nature structural & molecular biology

Supplementary information

https://doi.org/10.1038/s41594-024-01319-1

Cryo-EM structures of Smc5/6 in multiple states reveal its assembly and functional mechanisms

In the format provided by the authors and unedited

Supplementary Fig. 1 Resolution assessment of the cryo-EM maps of Smc5/6-8mer.
(a-c) Global Fourier Shell Correlation (FSC) curve, angular distribution plot, 3D FSC curve, local resolution estimation, and model vs. map FSC of the focused refinement maps of the Head (a), Arm
(b), and Hinge (c) regions of Smc5/6-8mer are displayed from top to bottom.

Supplementary Fig. 2 SEC-SAXS data of the Smc5/6-8mer complex.

(a) A SEC elution profile of the Smc5/6-8mer complex.

(**b**) A SAXS scattering profile of the Smc5/6-8mer complex. The back-calculated scattering profile of the *Ab initio* model (pink dash line) and atomic model (red line) were fitted to the experimental SAXS data (blue dot line). The inset shows the Pair distance distribution function $P(\mathbf{r})$ curve. (**c**) A low-resolution bead model calculated by DAMMIF based on the SAXS data.

Supplementary Fig. 3 Comparison of the Smc5/6-8mer structure with published subcomplex structures.

(a) The published Smc5-6-Hinge structure (grey, PDB: 5MG8) from *Schizosaccharomyces pombe* was aligned to Smc5/6-8mer hinge structure.

(b) The published Nse2-Smc6 structure (grey, PDB: 3HTK) was aligned to the Smc5/6-8mer Arm structure (color).

(**c-d**) The compact regions of Nse5/6 (colored) from Smc5/6-8mer were aligned with the Nse5/6 subcomplex structures (grey, PDB: 7LTO (**c**); PDB: 7OGG(**d**)).

The RMSD value of each alignment is listed below each panel.

Supplementary Fig. 4 Interactions between Nse5-6 and the head regions of Smc5-6.

(a-b) Hydrogen bonds and salt bridges formed amongst the pairs of the subunits.

(c-e) Hydrophobic core interactions among the two pairs of subunits.

(f) Solvent accessible surface area (SASA) buried at the interface formed among indicated pairs of subunits. Sidechains of key residues are indicated as sticks.

Supplementary Fig. 5 Local density maps and structural comparison of the Nse1-3-4 heterotrimer.

(a) Representative local cryo-EM density maps of the Nse1-3-4 structure described in this work. (**b-d**) Structural comparison of the Nse1-3-4 heterotrimer. The budding yeast Nse1-3-4 trimer structure obtained in this work (color) was aligned with the structure of the same subcomplex extracted from Smc5/6-6mer structure described in this work (grey) (**b**), with another budding yeast Nse1-3-4 structure (PDB: 7TVE, grey) (**c**), and with the *X. laevis* Nse1-3-4 structure (PDB: 7DG2, grey) (**d**).

(e) Indicated protein properties of the Nse1, Nse3, and Nse4 proteins from *S. cerevisiae* and *X. laevis* are compared.

Supplementary Fig. 6 Resolution assessment of the cryo-EM maps of Smc5/6-6mer.
(a-c) Global Fourier Shell Correlation (FSC) curve, angular distribution plot, 3D FSC curve, local resolution estimation, and model vs. map FSC of the focused refinement maps of the Head (a), Arm
(b), and Hinge (c) regions of Smc5/6-6mer are displayed from top to bottom.

Supplementary Fig. 7 Resolution assessment of the cryo-EM maps of Smc5/6-5mer.
(a-c) Global Fourier Shell Correlation (FSC) curve, angular distribution plot, 3D FSC curve, local resolution estimation, and model vs. map FSC of the focused refinement maps of the Head (a), Arm
(b), and Hinge (c) regions of Smc5/6-5mer are displayed from top to bottom.

Supplementary Fig. 8 DNA binding activity results.

DNA binding data for purified Nse1-3-4 (**a**), Smc5/6-5mer (**b**), -6mer (**c**), and -8mer (**d**) are presented for the association with 30 bp dsDNA using Octet RED 96.

Supplementary Table 1. SAXS data collection parameters for Smc5/6-8mer.

(a) Sample details		
		Smc5/6-8mer
Organism		Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast)
Source (Catalogue No. or reference)		Spodoptera frugiperda Sf9 cells expressed
Description: sequence (including Un	niprot ID + uncleaved tags	s),
bound ligands/modifications, etc.		Q08204, Q12749, P38632, P40026, Q03718, Q07913, Q05541, P43124
Extinction coefficient ε (wavelength as	nd units)	0.610
Molecular mass M from chemical composition (Da)		520478.92
loading volume/concentration, (mg ml ⁻¹)		10
injection volume (µl)		100
flow rate (ml min ⁻¹)		0.4
Concentration measure method		UV
Solvent composition and source		20 mM HEPES-NaOH, pH 8.0, 300 mM NaCl
(b) SAXS data collection parameters	8	
Source, instrument and description or reference		BL19U2 beamline at SSRF
Wavelength (Å)		1.033
Sample-to-detector distance		2.2 m
q-measurement range (Å ⁻¹)		0.007-0.45
Exposure time		1.5 s
number of exposures		2000
Sample configuration including path length		1.5 mm
Sample temperature (°C)		23
(c) Software employed for SAXS dat	ta reduction, analysis and in	nterpretation
SAXS data reduction to sample-solvent scattering		RAW
Guinier		AutoRG (ATSAS)
<i>P</i> (r)		GNOM
Scattering particle volume		RAW
Shape/bead modelling		DAMMIF
Molecular graphics		PyMOL
(d) Structural Parameters		
	$I(0) (cm^{-1})$	120.03 ± 2.71
From Guinier fit	Rg (Å)	122.92±2.46
	$I(0) (cm^{-1})$	121.4±4.5
From $P(\mathbf{r})$	Rg (Å)	122.1±4.4
	Dmax (Å)	480.0
MW (kDa) from sequence	520.5	
From volumn of correlation (Vc)	444.9	
Using the porod volumn (Vp)	403.8	
Modeling		
	χ^2	1.023
DAMMIN	NSD	0.910±0.029
	Ensemble Resolution	66±5

9

Supplementary Table 2. Primers used in this study.

Primer #	Purpose	Direction	Primer sequence
1	To PCR Nsel and assemble into 9A vector	forward	TTTAAGAAGGAGATATAGATCATGGAGGTACATGAAGAGCA
2		reverse	TTATGGAGTTGGGATCTTATTATTAAATAACGTATACGCCCTCT
3	To PCR Nse3 and assemble into 9C vector	forward	TACTTCCAATCCAATGCAATGAGTTCTATAGATAATGACAGC
4		reverse	TTATCCACTTCCAATGTTATTATATAGAATATGAATCGCCAATGCT
5	To PCR Nse4 and assemble into 9C vector	forward	TACTTCCAATCCAATGCAATGTCTAGTACAGTAATATCTAGAA
6		reverse	TTATCCACTTCCAATGTTATTAGTCTAAGAATGGTGAAGTGAT
7	To PCR <i>Nse1</i> and assemble into 438-A vector	forward	TACTTCCAATCCAATCGATGGAGGTACATGAAGAGCA
8		reverse	TTATCCACTTCCAATGTTATTAAATAACGTATACGCCCTCTG
9	To PCR Nse2 and assemble into 438-A vector	forward	TACTTCCAATCCAATCGATGGCCTTGAACGATAATCC
10		reverse	TTATCCACTTCCAATGTTATTATAAAACATCGATGGCTTGACTA
11	To PCR Nse3 and assemble into 438-A vector	forward	TACTTCCAATCCAATCGATGAGTTCTATAGATAATGACAGC
12		reverse	TTATCCACTTCCAATGTTATTATATAGAATATGAATCGCCAATGCT
13	To PCR Nse4 and assemble into 438-A vector	forward	TACTTCCAATCCAATCGATGTCTAGTACAGTAATATCTAGAA
14		reverse	TTATCCACTTCCAATGTTATTAGTCTAAGAATGGTGAAGTGAT
15	To PCR Nse5 and assemble into 438-A vector	forward	TACTTCCAATCCAATCGATGGATGGTGCGTTGATAAATT
16		reverse	TTATCCACTTCCAATGTTATTATTCTATAATTACACTTTTATCATGAACG
17	To PCR Nse6 and assemble into 438-A vector	forward	TACTTCCAATCCAATCGATGGGAAGCGTGAACTCAT
18		reverse	TTATCCACTTCCAATGTTATTACCTGATTTTAGAAAAACAAATTTAATATTCC
19	To PCR Smc5 and assemble into 438-A vector	forward	TACTTCCAATCCAATCGATGACCAGTCTAATAGATTTGG
20		reverse	TTATCCACTTCCAATGTTATTAATCGAATGAGTAGTTAGAAGTTTC
21	To PCR Smc6 and assemble into 438-C vector	forward	TACTTCCAATCCAATGCAATGATTTCGACTACGATTAGTG
22		reverse	TTATCCACTTCCAATGTTATTAATTATAAAAAATTGGAATTATTCTGTCTCTC
23	To PCR <i>nse2-3A</i> fragment	forward	GTAATACCGGATCTGCAAAACCCCCGCAGACG
24		forward	ATGGCCTTGAACGATAATCC
25		reverse	GCAGATCCGGTATTACACAA
26	To confirm <i>nse2-3A</i>	forward	CCTTTGATTCTGGTTACTCC
27		reverse	GACGGTTTGAATGTAGAGAG
28	To PCR nse6-RAAE and nse6-9A fragments	forward	GTAGCCAAAAGTGAGTTACAAAAAAGCATAAAG
29		forward	ATGGGAAGCGTGAACTCATC
30		reverse	CTCACTTTTGGCTACAGTGT
31	To confirm <i>nse6-RAAE</i> and <i>nse6-9A</i>	forward	GTCTTCTTTGTATTTGTTTTAG
32		reverse	GAAAATATTGTTACTAAGGACC

10

Name	Genotypes			
T2271-2-7C	nse6-D86R,188A,L89A,R91E-AID-3FLAG::KAN			
T2272-1-4C	nse6-D86A,P87A,I88A,L89A,K90A,R91A,T92A,I93A,I94A-AID-3FLAG::KAN			
T2273-14-6C	nse2-K20A,H23A,H26A-3HA::KAN			
X8974	NSE6-AID-3FLAG::KAN SMC5-13MYC::HIS3			
X8975	nse6-D86R, I88A, L89A, R91E-AID-3FLAG::KAN RAD5 SMC5-13myc::HIS3			
X8978	NSE2-3HA::KAN SMC6-13myc::HIS			
X8979	nse2-K20A,H23A,H26A-3HA::KAN SMC6-13MYC::HIS3			
T294	SMC5-13MYC::HIS3			
X3254	SMC6-13 MYC:HIS3			
X8981-1A	nse2-K20A,H23A,H26A-3HA::KAN nse6-D86R,I88A,L89A,R91E-AID-3FLAG::KAN			
X8984-5B	NSE2-3HA::KAN NSE6-AID-3FLAG::KAN			
T1596-2-9A	mms4 <i>A</i> ::KAN			
X8990-10A	NSE2-3HA::KAN mms4\Delta::KAN			
X8982-1B	nse2-K20A,H23A,H26A-3HA::KAN mms4∆::KAN			
X9037-7D	$NSE6-AID-3XFLAG::KAN mms4\Delta::KAN$			
X8991-2A	nse6-D86R,I88A,L89A,R91E-AID-3FLAG::KAN mms4∆::KAN			
T766-1	esc2A::KAN			
X8987-6A	NSE2-3HA::KAN esc2\Delta::KAN			
X8983-2B	nse2-K20A,H23A,H26A-3HA::KAN esc2∆::KAN			
X9038-7B	NSE6-AID-3FLAG::KAN esc2\Delta::KAN			
X8992-6B	nse6-D86R,I88A,L89A,R91E-AID-3FLAG::KAN esc2∆::KAN			
G172	sgs1 <i>Δ</i> ::HIS3			
X8989-7A	NSE2-3HA:KAN sgs1A::HIS3			
X8985-9A	nse2-K20A,H23A,H26A-3HA::KAN sgs1Δ::HIS3			
X8997-1A	NSE6-AID-3FLAG::KAN sgs1\Delta::HIS3			
X8980-1C	nse6-D86R,I88A,L89A,R91E-AID-3FLAG::KAN sgs1A::HIS3			
X3952-1B	rrm3∆::KAN			
X8988-2B	$NSE2-3HA::KAN rrm3\Delta::KAN$			
X8986-2B	nse2-K20A,H23A,H26A-3HA::KAN rrm3A::KAN			
X8998-3B	NSE6-AID-3FLAG::KAN rrm3∆::KAN			
X8993-17C	nse6-D86R,I88A,L89A,R91E-AID-3FLAG::KAN rrm3∆::KAN			

Supplementary Table 3. Yeast strains used in this work.