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Ⅰ The speed of immunizing top nodes 

We calculated the top ranked nodes as a fraction of nodes considered in each 

immunization strategy. Fig. S1 shows that the RDS strategy can immunize the high 

degree individuals (the top 10% individuals in the ranking of degree) almost as 

quickly as targeted immunization, and is much more quickly than acquaintance 

immunization and random immunization. 

In RDS, the inclusion probability of a node is proportional to its degree in RDS; 

therefore high degree nodes can be sampled more quickly in RDS than in the random 

selection; Meanwhile, the cut-off threshold which is obtained based on the 

immunization threshold of targeted immunization can partition the sampled nodes into 

two parts; in this way, the nodes with higher degree in the sample can be targeted 

almost as quickly as targeted immunization. 

 

Fig. S1 The speed of immunizing top 10% individuals in (a) the Advogato network , (b) the Brightkite 

network , (c) the Epinions network and (d) the MSM network. f refers to the fraction of immunized 

nodes and f10% refers to the fraction of nodes whose degree in the top 10%. The results are averaged 

over 100 simulations. 

Ⅱ immunization in Watts-Strogatz (WS) network and Erdős–Rényi 

(ER) network 

In the main article, we implemented the RDS strategy in the Barabasi-Albert (BA) 

network due to the fact that the most social networks in real world are scale-free 

networks, i.e., heterogeneous networks. And compared to the homogeneous network 



in which each node has approximately the same degree, the heterogeneous network is 

prone to the spreading and the persistence of infections because of its diverging 

connectivity fluctuations
[1][2]

.  

Beside the Barabasi-Albert (BA) network used in the main article, we have 

implemented the RDS strategy in another two classical network models, i.e., the 

Watts-Strogatz (WS) network and Erdős–Rényi (ER) network. The WS network is 

constructed in consistence with the study in [3]: The starting point is a ring with 

10000 nodes, in which each node is symmetrically connected with its 10 nearest 

neighbors; Then, for every node each edge connected to a clockwise neighbor is kept 

as originating from the original node and rewired to a randomly chosen target node 

with probability 0.5. The ER network is generated by the algorithm in [4]: it starts 

with 10000 nodes and each pair of nodes is connected randomly with 

probability 0.001. 

Fig. S2 shows the simulation results that the reduced prevalence ρf /ρ0 varies with the 

number of the immunized nodes. The efficiency of RDS strategy is also following that 

obtained with the targeted strategy and better than that obtained with the acquaintance 

strategy and random strategy. However, the difference of these efficiencies is not very 

remarkable; we can see the immunization thresholds of the four immunization 

strategies are almost equivalent. The results are consistent with the conclusion in 

Pastor’s research [3] which is verified that in case of immunizing on the 

homogeneous networks (e.g., the Watts-Strogatz (WS) network) the immunization 

threshold is almost equivalent in the random and targeted immunization.  

 
Fig. S2 Reduced prevalence ρ f /ρ0 from simulations of SIS model in WS network (a) and ER network 

(b) at a fixed spreading rate λ=0.25. The RDS strategy is implemented with 1 seed and 1 coupon. The 

cut-off threshold kcut is used the estimated average degree obtained from samples. The prevalence is 

averaged over 100 simulations. 

Ⅲ Immunization with multiple seeds and coupons 



Besides implementing RDS strategy with 1 seed and 1 coupon in main article, we 

have explored the effect of increasing seeds and coupons. Fig. S3 and Fig. S4 show 

that the efficiency of the RDS strategy varies from the different number of seeds and 

coupons. We can see that the efficiency of RDS strategy is not affected by the seed 

number or coupon number. That’s because the number of seeds or coupons does not 

change the inclusion probability of the individuals
[5-7]

. 

 

Fig. S3 Reduced prevalence ρ f /ρ0 from simulations of SIS model in (a) the Advogato network, (b) the 

Brightkite network, (c) the Epinions network and (d) the MSM network at a fixed spreading rate 

λ=0.25. The number of coupon is 1. The prevalence is averaged over 100 simulations. 

 

 

Fig. S4 Reduced prevalence ρ f /ρ0 from simulations of SIS model in (a) the Advogato network , (b) the 

Brightkite network , (c)the Epinions network and (d) the MSM network at a fixed spreading rate 

λ=0.25. The number of seeds is 1. The prevalence is averaged over 100 simulations. 



Ⅳ General method for reducing the length of the referral 

chain 

The general method for reducing the length of the referral chain is increasing the 

number of seeds or coupons. The results of implementing RDS with different number 

of seeds and coupons are shown in Fig. S5. We can see that the two general methods 

can reduce the length of the referral effectively. However, in practice we usually have 

only a small number of seeds in the implementation due to the fact that the seeds 

typically are the current or former members of the targeted population (e.g., the 

current IDUs). Meanwhile, the rejection rate of distributing coupon is usually high in 

practice, which makes long referral chains rarely appear. 

 

Fig. S5 The length of the RDS chain from simulations that implemented with different number of seeds 

and coupons in the Advogato network (a), the Brightkite network (b), the Epinions network (c) and the 

MSM network (d) at a fixed spreading rate λ=0.25. The results are averaged over 100 simulations. 
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