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1. Model evaluation 16 

The model predictions agree fairly well with surface meteorological observations. The MBs in 17 

January/July are 0.79/0.42 m s−1, −1.28/−1.17 K, −0.87/−1.06 g kg−1, 2.3/11.6 mm month−1 for 18 

WS10, T2, Q2, and precipitation, respectively. Emery et al.1 proposed benchmark values for 19 

satisfactory performance for WS10, T2, and Q2: MB within ± 0.5 m s−1, GE ≤ 2.0 m s−1, RMSE 20 

≤ 2.0 m s−1 and IOA ≥ 0.6 for WS10, MB within ±0.5 °C, GE ≤ 2.0 °C, and IOA ≥ 0.8 for T2, 21 

and MB within ±1.0 g kg−1, GE of ≤ 2.0 g kg−1, and IOA ≥ 0.6 for Q2. We note that these 22 

benchmark values are proposed based on the performance of a series of model simulations with 23 

four dimensional data assimilation (FDDA). Nevertheless, FDDA is not utilized here to allow 24 

full aerosol-cloud-radiation interactions. Therefore, the model performance is not expected to be 25 

as good as those with FDDA. Table 2 in the main text shows that the performance statistics for 26 

WS10 in July and Q2 in January fall within benchmark ranges, and those for Q2 in July are very 27 

close to the benchmark ranges. The WS10 in January and T2 in both months exceed the 28 

benchmark range but still have smaller or similar biases compared with most previous WRF-29 

Chem applications without FDDA over East Asia2-7, in which MBs range from 0.4 to 3.1 m s−1 30 

(mostly 1.2 to 2.6 m s−1) for WS10 and from −1.8 to 1.0 K (mostly −1.8 to −0.8 K) for T2, 31 

respectively. Therefore, the model performance is considered to be decent. 32 

With regard to surface air quality, the model performance for PM2.5 has been described in the 33 

main text. For gaseous pollutants, the model-measurement agreement is decent for NO2 and daily 34 

maximum O3 concentrations in both months, and SO2 concentrations in January, with NMBs 35 

within ±20%. The model overestimates SO2 concentrations in July, likely attributable to the 36 

uncertainty in emission inventory and insufficient treatment of SO2 oxidation reactions on dust 37 

surface8 and on fine aerosols with high relative humidity and NH3 neutralization9,10. The 38 
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observational data of PM2.5 chemical components are quite sparse and not publicly available 39 

during the simulation periods. In this study, we compare with chemical component observations 40 

obtained during a field campaign period (from July 22nd-31st, 2013) at two sites located in the 41 

North China Plain (see Supplementary Figure 1). The comparison results are shown in 42 

Supplementary Figure 3. Simulated PM2.5 concentrations agree fairly well with observations; 43 

NMBs are within ±6% for both sites. As for chemical components, NO3
− concentration is 44 

overestimated (NMB = 6% to 52%), while SO4
2− concentration is underestimated (NMB = −37% 45 

to −63%). There is a good agreement for NH4
+ (NMB within ±23%) and total SNA (sulphate-46 

nitrate-ammonium, NMB within ±23%). The overestimation of NO3
− and underestimation for 47 

SO4
2− are consistent with previous studies over East Asia, probably attributed to the lack of some 48 

chemical formation pathways in the modeling system 8,10,11. Simulated elemental carbon (EC) 49 

concentrations approximately double observed EC concentrations. EC concentrations are 50 

strongly affected by local emissions, while the spatial distribution of our emission inventory 51 

(36 km × 36 km) may not be able to capture local emission sources surrounding observational 52 

sites, leading to model-observation bias. The overestimation may also be attributable to the 53 

absence of EC aging in WRF-Chem, which leads to reduced fraction of hydrophilic EC and thus 54 

reduced wet depsition. Finally, concentrations of organic carbon (OC) can be either 55 

underestimated or overestimated in these two sites. The current model does not include 56 

secondary organic aerosol (SOA) formation; inclusion will probably leads to higher simulated 57 

OC concentrations. 58 

For the evaluation of cloud properties, the simulated cloud fraction (CF) agrees fairly well with 59 

observations over the ocean and in southern China, but significant underestimates occur in 60 

northern China, especially in January. The domain average NMBs are −32% and −9% in January 61 
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and July, respectively. The liquid water path (LWP) is substantially underestimated across the 62 

domain, with NMBs of −59% and −74% in January and July, respectively, which is a common 63 

problem for many previous chemical transport model simulations2,5,12,13. It is noted, however, the 64 

LWP retrieved from MODIS may be biased by a factor of 2 due to uncertainties in cloud particle 65 

size assumption14. The domain average cloud droplet number concentration (CDNC) is 66 

moderately underpredicted by 29% and 38% in January and July, respectively, with the most 67 

remarkable underestimates occurring on land in January. The discrepancies in cloud parameters 68 

may be related to several factors including aerosol number concentrations, water vapor, aerosol 69 

activation parameterization, cloud microphysics, and cumulus cloud schemes. For example, 70 

Zhang et al.15 showed that the Abdul-Razzak and Ghan16 aerosol activation parameterization 71 

used in this work tends to underpredict aerosol activation fraction and consequently underpredict 72 

CDNC and LWP compared with the Fountoukis and Nenes17 parameterization. In addition, the 73 

significant underestimates of CF and LWP in northern China may be explained in part by the 74 

underestimates in water vapor mixing ratio. Finally, we note that large uncertainty in satellite-75 

retrieved LWPs14,18 and in CDNC estimation19 may also partly account for the model-76 

measurement discrepancy. Downward shortwave radiation at surface (SWD) and downward 77 

longwave radiation at surface (LWD) simulated by WRF-Chem agree fairly well with the 78 

CERES data in terms of both magnitude and spatial distributions, with NMBs of about 11% to 79 

18% and −8% to −3%, respectively. The slight overestimates in SWD and underestimates in 80 

LWD are likely induced by the underestimates in LWP and AOD. 81 

 82 

 83 

 84 
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Figures and Tables 147 

 148 
Supplementary Figure 1. The WRF-Chem modeling domain at a horizontal spatial resolution 149 

of 36 km (111 × 98 cells). The two blue stars indicate locations of the Xiongxian Site and the 150 

Lingcheng Site, where observations of PM2.5 chemical components are available. The red 151 

rectangle indicates the Eastern and Central China (ECC). This region has high population density 152 

and high aerosol emissions and concentrations, and is thus the focus of this study. The colors 153 

represent primary PM2.5 emission rates at 8:00 a.m. January 1st, 2013. This figure is produced 154 

using DotSpatial, [version 1.7], (http://dotspatial.codeplex.com/) and Microsoft PowerPoint 2013 155 

(https://www.microsoft.com/).  156 
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CF 

  
Supplementary Figure 2. Comparison of simulated SWD, LWD, NO2 column, AOD, and cloud 157 

properties with satellite observations. This figure is produced using the NCAR Command 158 

Language (Version 6.2.1) [Software]. (2014). Boulder, Colorado: UCAR/NCAR/CISL/TDD. 159 

http://dx.doi.org/10.5065/D6WD3XH5. 160 

 161 

Xiongxian Site, Hebei Province Lingcheng Site, Shandong Province 

  
Supplementary Figure 3. Comparison of simulated concentrations of PM2.5 and its chemical 162 

components with observations at the Xiongxian Site and the Lingcheng Site. This figure shows 163 

the average concentrations during July 22nd - July 31st.  164 
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Supplementary Table 1. Observational datasets used in model evaluation. 165 

Type Database Variables Sites/resolution Frequency 

Surface 
meteorology 

NCDC wind speed at 10 m (WS10), 
temperature at 2 m (T2), and water 
vapor mixing ratio at 2 m (Q2) 

380 sites Hourly or 
every 3 hour 

GPCC precipitation 0.5º×0.5º  Monthly 

Surface air 
quality 

MEP PM10, PM2.5, SO2, NO2, and O3 496 sites in 74 
large cities in 
China 

Hourly 

PM2.5 chemical 
components 

PM2.5, SO4
2−, NO3

−, NH4
+, BC, 

and OC 
2 sites: Xiongxian 
Site, Lingcheng 
Site 

Daily 

Satellite CERES Downward shortwave radiation at 
surface (SWD), downward 
longwave radiation at surface 
(LWD) 

1º×1º Monthly 

OMI NO2 vertical column density 0.125º×0.125º  Monthly 
MODIS/TERRA aerosol optical depth (AOD), 

liquid water path (LWP), cloud 
fraction (CF), and cloud droplet 
number concentration (CDNC, 
derived from MODIS data) 

1º×1º Monthly 
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