]), we have

corr(x[t], x[t+ 1]) =
cov(x[t], x[t+ 1])√

var(x[t]) · var(x[t+ 1])

=
ACF(x)[1]∑N−1
k=1 |X[t]|2

=
1∑N−1

k=1 |X[t]|2

N−1∑
k=1

|X[k]|2 cos(2πk/N). �

1.3 Relationship between TA-∆1 and noisy power spectrum

Additionally, we would like to know how the addition of white noise to a power spectrum will

change the TA-∆1. We prove that, for an �nite timeseries y[t] = x[t]+w[t] where w[t] ∼ N(0, σ)

of length N ,

E[corr(y[t], y[t+ 1])] =
1

Nσ2 +
∑N−1

k=1 |X[k]|2

N−1∑
k=1

|X[k]|2 cos(2πk/N).

The Fourier transform is linear, so we can write

|Y [k]|2 = |X[k] +W [k]|2

= |X[k]|2 + |W [k]|2 + 2|X[k]||W [k]| cos(∠X[k]− ∠W [k]).

Since w[t] is white noise, W [k] has the properties E[|W [k]|] = σ
√
N and ∠W [k] ∼ U(0, 2π).

Thus, E[cos(∠X[t]− ∠W [t])] = 0, so

E[|Y [k]|2] = |X[k]|2 + E[|W [k]|2] + 2|X[k]||W [k]|E[cos(∠X[k]− ∠W [k])]

= |X[k]|2 + σ2N + 0.
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Applying our result from Supplement 1.2, we see that

E[corr(y[t], y[t+ 1])] =
1

Nσ2 +
∑N−1

k=1 |X[k]|2

N−1∑
k=1

(|X[k]|2 +Nσ2) cos(2πk/N)

=
1

Nσ2 +
∑N−1

k=1 |X[k]|2
·

[
Nσ2

N−1∑
n=1

cos(2πk/N) +
N−1∑
n=1

|X[k]|2cos(2πn/N)

]

= 0 +
1

Nσ2 +
∑N−1

k=1 |X[k]|2

N−1∑
k=1

|X[k]|2 cos(2πk/N). �

It directly follows that, for a given E[corr(y[t], y[t+ 1])] = φ, we can solve this equation for

σ2 as

σ2 =
1

N2φ

N−1∑
k=1

|X[k]|2 (cos(2πk/N)− φ)

which is equivalent to Equation 3.

1.4 Proof of infeasibility of parameter-free �tting of the spatiotemporal model

In theory, it is possible to �t the spatiotemporal model in a parameter-free manner. In other

words, the SA-λ, SA-∞, and TA-∆1 statistics can all be measured from the data, and therefore,

it should be possible to choose SA-λgen and SA-∞gen, with arbitrary power spectra estimators

|Xi[k]|2 for region i, such that the spatiotemporal model produces timeseries which have a given

SA-λ, SA-∞, and TA-∆1. We describe the mathematical derivation of a procedure for selecting

SA-λ and SA-∞ using this logic, and show why this procedure is infeasible in practice.

As a reminder, the spatiotemporal model has four steps: (1) use SA-λgen and SA-∞gen in

conjunction with the nodal Euclidean distances Di,j to generate a spatial correlation matrix

C; (2) construct a power spectrum corresponding to high-pass �ltered Brownian (1/f2) noise;

(3) construct timeseries x1, . . . , xN for brain regions 1, . . . , N using correlated spectral sampling

such that corr(xi, xj) = Ci,j and all timeseries have the power spectrum speci�ed in step (2); (4)

for each time point t in each timeseries xi[t], add white noise wi[t] ∼ N(0, σ2i ), with σ
2
i chosen

according to Equation 3 such that xi[t] has some desired TA-∆1.

To perform the derivation, suppose that we have two timeseries xi and xj , i 6= j, such that

x′i[t] = xi[t]+wi[t], where xi[t] has some power spectrum |Xi[t]|2 for all i and wi[t] ∼ N(0, σ2i ) for

given σ2i . Let the correlation corr(xi, xj) = Ci,j for some unknown Ci,j . We derive an equation

to select Ci,j such that E(corr(x′i, x
′
j)) = C ′i,j for some desired C ′i,j

To begin, we rewrite

4



corr(xi, xj) =
cov(xi, xj)√
var(xi)var(xj)

corr(x′i, x
′
j) =

cov(x′i, x
′
j)√

var(x′i)var(x
′
j)

Since E(cov(xi + wi, xj + wj)) = cov(xi, xj) for i 6= j, and E(var(xi + wi)) = var(xi) + σ2i ,

we can write

E(corr(x′i, x
′
j)) =

cov(xi, xj)√
(var(xi) + σ2i )(var(xj) + σ2j )

=
corr(xi, xj)

√
var(xi)var(xj)√

(var(xi) + σ2i )(var(xj) + σ2j )

=
corr(xi, xj)√(

1 +
σ2
i

var(xi)

)(
1 +

σ2
j

var(xj)

)

The variance of a timeseries xi can be estimated by its power spectrum using Parseval's

theorem, such that var(xi) =
∑N/2

k=1 |Xi[k]|2/(N/2)2. Thus, substituting C ′i,j = corr(x′i, x
′
j) and

Ci,j = corr(xi, xj) and rearranging terms, we have

Ci,j = C ′i,j

√√√√(1 +
σ2i

var(xi)

)(
1 +

σ2j
var(xj)

)

= C ′i,j

√√√√(1 +
σ2i (N/2)2∑N/2
k=1 |Xi[k]|2

)(
1 +

σ2j (N/2)2∑N/2
k=1 |Xj [k]|2

)
�

Thus, we have derived a Ci,j which can be used in our procedure to produce timeseries with

correlation C ′i,j .

While mathematically interesting, the derivation is not useful in practice. Because we are

computing a correlation, Ci,j has an upper bound of 1, thereby bounding the potential values

of C ′i,j which can be produced. In practice this constraint is di�cult to satisfy. In our data,

σ2i can take on values up to an order of magnitude larger than var(xi), meaning that only very

small values of C ′i,j (approximately C ′i,j < 0.1) can satisfy the constraint. Additionally, in the
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analysis of neural data, we consider more than two timeseries. This means that C must be

a correlation matrix, and thus C must be positive semi-de�nite, or equivalently, have all non-

negative eigenvalues. In our data, approximately 25% of eigenvalues are negative after applying

this procedure, showing that it is unlikely to be useful in practice.

1.5 Relationship between temporal autocorrelation and variance in correlation

Previous work established that temporal autocorrelation (TA) increases the variance of the

Pearson correlation between pairs of timeseries1�4. Here, we quanti�ed TA using TA-∆1, the

TA at a single lag. We did this with the understanding that TA-∆1 correlates with TA at higher

lags, or with an underlying long memory process (Figure ED3). Since higher lag TA may have

an impact on the variance, it is insu�cient to solely measure the e�ect of TA-∆1 on the variance

in Pearson correlation. A more general approach is to quantify the e�ect of the entire power

spectrum on the variance in Pearson correlation (Supplement 1.2). The power spectrum is a full-

rank linear transformation of the autocorrelation function, and therefore, is a non-parametric

analysis of TA for both short and long memory dynamics. Thus, we seek to understand the

impact of an arbitrary power spectrum on the variance in Pearson correlation of two timeseries.

We focus on a speci�c case of particular importance by analyzing two independent time-

series with identical power spectra and phases distributed randomly around the unit circle. We

show that the variance of the Pearson correlation between these two timeseries increases as the

uniformity of the power spectrum decreases. In other words, Pearson correlation is lowest for

a timeseries of iid white noise, which by de�nition has no TA. It increases as the power spec-

trum deviates from uniformity, and is highest for spectra consisting of a single frequency, i.e. a

sinusoid.

The variance of a timeseries is closely connected with the power spectrum. Consider the real,

discrete, �nite timeseries x1[t] and x2[t] of length N , with Fourier transform X1[k] and X2[k]

and variance σ21 and σ
2
2. Without loss of generality, assume x1[t] and x2[t] have mean 0. We can

estimate the covariance for large N as

cov(x1, x2) =
1

N

N∑
t=0

x1[t]x2[t].

Then, by Parseval's theorem, we can write the covariance as

cov(x1[t], x2[t]) =
1

N2

N∑
k=1

|X1[k]X2[k]|.
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Therefore, by noting that the variance of a timeseries is simply self-covariance, the empirical

Pearson correlation corr can be written as

corr(x1[t], x2[t]) =
1
N2

∑
k |X1[k]X2[k]|√

1
N2

∑
k |X1[k]|2

√
1
N2

∑
k |X2[k]|2

=
1

σ1σ2N2

∑
k

|X1[k]X2[k]|

=
1

σ1σ2N2

N∑
k=1

|X1[k]||X2[k]|cos(θk).

Note that the quantities |X1[k]|2 and |X2[k]|2 are estimates of the power spectra of x1[t] and

x2[t]. Since we assume the angles θk are selected randomly from the uniform distribution from

[0, 2π], we can easily compute

E (corr(x1[t], x2[t])) = 0

var (corr(x1[t], x2[t])) =
1

2σ1σ2

N∑
k=1

√
|X1[k]|2|X2[k]|2 (1)

The variance given in Equation 1 is maximized at 1/2σ1σ2 when both power spectra have

unit spikes at the same location, corresponding to sinusoids with identical frequency. Since we

assume that x1[t] and x2[t] have identical power spectra, i.e. |X1[k]|2 = |X2[k]|2, Equation

1 is minimized at 1/2σ1σ2N when x1[t] and x2[t] are white noise, i.e. |X1[k]| = 1/N . (If we

had not assumed the power spectra were identical, the variance would be minimized at zero

for any non-overlapping power spectra, indicating that it is impossible for these timeseries to

show a non-zero Pearson correlation.) Hence, any deviation from a uniformly-distributed power

spectrum, as occurs in temporally-autocorrelated timeseries, will increase the variance in the

Pearson correlation.
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Supplementary Note 2: Economic clustering model

2.1 Overview

Our analysis focused on models at the level of time series. However, another popular type

of generative model simulates network formation by directly adding edges to a set of nodes.

We refer to these models as �generative graph models� to distinguish them from timeseries-

based generative models. Generative graph models have been especially useful in modeling

real-world networks5,6. For example, a generative graph model can capture the property that

nodes which are already well-connected are likely to gain even more connections, i.e., that the

�rich get richer�7. It e�ectively models the generative process of real-world networks such as

social networks, where people with a large number of friends are more likely to gain new friends

over time. By simulating how real networks are formed, generative graph models reveal the

mechanisms that drive the high-level structure of those networks. For this reason, these models

have quickly become ubiquitous in the natural and social sciences.

Brain networks share many properties with other complex biological and physical systems, so

they can be analyzed using similar graph-theoretic methods. Recently, generative graph models

have been used in neuroscience to model the human connectome8�10, opening up new avenues of

analysis of both functional11,12 and structural13�17 connectivity data. One reason why generative

graph models are particularly attractive in the �eld is that they appear, at �rst glance, to model

the trade-o� between wiring cost and topological e�ciency in brain networks18. In particular,

generative graph models that construct networks based on the physical distance between brain

regions and a few basic topological properties of the network have been especially e�ective11,15.

In addition, generative graph models are relatively simple to construct and conceptualize, and

they can be analyzed using computational tools from network science and graph theory.

Despite their popularity and conceptual simplicity, most generative graph models are re-

moved from the underlying biological processes that occur in the brain. This is because the

generative process used to construct those models is starkly di�erent from the actual pipeline

used to extract connectivity data from brain signals. Nevertheless, these models, such as the

economical clustering (EC) model11, are exceedingly e�ective at explaining the topology of brain

connectivity.

In order to explain this e�ectiveness using a more biologically-motivated timeseries-based

generative process, we compare the EC model from Ref.11 directly to our spatiotemporal model.
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The EC model is controlled by two parameters: one controls the connection probability with

respect to distance, and the other with respect to homophily (i.e. shared neighbors, or cluster-

ing) between nodes11. There are a few apparent symmetries between the EC model and our

spatiotemporal model. Both models produce realistic synthetic networks, and they are each

driven by two features, one of which relates connectivity with physical distance. These initial

similarities suggest the possibility that the second parameter in each model may also capture

similar underlying properties. In fact, our �ndings show that both pairs of parameters in the two

models are indeed tightly correlated, which opens up a new biologically-motivated interpretation

of the generative graph model.

2.2 Economic clustering model

We compared the spatiotemporal model to the �economic clustering� (EC) model11, which was

chosen because of its good performance and its apparent parallels to our timeseries-based model.

We brie�y summarize the model here. We constructed a minimum spanning tree of the mean FC

matrix using Kruskal's algorithm19 to ensure that our procedure does not produce disconnected

components. Then, edges were added one at a time according to a probabilistic wiring rule,

until the number of edges in the model network and observed network were equal. The relative

probability of adding a connection between node u and node v was determined by:

P (u, v) ∝ Dη
u,v ×K(u, v)γ

where Du,v is the Euclidean distance between nodes u and v, K(u, v) is the number of shared

neighbors between nodes u and v, described below, and η (the distance parameter) and γ (the

clustering parameter) are free parameters. The exponent η controls the extent to which distance

impacts connection probability. For highly negative η, short-range connections are much more

likely; for values of η close to 0, all connections regardless of distance are almost equally likely

to be added.

K(u, v) represents the number of shared neighbors between nodes u and v, or equivalently,

the number of nodes that are connected to both node u and node v. We can compute this as

K(u, v) =
∑

w AuwAwv where A is the adjacency matrix of the graph, i.e. Aij = 1 if nodes i and

j are connected, and Aij = 0 otherwise. Note that K(u, v) must be recomputed at each iteration

of the algorithm, since the number of shared neighbors can change after an edge is added. The

exponent γ controls the extent to which the number of shared neighbors impacts connection

probability. For γ < 0, nodes with few shared neighbors are more likely to be connected; for
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γ > 0, nodes with many shared neighbors are more likely to be connected.

Note that this procedure does not generate networks which vary smoothly with the parame-

ters η and γ. In other words, for a given seed, a small change in either of these parameters could

cause major changes in the topology of the generated graph. This occurs because each edge

addition causes a cascading change in connection probabilities, and thus, even slight di�erences

in the �rst edges added will have a large impact on the generated graph.

It has been shown that generative graph models which only specify connection probability as

a function of distance do not capture features such as small-worldness, modularity, and degree

distribution of real brain networks; rather, a second parameter is necessary to emulate these

topological properties11. These �ndings are consistent with the results of our spatiotemporal

model. In particular, our spatiotemporal model has two main distinguishing features: spatial

autocorrelation and temporal autocorrelation. This apparent symmetry between the spatiotem-

poral model and the EC model motivates our comparison of the underlying parameters across

the two models.

2.3 Fitting the spatiotemporal model to the EC model

To determine whether the parameters of the spatiotemporal model and the EC model are corre-

lated, we developed a �tting procedure linking the two models. Because the model is determined

by probabilistic wiring rules, a small perturbation in a model parameter may cause a large change

in graph structure. Thus, the highly stochastic nature of the EC model produces a rugged op-

timization landscape, which prevents us from �tting the parameters η and γ using conventional

optimization algorithms. In order to circumvent this problem, we instead �t the spatiotemporal

model to instances of the EC model, since the spatiotemporal model has a smooth optimization

landscape.

Overall, the procedure consists of the following steps. For a given pair of (η, γ), we generate

ten instances of the EC model. Then, we �t the spatiotemporal model to the population of

simulated EC models and record the optimal parameters SA-λ and TA-∆1. We repeat these

steps over a predetermined range of η and γ values that generally produce reasonable networks.

On a high level, this procedure returns the parameters SA-λ and TA-∆1 of the spatiotemporal

model that �t best to the EC model determined by given values of η and γ. This allows us to

conduct further analyses to reveal how changes in the EC model parameters a�ect changes in the

corresponding spatiotemporal model parameters, thereby linking the two models for comparison.

In order to perform this �tting procedure, we need to establish a similarity metric between
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the multiple instances of the EC model and the single instance of the spatiotemporal model. We

also require an optimization method for �tting parameters that maximize this similarity metric.

To evaluate the similarity between two networks, we use the energy function presented in

Ref.15,

E = max(KSk,KSc,KSb,KSe)

where each argument in the max function is the two-sample Kolmogorov-Smirnov test statistic

between the networks' degree (k), clustering (c), betweenness centrality (b), and edge length (e)

distributions. Note that for consistency with Ref.15, this energy function measures �tness based

on nodal graph metrics, in contrast to the energy function for �tting the spatiotemporal model

to data, which is based on eigenvalues.

To reduce noise and to produce population-level �ts, we collectively minimize the average

energy between all instances of the EC model and a single instance of the spatiotemporal model,

Eavg =
1

n

n∑
i=1

max(KSik,KS
i
c,KS

i
b,KS

i
e)

where n is the number of subjects in our dataset, and each argument to the max function is the

Kolmogorov-Smirnov statistic between the distributions of ith instance of the generative graph

model and the spatiotemporal model for the corresponding graph metric. Instances of the EC

model di�er only in the initial random seed. We used di�erential evolution to determine the

optimal model parameters.

2.4 Results

One apparent similarity between the construction of the EC model and the homogeneous spa-

tiotemporal model is that each model includes a parameter that controls connection probability

with respect to distance between nodes: the distance parameter η in the EC model and the SA-λ

parameter in the homogeneous spatiotemporal model. As η → 0−, distance plays a smaller role

in determining connection probability, so long- and short-range connections are more equally

likely to be chosen. As SA-λ→ 0+, the spatial autocorrelation approaches zero for all non-zero

distances, so distance has a diminishing e�ect on the correlation. Therefore, we expect the EC

distance parameter η to be negatively correlated with SA-λ. To test this empirically, we �x the

EC clustering parameter at several di�erent values and vary the EC distance parameter, �tting

the homogeneous spatiotemporal model to each of the EC model's simulated networks. We �nd

a strong negative relationship between the EC distance parameter η and SA-λ (Figure ED9a).

This con�rms the similarities expected between the two spatial parameters.
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The ability of both models to capture network topology, combined with the strong association

of SA-λ and EC distance parameter, suggests that the second parameters of these two models

may also be related. Speci�cally, we test whether the clustering parameter γ in the EC model and

TA-∆1 in the homogeneous spatiotemporal model are associated as well. After applying the same

procedure of simulating from the EC model and �tting with the homogeneous spatiotemporal

model, we found a tight relationship between TA-∆1 and the EC clustering parameter (Figure

ED9b). Indeed, varying these parameters in the two models results in similar changes in graph

metrics (Figure ED9). By contrast, the TA-∆1 parameter is not strongly associated with the

EC distance parameter (Figure ED9c), and the SA-λ parameter is not strongly associated with

the EC clustering parameter (Figure ED9d). Thus, increases in SA breadth reduce the relative

probability of nearby connections, and increases in TA increase the probability of connections

occurring preferentially within clusters. This con�rms our intuition of how SA and TA in�uence

graph topology.
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Supplementary tables

Table S1

Graph metric �ts for all models. For each model, in each dataset, the single subject �ts are

shown for assortativity, clustering, local e�ciency, global e�ciency, modularity, and transitivity

(top) and SA-λ, SA-∞, global TA-∆1, mean-FC, var-FC, and kurt-FC (bottom). Fits are

quanti�ed using Lin's concordance, Spearman correlation rs, and coe�cient of determination

R2.

Assortativity Clustering coef. Local e�ciency Global e�ciency Modularity Transitivity
Dataset Model Lin rs R2 Lin rs R2 Lin rs R2 Lin rs R2 Lin rs R2 Lin rs R2

HCP Data (retest) 0.39 0.39 -0.22 0.37 0.39 -0.26 0.42 0.44 -0.17 0.4 0.38 -0.22 0.45 0.47 -0.12 0.53 0.52 0.04
Spatiotemporal model 0.43 0.52 -0.4 0.63 0.63 0.33 0.74 0.79 0.54 0.2 0.32 -0.77 0.6 0.7 0.38 0.45 0.6 -0.66
Intrinsic timescale + SA 0.34 0.41 0.13 -0.01 -0.17 -98.83 -0.07 -0.16 -4.5 0.01 0.46 -33.47 -0.1 -0.3 -3.39 0.02 0.37 -12.54
SA only 0.02 0.17 -1.35 0.0 0.0 -5.24 0.0 -0.05 -9.36 0.01 0.2 -2.19 0.0 0.23 -5.7 0.0 0.51 -30.29
TA only -0.01 -0.13 -3.02 -0.0 0.01 -89.13 -0.01 -0.06 -3.06 0.0 0.23 -30.6 -0.01 -0.16 -3.78 0.0 0.17 -12.59
Phase randomization -0.02 -0.13 -1.99 -0.01 -0.39 -128.6 -0.06 -0.42 -7.96 0.01 0.31 -37.51 -0.06 -0.43 -5.11 -0.0 -0.06 -14.67
Eigensurrogate 0.27 0.31 -0.03 -0.29 -0.49 -4.23 -0.08 -0.45 -2.67 0.17 0.29 -6.66 -0.05 -0.32 -1.51 -0.04 -0.15 -8.55
Zalesky matching 0.16 0.37 -0.15 -0.02 -0.48 -75.8 -0.23 -0.56 -2.71 0.02 0.37 -28.21 -0.02 -0.27 -5.23 -0.0 -0.04 -10.98
Edge reshu�e 0.0 -0.06 -6.79 -0.05 -0.64 -77.28 -0.1 -0.7 -10.35 0.03 0.44 -14.24 0.02 0.91 -10.81 0.01 0.26 -12.25

HCP-GSR Data (retest) 0.43 0.43 -0.15 0.39 0.39 -0.23 0.44 0.45 -0.13 0.42 0.41 -0.16 0.42 0.43 -0.18 0.53 0.53 0.06
Spatiotemporal model 0.34 0.46 -0.57 0.37 0.37 -0.27 0.52 0.68 -0.34 0.16 0.28 -1.2 0.36 0.49 -0.36 0.23 0.37 -1.95
Intrinsic timescale + SA 0.28 0.43 -0.18 0.0 0.01 -181.85 0.01 0.06 -16.87 0.01 0.32 -50.21 -0.01 -0.06 -11.23 0.01 0.42 -20.14
SA only 0.01 0.15 -0.08 0.0 -0.04 -5.33 -0.0 -0.09 -13.2 0.01 0.14 -3.09 0.0 0.1 -5.12 0.0 0.23 -25.09
TA only -0.02 -0.23 -4.48 0.0 0.14 -173.28 0.01 0.19 -14.99 0.0 0.32 -45.63 0.0 0.05 -14.31 0.0 0.32 -19.98
Phase randomization -0.03 -0.28 -2.85 -0.0 -0.08 -257.15 -0.01 -0.11 -33.41 0.0 0.23 -57.72 -0.01 -0.21 -17.76 0.0 0.13 -23.19
Eigensurrogate 0.22 0.3 0.05 -0.05 -0.25 -17.47 -0.27 -0.49 -1.43 0.2 0.37 -3.74 -0.23 -0.45 -0.54 -0.02 -0.02 -2.67
Zalesky matching 0.12 0.28 -0.45 -0.0 -0.25 -181.39 -0.03 -0.28 -14.85 0.0 0.23 -48.29 0.0 0.18 -16.84 0.0 0.06 -19.88
Edge reshu�e -0.02 -0.32 -6.93 -0.01 -0.4 -193.51 -0.03 -0.6 -41.27 0.01 0.34 -25.04 0.01 0.76 -28.89 -0.0 -0.05 -19.2

Yale-TRT Data (retest) 0.13 0.15 -0.94 0.31 0.28 -0.42 0.41 0.4 -0.29 0.21 0.21 -0.68 0.36 0.36 -0.33 0.24 0.24 -0.6
Spatiotemporal model -0.12 -0.17 -1.65 0.16 0.55 -4.14 0.2 0.5 -4.13 0.22 0.55 -1.47 0.02 0.24 -32.27 0.1 0.31 -3.24
Intrinsic timescale + SA 0.02 0.04 -1.42 0.01 0.34 -29.85 0.03 0.5 -16.04 0.01 0.23 -15.13 0.01 0.17 -28.83 0.01 0.32 -12.63
SA only 0.01 0.43 -3.84 0.02 0.75 -5.49 0.0 0.47 -19.72 0.02 0.8 -6.5 -0.0 0.03 -0.63 0.01 0.82 -11.45
TA only 0.0 0.05 -4.24 0.0 0.02 -29.49 -0.0 -0.01 -11.93 -0.0 -0.05 -14.58 0.0 0.11 -23.11 -0.0 -0.02 -12.26
Phase randomization -0.0 -0.02 -6.2 0.0 0.32 -75.2 0.0 0.27 -72.3 0.0 0.3 -35.41 0.0 0.22 -68.85 0.0 0.28 -24.73
Eigensurrogate 0.26 0.3 -0.3 0.17 0.75 -6.59 0.22 0.41 -1.46 0.61 0.88 -0.24 0.19 0.33 -2.2 0.69 0.83 0.18
Zalesky matching 0.06 0.1 -2.19 0.01 0.65 -57.6 0.02 0.58 -36.39 0.01 0.63 -28.49 0.01 0.4 -55.84 0.01 0.68 -21.15
Edge reshu�e -0.01 -0.27 -15.41 0.01 0.47 -103.56 -0.0 -0.11 -196.35 0.03 0.71 -27.9 -0.0 -0.13 -126.97 0.01 0.43 -24.62

Cam-CAN Spatiotemporal model 0.16 0.39 -5.84 0.08 0.11 -0.5 0.11 0.13 -0.56 0.16 0.25 -2.08 0.1 0.16 -1.08 0.21 0.4 -3.24
Intrinsic timescale + SA -0.01 -0.04 -1.28 0.2 0.2 -0.42 0.14 0.25 -0.95 -0.02 -0.05 -1.71 0.16 0.28 -1.02 0.14 0.09 -0.72
SA only 0.03 0.41 -1.92 0.0 0.13 -4.37 0.0 0.1 -8.3 0.03 0.24 -0.41 -0.0 0.01 -4.09 0.01 0.4 -8.48
TA only -0.0 -0.04 -6.79 0.01 0.06 -2.27 0.01 0.05 -2.36 -0.0 -0.04 -0.42 -0.0 -0.04 -3.31 -0.02 -0.07 -0.92
Phase randomization -0.02 -0.03 -5.63 -0.23 -0.32 -4.66 -0.28 -0.32 -2.03 0.04 0.14 -6.02 -0.2 -0.32 -1.95 -0.3 -0.35 -1.52
Eigensurrogate 0.15 0.31 -2.01 0.04 0.11 -1.59 0.01 0.06 -2.9 0.04 0.23 -4.38 0.02 0.1 -2.23 0.14 0.49 -2.8
Zalesky matching 0.03 0.04 -1.48 -0.24 -0.28 -1.86 -0.26 -0.31 -1.13 0.1 0.31 -4.12 -0.23 -0.28 -1.19 -0.15 -0.18 -2.69
Edge reshu�e -0.0 -0.02 -17.84 -0.08 -0.63 -22.34 -0.15 -0.7 -8.35 0.01 0.45 -17.11 0.03 0.77 -8.02 0.01 0.3 -12.15

SA-λ SA-∞ Global TA-∆1 Mean-FC Var-FC Kurt-FC
Dataset Model Lin rs R2 Lin rs R2 Lin rs R2 Lin rs R2 Lin rs R2 Lin rs R2

HCP Data (retest) 0.68 0.69 0.36 0.6 0.63 0.18 0.75 0.75 0.5 0.61 0.65 0.21 0.59 0.6 0.19 0.59 0.6 0.17
Spatiotemporal model 0.39 0.82 -5.67 0.84 0.94 0.53 0.99 1.0 0.97 0.85 0.97 0.55 0.21 0.83 -1.9 0.81 0.93 0.48
Intrinsic timescale + SA 1.0 1.0 1.0 -0.08 -0.47 -3.1 1.0 1.0 1.0 -0.06 -0.17 -3.24 0.03 0.84 -8.78 -0.01 -0.07 -43.16
SA only 0.03 0.72 -171.82 0.69 0.81 0.17 -0.0 -0.27 -33.2 0.89 0.97 0.75 0.07 0.26 -2.48 0.12 0.57 -16.55
TA only 0.0 0.57 -14.43 0.0 0.52 -3.24 1.0 1.0 1.0 0.0 0.39 -3.8 0.03 0.79 -7.64 0.41 0.78 0.35
Phase randomization 0.0 -0.01 -14.54 -0.0 -0.02 -3.28 1.0 1.0 1.0 -0.0 -0.03 -3.8 0.02 0.78 -9.15 0.09 0.25 0.01
Eigensurrogate 0.0 -0.0 -14.41 -0.0 -0.09 -3.3 0.0 0.02 -33.14 -0.0 -0.16 -3.8 0.15 0.8 -35.08 0.09 0.89 -4.54
Zalesky matching 0.0 0.03 -14.42 0.98 0.99 0.95 1.0 1.0 1.0 0.99 0.99 0.98 -0.01 -0.16 -1.16

HCP-GSR Data (retest) 0.72 0.73 0.44 0.54 0.59 0.06 0.78 0.78 0.56 0.56 0.63 0.11 0.67 0.67 0.34 0.6 0.6 0.19
Spatiotemporal model 0.47 0.87 -4.91 0.59 0.64 -0.27 0.97 1.0 0.94 0.67 0.81 -0.11 0.17 0.84 -2.63 0.64 0.89 -0.33
Intrinsic timescale + SA 1.0 1.0 1.0 -0.18 -0.25 -1.39 1.0 1.0 1.0 -0.13 -0.23 -1.64 0.02 0.84 -9.75 -0.02 -0.28 -67.02
SA only 0.03 0.77 -166.95 0.44 0.32 -0.25 0.0 0.01 -34.62 0.59 0.81 -0.15 0.22 0.67 -1.42 0.13 0.75 -22.34
TA only 0.0 0.14 -16.36 0.0 0.18 -2.22 1.0 1.0 1.0 -0.0 -0.18 -3.23 0.02 0.8 -8.68 0.28 0.74 -0.05
Phase randomization -0.0 -0.0 -16.4 -0.0 -0.03 -2.28 1.0 1.0 1.0 0.0 -0.0 -3.24 0.01 0.75 -10.32 0.04 0.23 -0.88
Eigensurrogate 0.0 -0.0 -16.29 -0.0 0.0 -2.29 -0.0 -0.04 -34.8 -0.0 -0.09 -3.24 0.32 0.78 -5.76 0.04 0.77 -7.64
Zalesky matching 0.0 0.04 -16.29 0.94 0.97 0.86 1.0 1.0 1.0 1.0 1.0 0.99 0.01 0.41 -3.61

Yale-TRT Data (retest) 0.54 0.63 0.02 0.55 0.54 0.05 0.62 0.7 0.21 0.35 0.37 -0.4 0.33 0.38 -0.45 0.38 0.44 -0.4
Spatiotemporal model 0.18 0.49 -11.93 0.02 0.13 -33.06 0.96 0.99 0.92 0.0 0.09 <-105 0.31 0.6 -0.64 -0.0 -0.14 -9.87
Intrinsic timescale + SA 0.96 0.96 0.93 0.03 0.07 -1.68 0.83 0.98 0.63 0.01 0.17 -422.87 0.04 0.54 -5.92 -0.0 0.04 -7.74
SA only 0.01 0.35 -120.14 0.01 0.06 -0.85 -0.0 -0.29 <-104 0.0 0.19 <-105 0.03 0.9 -13.43 0.06 0.35 -15.38
TA only 0.0 0.12 -11.89 0.0 0.05 -1.0 0.86 1.0 0.7 0.0 0.05 -3.66 0.03 0.47 -3.21 0.0 0.53 -10.97
Phase randomization -0.0 -0.11 -14.4 -0.0 -0.01 -1.36 0.93 0.99 0.85 -0.03 -0.05 -2.18 0.01 0.51 -21.3 0.05 0.53 -4.52
Eigensurrogate 0.0 -0.02 -14.28 0.0 0.03 -1.32 0 -0.03 <-104 -0.04 -0.07 -2.92 1.0 1.0 1.0 0.01 0.23 -20.46
Zalesky matching 0.0 0.03 -14.34 0.0 0.01 -1.38 0.16 0.24 -2.86 0.99 0.96 0.97 0.01 0.46 -10.55

Cam-CAN Spatiotemporal model -0.02 0.14 -1.18 0.66 0.83 -0.08 0.37 0.94 -3.66 0.77 0.98 0.03 0.45 0.63 -0.23 0.21 0.65 -0.2
Intrinsic timescale + SA 0.0 0.07 -1.08 -0.01 -0.19 -4.11 0.86 0.99 0.65 0.06 0.3 -4.41 -0.05 -0.2 -0.4 -0.01 -0.11 -0.66
SA only 0.0 -0.02 -10.33 0.32 0.83 -2.51 0.0 0.56 -532.71 0.97 0.98 0.95 0.06 0.61 -1.92 -0.0 -0.71 -0.73
TA only -0.0 -0.1 -1.58 0.0 0.36 -9.96 0.7 1.0 -0.06 0.0 0.33 -22.98 -0.01 -0.21 -4.03 -0.01 -0.4 -1.16
Phase randomization 0.0 -0.02 -1.57 -0.0 -0.01 -9.95 0.95 0.98 0.88 0.0 -0.02 -22.92 0.03 -0.0 -0.67 -0.07 -0.5 -1.0
Eigensurrogate -0.0 -0.02 -1.54 0.0 0.06 -9.99 -0.0 -0.04 -628.92 -0.0 -0.12 -22.95 -0.03 -0.58 -128.4 -0.02 -0.75 -2.28
Zalesky matching 0.0 -0.02 -1.51 0.71 0.87 0.52 1.0 1.0 1.0 0.93 0.94 0.86 0.41 0.67 0.21
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