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Nature-inspired metaheuristic methods and their paramete rs
The following widely used in practice metaheuristic algorithms have been compared in our experiments with the well-known
deterministic algorithms DIRECT, its locally-biased version DIRECT-L , and the algorithm based on adaptive diagonal curves
(ADC).

• Genetic Algorithm (GA) is one of the basic nature-inspired evolutionary algorithms that simulates the evolution on a
genotype level. This method uses in its work three main operators: crossover, mutation and selection. We used the real-
coded genetic algorithm with the simulated binary crossover from http://www.egr.msu.edu/ kdeb/codes/rga/rga.tar. The
parameters of the methods have been set as follows: the crossover probability was set to 0.95, mutation probabilities for
binary and real coded variables were set to 0.2 and 0.25, respectively, in our experiments.⌈D/2⌉ binary-coded variables
and⌊D/2⌋ real-coded variables were used. The chromosome length for binary-coded variables was set to 16. Finally,
the parameterη of Simulated Binary Crossover (SBX) was set to 4.

• Artificial Bee Colony (ABC) simulates the intelligent foraging behavior of a honey-bee swarm. It provides a population-
based search procedure in which candidates (foods positions) are modified by the artificial bees with time. The bee’s
aim is to discover places of food sources with higher nectar amounts (related to the objective function). In an ABC
system, some of the artificial bees (employed and onlooker bees) choose food sources depending on the experience
of themselves and their nest mates and adjust their positions. Other bees (scouts) fly and choose the food sources
randomly without using experience. Therefore, during the work, the ABC system combines the local search (carried
out by employed and onlooker bees) with the global one (managed by onlookers and scouts), thus attempting to balance
exploration and exploitation processes. The number of employed bees was set equal to the number of onlooker bees
and, thus, was equal to half population, i.e., one employed bee for each food source; the number of scout bees was set
to 1. The basic ABC algorithm employs in its work only one control parameterlimit. A food source is not anymore
exploited and is abandoned by the bees when limit is exceededfor the source. Thelimit was set toFoodNumber ·N,
where theFoodNumber is the number of food sources, i.e., the number of employed bees andN is the dimension of the
problem. The realization of the algorithms was taken fromhttp://sci2s.ugr.es/EAMHCO#Software.

• Firefly Algorithm (FA) belongs to the swarm intelligence algorithms as well and is inspired by the flashing behavior of
fireflies. Each firefly (candidate solution) flashes its lightswith some brightness (associated with the objective function).
This light attracts other fireflies within its neighborhood.This attractiveness depends on the (Euclidean) distancer
between the two fireflies and is determined byβ (r) = β0e−γr2

, whereβ0 is the attractiveness atr = 0. Hence, the search
domain is explored by moving the fireflies towards more attractive neighbors (with some randomized moves allowed),
thus improving the current best solution to problem. The attractiveness parameterβ0 was set equal to 1. The absorbtion
coefficientγ was set equal to 1/

√
l, wherel is the average scaling factor of the problem (i.e.,l = ∑N

i=1(bi − ai)/N for
the search hyperinterval{x = (x1, ...,xN)|xi ∈ [ai,bi]}. Finally, the randomization parameterα was set equal to 0.2. The
realization of the algorithm was taken fromhttps://github.com/firefly-cpp/Firefly-algorithm–FFA-.

http://www.egr.msu.edu/~kdeb/codes/rga/rga.tar
http://sci2s.ugr.es/EAMHCO#Software
https://github.com/firefly-cpp/Firefly-algorithm--FFA-


Table 1. GKLS test classes. For each test class the radius of the convergence regionρ , distance between the paraboloid
vertex and the global minimizerr, and the tolerance∆ from (1) are given.

N Hardness r ρ ∆
2 Simple 0.9 0.2 10−4

2 Hard 0.9 0.1 10−4

3 Simple 0.66 0.2 10−6

3 Hard 0.9 0.2 10−6

4 Simple 0.66 0.2 10−6

4 Hard 0.9 0.2 10−6

5 Simple 0.66 0.3 10−7

5 Hard 0.66 0.2 10−7

• Differential Evolution (DE) is another nature-inspired algorithm that solves a problem by maintaining a population of
candidate solutions and creating new candidate solutions by combining existing ones with the usage of the crossover,
mutation and selection operators, and then keeping the candidate solution with the currently best score (or fitness). The
first control parameterF is a real constant which affects the differential variation(mutation) between two solutions and
it was set to 0.7 in our experiments. The second control parameter is the value of crossover rateCR which controls the
change of the population diversity and is between 0 and 1. It was set to 0.5 in the experiments. The mutation strategy
“DE/Rand/2/exp” was used as one of the most powerful strategies. The realization of the algorithms was taken from
http://www1.icsi.berkeley.edu/ storn/DenewC.zip.

• Particle Swarm Optimization algorithm (PSO) solves a problem starting from a population (swarm) of candidate solu-
tions (particles) and moving these particles in the search domain according to the particle’s position and velocity. At
each iteration, a particle of the swarm updates its positionby following the best local particle’s position and the best
solution of the whole swarm, thus guiding the swarm toward the best solutions. Cognitiveφl and socialφg parameters
of PSO control the weighing on the personal (local) and swarm(global) experience, respectively; they were set to their
default value 2.0 in our experiments. The inertia weightω determines the influence of the previous velocity of a particle
on its further velocity; we set it equal to 0.6 as for difficultand multimodal functions. The maximal velocity value was
set equal to 15% of the longest side of the search domain. The algorithms was implemented inC++.

Additional results
In these supplementary materials, the operational zones for five tested metaheuristics are given for the lower dimensionsN = 2,
N = 3, andN = 4 and results for two algorithms that were not discussed in the paper (DE and PSO) are compared with the
deterministic methods on 5-dimensional classes. Since it is reasonable to use aggregated operational zones only if thenumber
of trials large enough can be performed, these zones are presented only on the 5-dimensional class for the algorithms presented
in the paper (FA, ABC, and GA) which showed the best performance on the indicated classes of test problems.

In the experiments presented in the paper more than 800,000 runs of the algorithms have been performed in total. In
particular, each of 5 metaheuristics were launched 100 times on each of 800 test problems for both the approaches (operational
zones and aggregated operational zones), giving so 800,000 runs in total for the metaheuristic algorithms. Then, each of 3
deterministic algorithms were launched on each of 800 test problems, giving so 2,400 runs in total. Thus, 802,400 runs have
been performed in total by all the algorithms.

GKLS test classes used in the experiments are presented in Table 1. Control parameters of the GKLS-generator required
to produce classes of test problems are presented: the radius of the convergence regionρ , distance between the paraboloid
vertex and the global minimizerr and the tolerance∆ (for details, see Sergeyev and Kvasov (2006) ). Each problemwas
considered to be solved if an algorithm generated a pointx′ inside a hyperinterval with a vertexx∗ and the volume smaller
than the volume of the initial hyperintervalD = [a,b] multiplied by an accuracy coefficient, i.e., if

|x′i − x∗i | ≤
N
√

∆(bi − ai), 1≤ i ≤ N. (1)

Finally, Table 2 presents results of the experiments for DE and PSO metaheuristics.
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Figure 1. Operational characteristics and operational zones for the2-dimensional GKLS classes for metaheuristics FA, GA,
and ABC.a, Operational characteristics for deterministic methods and operational zones for FA are presented for the simple
class.b, The same as (a) for the hard class.c, Operational characteristics for deterministic methods and operational zones for
GA are presented for the simple class.d, The same as (c) for the hard class.e, Operational characteristics for deterministic
methods and operational zones for ABC are presented for the simple class.f, The same as (e) for the hard class.
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Figure 2. Operational characteristics and operational zones for the3-dimensional GKLS classes for metaheuristics FA, GA,
and ABC.a, Operational characteristics for deterministic methods and operational zones for FA are presented for the simple
class.b, The same as (a) for the hard class.c, Operational characteristics for deterministic methods and operational zones for
GA are presented for the simple class.d, The same as (c) for the hard class.e, Operational characteristics for deterministic
methods and operational zones for ABC are presented for the simple class.f, The same as (e) for the hard class.
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Figure 3. Operational characteristics and operational zones for the4-dimensional GKLS classes for metaheuristics FA, GA,
and ABC.a, Operational characteristics for deterministic methods and operational zones for FA are presented for the simple
class.b, The same as (a) for the hard class.c, Operational characteristics for deterministic methods and operational zones for
GA are presented for the simple class.d, The same as (c) for the hard class.e, Operational characteristics for deterministic
methods and operational zones for ABC are presented for the simple class.f, The same as (e) for the hard class.
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(c)
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Figure 4. Operational characteristics and operational zones for the2-dimensional GKLS classes for metaheuristics PSO and
DE. a, Operational characteristics for deterministic methods and operational zones for PSO are presented for the simple class.
b, The same as (a) for the hard class.c, Operational characteristics for deterministic methods and operational zones for DE
are presented for the simple class.d, The same as (c) for the hard class.
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Figure 5. Operational characteristics and operational zones for the3-dimensional GKLS classes for metaheuristics PSO and
DE. a, Operational characteristics for deterministic methods and operational zones for PSO are presented for the simple class.
b, The same as (a) for the hard class.c, Operational characteristics for deterministic methods and operational zones for DE
are presented for the simple class.d, The same as (c) for the hard class.

7/10



0 1 2 3 4 5

x 10
4

0

20

40

60

80

100

Number of trials

N
um

be
r 

of
 s

ol
ve

d 
pr

ob
le

m
s

4−dimensional simple class

 

 

PSO DIRECT DIRECT−L ADC

(a)

0 1 2 3 4 5

x 10
4

0

20

40

60

80

100

Number of trials

N
um

be
r 

of
 s

ol
ve

d 
pr

ob
le

m
s

4−dimensional hard class

 

 

PSO DIRECT DIRECT−L ADC

(b)

0 1 2 3 4 5

x 10
4

0

20

40

60

80

100

Number of trials

N
um

be
r 

of
 s

ol
ve

d 
pr

ob
le

m
s

 

 

DE DIRECT DIRECT−L ADC

(c)

0 1 2 3 4 5

x 10
4

0

20

40

60

80

100

Number of trials

N
um

be
r 

of
 s

ol
ve

d 
pr

ob
le

m
s

 

 

DE DIRECT DIRECT−L ADC

(d)

Figure 6. Operational characteristics and operational zones for the4-dimensional GKLS classes for metaheuristics PSO and
DE. a, Operational characteristics for deterministic methods and operational zones for PSO are presented for the simple class.
b, The same as (a) for the hard class.c, Operational characteristics for deterministic methods and operational zones for DE
are presented for the simple class.d, The same as (c) for the hard class.
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Figure 7. Operational characteristics and operational zones for the5-dimensional GKLS classes for metaheuristics PSO and
DE. a, Operational characteristics for deterministic methods and operational zones for PSO are presented for the simple class.
b, The same as (a) for the hard class.c, Operational characteristics for deterministic methods and operational zones for DE
are presented for the simple class.d, The same as (c) for the hard class.
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Table 2. Results of the experiments. For each test class the average number of trials required to solve all 100 problems is
presented for each deterministic algorithm. For each metaheuristic method, the average number of trials required to solve
each problem on 100 runs has been calculated, and the averageof these 100 values is presented.†

N Class

Metaheuristic algorithms Deterministic algorithms
(10000 runs for each algorithm and class) (100 runs for each algorithm and class)

Differential Particle Swarm
DIRECT DIRECT-L

Diagonal
Evolution Optimization Algorithm

2 simple >52910.38(511) >110102.74(1046) 198.9 292.8 176.3
2 hard >357467.49(3556) >247232.35(2282) 1063.8 1267.1 675.7
3 simple >165125.02(1515) >170320.10(1489) 1117.7 1785.7 735.8
3 hard >476251.20(4603) >285499.04(2501) >42322.7(4) 4858.9 2006.8
4 simple >462401.52(4546) >303436.36(2785) >47282.9(4) 18983.6 5014.1
4 hard >773481.03(7676) >456996.08(4157) >95708.3(7) 68754 16473
5 simple >294839.01(2815) >181805.17(1561) >16057.5(1) 16758.4 5129.9
5 hard >751930.00(7473) >250462.63(2109) >217215.6(16) >269064.4(4) 30471.8
†The record “>m(i)” means that the algorithm did not solve a global optimization problemi times in 100 runs×100 problems
(i.e., in 10,000 runs for metaheuristics and in 100 runs for deterministic algorithms). In this case, the maximal number of
trials set to 106 was used to calculate the average number of trialsm.
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