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Supplementary Information

S1. Introduction of Shannon entropy

An appropriately defined probability distribution, Shannon entropy is a
numerical expression of network structure!. Here X is the invariant of a network, «
divides X into k subsets, and |X;| is the potential of subset i. Entropy can be defined?

H(G, @) = 1X|log(IX]) — ZE41X; | log(1X:),
and H(G,a) = —Z{_;l P;log(P,) = — k |Xi|10g (M),

=1 x| x|

|4
2

(V,E),|V| < o, E €V XV is a finite directed graph.
Rashevsky® and Trucco* first used (network) entropy to measure structure

where G=(V,E),|V|<oo,E§() is a finite undirected graph and G =

complexity. Such graph variables as node number, degree sequence of node, and
extended degree sequence are used to enable entropy measurement. These
measurements were first introduced by Rashevsky to provide topological information
on graph G, defined as®

"H(G) := [V]1log(IV]) — Zi1IN; | log(IN;]),
and YH(G) := =Yk INillog (M)

=1 S\
[1] da Silva, V. d. P. R, Belo Filho, A. F., Almeida, R. S. R., de Holanda, R. M. & da Cunha
Campos, J. H. B. Shannon information entropy for assessing space—time variability of rainfall
and streamflow in semiarid region. Sci. The Total. Environ. 544, 330-338 (2016).
[2] Sandhu, R. et al. Graph curvature for differentiating cancer networks. Sci. reports 5, 12323
(2015).



[3] Rashevsky, N. Life, information theory, and topology. Bull. Math. Biol. 17, 229-235 (1955).
[4] Trucco, E. A note on the information content of graphs. Bull. Math. Biol. 18, 129-135 (1956).

S2. Partial evaluation results of FBSE in caveman network
For a caveman network with network size N and community number n, to any
node k denoted by 7,~t,, it has
by = Z (*wy; - wy))
(i.jes(k))

SU) ={(L):1<i<N;1<j<N;i#j+k}

Where b, (called flow betweenness) means the variation of maximum flow
when network node k is removed from the network. W is the maximum flow matrix

and W means the matrix by removing the kth line and kth column from W.

Analogously, *W* represents the recalculated maximum flow matrix after the

removal of the kth line and kth column from the original network.

Based on the symmetry of network, it is not difficult to understand the
fundamental theorem hereinafter illustrated:
b

Theorem 1: for Vi,,Vi,, 0 < i, i, < m,then b, 0<j<n.

1~j = Pig~jo

Theorem 2: for Vk;,Vk,, 0 < ky,ky < N, if 0 oue = i, our, then by, = by,.

Theorem 3: for Vi, Vj,Vk, 0 <i,j,k <N,i+#j+# k,then m,(i,j) = m,(j,1).
Where my(i,j) is the flow quantity when the maximum flow passes node k

from node i to node j. 6 ., is denoted as the number of inter-community edges of
node k.

Let S(k) = Ug=4 S;(k), where

s [[] o] o
0= [ o] o
o061 ] ) 5
o[ [[] ] ) 50

It is not difficult to find that Ng_, S;(k) = @, Thus,



by =W, + ¥, + ¥, + ¥,
I. When t =0, for Vk € {i~j|kyy, = 0}, it has
¥, = A%z—1
Y, =Y, =y, =0
Il. When t =1, for Vk € {i~j|kyy, = 0}, it has
¥, = Ai—1
Y, =Y, =y, =0
When t = 1, for Vk € {i~j|kou = 1}, it has
¥, = A%z—1
¥, =2(m—-1)-C:_,-C}
Wy = A%, - Ch- Ch
Y, =(m-—1)-(2CL_, +2C}_, + A%)
I1l. When t = 2, for Vk € {i~j|kyy, = 0}, it has
¥, = A121—1
Y, =Y, =Yy, =0
When t = 2, for Vk € {i~j|kou = 1}, it has
¥, = A%z—1
¥, =2(m—-1)-C:_,-C}
Wy = AZ,_, - CL-C}
y, =2Cl_,
When t = 2, for Vk € {i~j|kou: = 2}, it has
¥, = Ai-l - 29k0ut,t

¥, = 2koye(m —1) - Ci_y - Cpy
Yy =A% 1 Ch-Cy
¥, = zekout—l,t(A% ) C711—1 -1)
IV. When 3 < ¢ <> —1,for Vk € {i~jlkeu = 0}, it has
P =A%
W, =, =W, =0



When 3 <t <Z—1,for vk € {i~jlkoy = 1}, it has
¥, = A%z—1
‘Pz = Z(m_ 1) .C'}l—l .C}l
Wy =A% - Che G
¥, =2Cq4
When 3<t < % — 1, for Vk € {i~jlkou = 2}, it has
l'IJl = A%l—l - 2
Y, = 2kout(’rn -1)- C111—1 ' Crll
W; = A%, Ch Ch

¥, = 29kout—1,tC111—1

V. When g— 1<t< g for Vk € {i~jlkoy = 0}, it has

i.  When nis an odd number, which means t = nT_l

¥, = A121—1
Y, =2(m—-1)-C:_,-C}
Y, =¥, =0
ii.  When n is an even number, which means t = g
¥, = A%z—1
¥, =2(m—-1)-C:_,-C}
Y, =y, =0
When g— 1<t< g for Vk € {i~jlkoy = 1}, it has

n-—1

i. When nis an odd number, which means t = -~
¥, = A%—l
W, =2(m—-1)-C:_,-C}
Wy =A%, - CL-Ch
Y, =2Ck_,
ii. When n is an even number, which means ¢t = 2

P =A%,



¥, = 2[(771 - 1) : Crll—z ) Crll + kout]
¥; = 2koutcrln—z ’ Crll
Y, = Zkoutcnlz—1
When %— 1<t< g for Vk € {i~jlkoy = 2}, it has

i.  When nis an odd number, which means t = nT_l

‘Pl = A%‘L—l - 2
¥, = 2kout(rn -1)- C111—1 ) Crll
Wy = A%, Ch - Ch
¥, = Zekout—l,tcrll—l

ii. When n is an even number, which means t = 2

Y, =A2_, -2
Y, =2(m—-1)-C:_,-C}
¥ = Z[koutcrln—z -Cp—1]
¥, = Zkoutcrll—l
VI. When ~ <t <n—2,for Vk € {i~jlkey = 03, it has
¥, = A%z—1
¥, =2(m—-1)-C:_,-C}
Y.=9,=0
When g <t<n-—1,for Vk € {i~jlkoy = 1}, it has
¥, = A121—1
W, =2[(m —1) - Ch_p - Cf + ko]
Vs = Zkoutcrln—z - Cq
¥, = Zkoutcvlq—1
When g <t <n,for Vk € {i~jl|koy = 2}, it has
P, =A% -2
¥, = 2[(m -1 Crll—l—kout -Ch + 2kout]

¥; = 2['lcoutcrln—z ) Crlz - 1]



Y, = 2koutc111—1

S3. FBSE of caveman network in non-steady states

Based on partial evaluation results of FBSE discussed in S1, FBSE of caveman
network in non-steady states can be calculated by
Hgg(1)

B 2[(m? —m+ Dn?+2(m—-2)n+ 7 — 6m]
- {Zm[(m2 —-m+1Dn?+@2m-5n+8—-6m]|+mn—-1)(n—2)2+ (n—-1)N

m?>—-m+1n?+2(m—-2n+7—6m
m?—-m+1n?2+(2m-5mn+8—-6ml+mn—-—1)(n—2)2+(n—1)N
(n—1)*(n—2)
+ 2m[f(m? —-m+1n?+ 22m—-5n+8—-6m]+m(n—1)(n—2)2+ (n—1)N
(n—1)°
m?—m+1n?2+(2m-5n+8—-6mjl+mn—-1)(n—-2)>+n-— 1)N}

X log 2l

1
X log 2

Hgg(2)

3 m?+m—-1n*+2G-2mn—-13
- {(sz —m+1mn?+m(11-8m)n—12m+mn—-1)(n—-2)(n—3)+ (n—1)N

(m?+m-1n?+2(5-2mn—13
x log Bmz2—-m+1mn2+m(11-8mn—12m+mn—-1)(n—-2)(n—-3)+ (n—1)N
2[(m? —m+ Dn? +2(1 —m)n — 1]
+ Bm2—-—m+1mn?+m(A1-8m)n—12m+mn—-1)n-2)(n—-3)+ (n—1)N
m?-—m+1n?>+2(1-mn—-1
x log Bmz2—-m+1mn2+m(11-8mn—12m+mn—-1)(n—-2)(n—-3)+ (n—1)N

(n—1)*(n—3)
+ Bm?2—m+1mn?+mA1-8m)n—12m+mn—-1)(n—-2)(n—-3)+ (n—1)N
| (n—1)?
x 108 Bm?2—m+1mn?+m(11-8m)n—12m+mn—-1)(n—-2)(n—3)+ (n — 1)N}

When 3St£§—1,



Heg(t)

B (t = D[(m?+m—1)n? +2(3 —2m)n — 5]
B _m{[(t +1m2+({t—-3)ym—t+3mn2+ Gt—-3—4tmymn—4mEt - 1) +mn—-1Dn-2)(n—t—1)+ (n— 1N

m?+m-1n?+2B3-2mn—->5
[+ 1)m2+(t—-3)ym—t+3mn?2+Gt—-3—4tm)mn—4m(t—1)+mn—-1Dn-2)(n—t—1)+ n—-1)N

X log

2[(m? —m+ Dn? +2(1 —m)n—1]
* [+1)m2+(t—-3)m—t+3mn?2+ Gt—-3—-4tm)mn—4m(t—-1)+mnh—-1Dn-2)(n—t—1) + n—-1)N

m?>-m+1n?+2(1-mn-1
[+ 1)m2+(t—-3)ym—t+3mn?2+ Gt—-3—4tm)mn—4m(t—1)+mn—-1Dn-2)(n—t—1)+ n—-1)N

X log

n—-1)?n—-t-—1)
* [+1)m2+(t—-3)m—t+3mn?2+ Gt—-3—4tm)mn—4m(t—-1)+mnh—-1Dn-2)(n—-t—1)+ n—-1)N

(n—1)? }

X o8 e Y2 + (£ = 3)m — £ + 3]mn? + (5t — 3 — dtm)mn — dm@t — 1) + mn— D = 2)(n —t =1 + (1 = DN

While g— 1<t< % and n is an odd number,

Heg(t)

_ t—1D[m*+m—-1n*+2@B —-2m)n—75]
- _m{[(t +1)m?2+ (t—3)m—t+3mn2+ (5t—3 —4tm)mn—4m(t— 1) +m[Cm—-1)n2—Cm+ Dn+2]n—t—1)+n—-1)N

(m?*+m-1n*>+23-2m)n->5

x log [+ 1Dm?2+ (t—3)m—t+3]mn2+ (Gt—3—4tm)mn—4m(t— 1)+ m[@m—1Dn2 - 2m+ Dn+2](n—t—1)+ (n— 1N
2[(m? —=m+ Dn?+2(1 —m)n—1]
+ [+ 1Dm?2+ (t—3)m—t+3mn?+ (5t —3—4tm)mn—4m(t —1) + m[@Cm—1Dn2 - Cm+ Dn+2](n—t—1)+ (n— 1)N

m?>-m+1n*+201-m)n—1

x log [+ 1Dm?2+ (t—3)m—t+3]mn2+ (Gt—3—4tm)mn—4m(t— 1)+ m[@m—Dn2 - 2m+ Dn+2](n—t—-1)+ (n— 1N
(m—t—1[@2m—-1n?-2mn+1]
+ [+ 1m?2+ (t—3)m—t+3]mn?2+ (5t—3—4tm)mn—4m(t—1) + m[2m— Dn2 - 2m+ Dn+2](n—t—1)+ (n— 1)N

X log

2m—1)n?*-2mn+1
[+ 1D)m?2+ (t—3)m—t+3]mn2+ (Gt—3—4tm)mn—4m(t—1)+m[Cm—-1Dn2—-Cm+ Dn+2ln—-t—1)+ n— l)N}

While g— 1<t< % and n is an even number,

Hpg(t)
3 t-D[Cm—-1Dn?+2(m—-2)n-7]
-m {(t -D@2m-1mn?2+(t-1)C2m—-5mn—-6m(t—1)+m[Cm—-1n?-Cm+1n+2](n—t+1)+(n—-1)N
Cm—-1Dn?>+2(m-2)n-7
X log

t-1DC2m—-1mn?2+(t—-1D)C2m—-5mn—6m(t—1)+m[Cm—-Dn2-Cm+1n+2)(n—t+1)+(Mn—-1N

n—t+D[2m - 1Dn? —2mn + 1]
+ t-1DC2m—-1mn2+(t-1)Cm-5mn—6m({t—1)+m[Cm—-1Dn2 - 2m+Dn+2](n—t+1)+ (n—-1)N

. 2m-1n?-2mn+1
X8 T Dem — Dmn? + (¢ — D2m —5)ymn —6m(t — 1) + m[(2m — Dn? — @m+ Dn+ 21(n—t+ D + (n— 1)N}



S4. FBSE of caveman network in steady states
The task here is to determine at what t value the caveman network regains its
non-heterogeneity. At evolutionary time t, the degree value sum of the

inter-community edges in a community is 23, 0y +kqy. FOr a given node k, if the

maximum flow of any other node k' is independent of k , it must fulfill the condition
2 Zkout 9k0ut,tkout - Zelg,out = dk"

This above inequality is satisfied for vk and is equivalent to

t
2 z ekout,tkout = rrllf,‘x dk’ + m’?X 20k,out

kout

4t>2(n—-1)+ 4
n+1

where n is a positive integer. When the caveman network evolves into §+ 1 whenn

. +1 .
is an even number or nT when n is an odd number, the control of any node k on the

maximum network flow only affects the nodes in set Q = {k'|a;," # 0,k" # k}.
Here a,,’ is the element at line k and column k' in adjacent matrix A. At this t
value the caveman network reaches its steady state. For Vk,

e _{1 IEQ or jE

k
w *
LJ 0 others

9
Q] =n—1.
Thus,
bk = Z (kWi,j — kW;k‘]) = 2(7'1 — 1) ' (Tl‘m — 2) — C721_1
(i.jes(k))
=(Mn-1)-2nm—-n-2).
The FBSE of the caveman network in s steady state (g <t<n)is

bargkoyt.ttdargkoyt.t 1 bargkoyt ttdargkourt _

Hpg(t) = —m Y} =0 Okouot "

Tq=1(bge+dqr) Yq=1(bge+dqr)
{ [2m-1)n?-2mn+1|n (2m-1)n?2-—2mn+1 } — los N
[2m-1)n2-2m+1)n+2]lmn+(n-1)N g [Cm-1Dn2-2m+Dn+2lmn+(n-1)NJ 08

where brgr, .. 1S the betweenness flow of a node with kg, inter-community edges

attime t, dargr,,.: IS the degree value of a node k with k. inter-community edges

at time t, by, is the betweenness flow of node k at time t, and d,,, is the degree
value of node k at time t.



