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For the study of glioblastoma tumor growth in two-dimensional slices of brain sections,
the Stefan problem is solved numerically using a level set method. The level set method
was introduced by Osher and Sethian [1] and applied to Stefan problems by Chen et al. [2],
Javierre et al. [3], Arciero et al. [4], among others.

The level set method tracks a moving boundary (defined as the boundary of the tumor
cells in this context), which is represented as the zero level set of a smooth function Φ on a
fixed grid. In the schematic diagram in Figure 5 in the main text, the moving boundary of
the tumor cells is ∂Ωt

1. Initially, this level set function describes the signed distance d from
each grid point to the boundary, where Φ is positive if there are cells in that location, zero
on the boundary, or negative otherwise. In other words,
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In our implementation, the distance from any grid node to a boundary is calculated as
the minimum Euclidean distance from the grid node position to all the boundary position
coordinates.

The first step of the algorithm involves moving the level set function Φ with velocity deter-
mined by the Stefan condition, equation 7 in the main text. The velocity v = (υx, υy, υη, υζ)
for the boundary is computed, respectively, in the standard Cartesian coordinates x, y and
the 45◦-rotated coordinates η and ζ, since the four coordinate directions reduce grid orien-
tation effects [2].

The velocity components are then continuously extended off the boundary to the entire
domain for each layer via the advection equations
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where υ∗(x, 0) = −D
ρ̄
∂ρ
∂∗ for ∗ = x, y, η, ζ, and τ is a pseudo-time. These equations are

discretized with a first-order upwind scheme, and if a grid point is too close to the boundary,
an extended neighborhood near that point is used to determine the velocity [2].

Once the components of the (now continuously extended) velocity v have been obtained,
we propagate the level set function via

∂Φ
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+ v‖∇Φ‖ = 0, (3)

which is solved using a forward Euler discretization in time and weighted essentially non-
oscillatory (WENO) approximations to the spatial derivatives.

The level set function in general ceases to be an exact distance function, i.e., ‖∇Φ‖ 6=
1, even after one time step [5]. To avoid steep or flat gradients in Φ near the moving
boundaries, the level set functions are reinitialized to be exact distance functions from the
moving boundary at every time step. Given a function Φ0 that is not an exact distance
function, we can evolve it into an exact distance function by iterating the following to steady
state
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Φ(x, 0) = Φ0(x). (4b)

Here τ is a pseudo-time and sign is the smooth sign function sign(x) = x/
√
x2 + ε2. The

equation is discretized using Godunov’s method in pseudo-time, a third-order Runge-Kutta
scheme in real time, and fifth-order WENO approximations for the spatial gradient. Only
3–10 iterations are needed for sufficient accuracy to evolve Φ to an exact distance function [3].

After the level set function Φ has moved the correct velocity at the moving boundary
and been reinitialized as an exact distance function, we solve equation 1 from the main text
for the density of the tumor cells over the entire domain using a finite difference scheme
with adjustments for grid nodes near the boundary and the backward Euler method for time
integration.

Away from the moving boundary, the standard 5-point stencil scheme is used for the
Laplacian. For grid nodes that border the moving boundaries, the scheme is adjusted using
interpolating polynomials and one-sided differencing with values of Φ near the interface and
the boundary conditions, Equations 6–7 of the main text [2]. For grid nodes that are outside
of the domain Ωt

2, a cut-cell method is used to adapt the grid by “cutting” grid nodes that
are not located within the domain [3].

A numerical implementation of this level set method was developed by Javierre et al. [3],
adapted by Arciero et al. [4] for wound healing and cell colony growth, and then adapted
here to produce the numerical solutions in this study.
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