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Nature-inspired metaheuristic methods and their paramete rs

The following widely used in practice metaheuristic algfoms have been compared in our experiments with the welvkno
deterministic algorithms DIRECT, its locally-biased viersDIRECT-L , and the algorithm based on adaptive diagonales
(ADC).

e Genetic Algorithm (GA) is one of the basic nature-inspirgdlationary algorithms that simulates the evolution on a
genotype level. This method uses in its work three main dpesacrossover, mutation and selection. We used the real-
coded genetic algorithm with the simulated binary crossfreen http://www.egr.msu.edu/ kdeb/codes/rga/rgaTae
parameters of the methods have been set as follows: theogsygsrobability was set to 0.95, mutation probabilitiess fo
binary and real coded variables were set to 0.2 and 0.2%ctsgely, in our experiment§D /2] binary-coded variables
and|D/2] real-coded variables were used. The chromosome lengttirfancoded variables was set to 16. Finally,
the parameten of Simulated Binary Crossover (SBX) was set to 4.

¢ Atrtificial Bee Colony (ABC) simulates the intelligent foriag behavior of a honey-bee swarm. It provides a population-
based search procedure in which candidates (foods pagittsa modified by the artificial bees with time. The bee’s
aim is to discover places of food sources with higher neatawumnts (related to the objective function). In an ABC
system, some of the artificial bees (employed and onlookes)behoose food sources depending on the experience
of themselves and their nest mates and adjust their positi@ther bees (scouts) fly and choose the food sources
randomly without using experience. Therefore, during tloekywthe ABC system combines the local search (carried
out by employed and onlooker bees) with the global one (meshbg onlookers and scouts), thus attempting to balance
exploration and exploitation processes. The number of eyapl bees was set equal to the number of onlooker bees
and, thus, was equal to half population, i.e., one emplogadfor each food source; the number of scout bees was set
to 1. The basic ABC algorithm employs in its work only one eohparametefimit. A food source is not anymore
exploited and is abandoned by the bees when limit is excefeddéde source. Thémit was set tad~oodNumber - N,
where the=oodNumber is the number of food sources, i.e., the number of employed bad\ is the dimension of the
problem. The realization of the algorithms was taken fidip://sci2s.ugr.es/EAMHCO#Software

e Firefly Algorithm (FA) belongs to the swarm intelligence atihms as well and is inspired by the flashing behavior of
fireflies. Each firefly (candidate solution) flashes its lighith some brightness (associated with the objective fongti
This light attracts other fireflies within its neighborhoodhis attractiveness depends on the (Euclidean) distance
between the two fireflies and is determineddy) = Boe*V’Z, wheref} is the attractiveness at= 0. Hence, the search
domain is explored by moving the fireflies towards more atitraceighbors (with some randomized moves allowed),
thus improving the current best solution to problem. Theaativeness parametgg was set equal to 1. The absorbtion
coefficienty was set equal to/b/1, wherel is the average scaling factor of the problem (i.es, EiN:l(bi —&)/N for
the search hyperinterv@k = (x1,...,xn) | € [ai,bi]}. Finally, the randomization parametemwas set equal to.Q. The
realization of the algorithm was taken frdmtps://github.com/firefly-cpp/Firefly-algorithm—FFEA-


http://www.egr.msu.edu/~kdeb/codes/rga/rga.tar
http://sci2s.ugr.es/EAMHCO#Software
https://github.com/firefly-cpp/Firefly-algorithm--FFA-

Table 1. GKLS test classes. For each test class the radius of the igemee regiop, distance between the paraboloid
vertex and the global minimizer and the tolerancé from (1) are given.

Hardness| r o) A
Simple | 09 [02] 10*
Hard 09 |01]|10*
Simple | 0.66 | 0.2 | 10°©
Hard | 09 |02 ]| 10°
Simple | 0.66] 0.2 | 10°°
Hard 09 | 02| 10°
Simple | 0.66] 0.3 | 1077
Hard 066 | 02| 107
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¢ Differential Evolution (DE) is another nature-inspiregatithm that solves a problem by maintaining a population of
candidate solutions and creating new candidate solutigreoimbining existing ones with the usage of the crossover,
mutation and selection operators, and then keeping theédatedsolution with the currently best score (or fithess)e Th
first control parametdf is a real constant which affects the differential variatjorutation) between two solutions and
it was set to 07 in our experiments. The second control parameter is theewafl crossover rat€R which controls the
change of the population diversity and is between 0 and 1a#t set to & in the experiments. The mutation strategy
“DE/Rand/2/exp” was used as one of the most powerful stiesegrhe realization of the algorithms was taken from
http://www1.icsi.berkeley.edu/ storn/DenewC.zip

e Particle Swarm Optimization algorithm (PSO) solves a peobttarting from a population (swarm) of candidate solu-
tions (particles) and moving these particles in the seaarhain according to the particle’s position and velocity. At
each iteration, a particle of the swarm updates its poshipfollowing the best local particle’s position and the best
solution of the whole swarm, thus guiding the swarm towasdltbst solutions. Cognitivg and socialg parameters
of PSO control the weighing on the personal (local) and swaltobal) experience, respectively; they were set to their
default value 2.0 in our experiments. The inertia weiglttetermines the influence of the previous velocity of a plartic
on its further velocity; we set it equal to 0.6 as for difficattd multimodal functions. The maximal velocity value was
set equal to 15% of the longest side of the search domain. [fbathms was implemented @+ +.

Additional results

In these supplementary materials, the operational zoméisédested metaheuristics are given for the lower dimersdib= 2,

N = 3, andN = 4 and results for two algorithms that were not discussederptiper (DE and PSO) are compared with the
deterministic methods on 5-dimensional classes. Sinsgdéssonable to use aggregated operational zones onlyntithber

of trials large enough can be performed, these zones areriegsonly on the 5-dimensional class for the algorithmsegme=d

in the paper (FA, ABC, and GA) which showed the best perforream the indicated classes of test problems.

In the experiments presented in the paper more than0®@runs of the algorithms have been performed in total. In
particular, each of 5 metaheuristics were launched 10Gstoneach of 800 test problems for both the approaches (opeaht
zones and aggregated operational zones), giving sc0800uns in total for the metaheuristic algorithms. Thertheaf 3
deterministic algorithms were launched on each of 800 tegilpms, giving so 2400 runs in total. Thus, 80200 runs have
been performed in total by all the algorithms.

GKLS test classes used in the experiments are presentethimITaControl parameters of the GKLS-generator required
to produce classes of test problems are presented: thesrafiibe convergence regign distance between the paraboloid
vertex and the global minimizerand the tolerancé (for details, see Sergeyev and Kvasov (2006) ). Each proklam
considered to be solved if an algorithm generated a poiintside a hyperinterval with a verte& and the volume smaller
than the volume of the initial hyperinterval= [a, b] multiplied by an accuracy coefficient, i.e., if

X —x| < VA —a), 1<i<N. )

Finally, Table 2 presents results of the experiments for BEERSO metaheuristics.
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2-dimensional simple class
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Figure 1. Operational characteristics and operational zones fo2 #iienensional GKLS classes for metaheuristics FA, GA,
and ABC.a, Operational characteristics for deterministic methods@werational zones for FA are presented for the simple
class.b, The same as (a) for the hard classOperational characteristics for deterministic methodbs@erational zones for
GA are presented for the simple cladsThe same as (c) for the hard classOperational characteristics for deterministic
methods and operational zones for ABC are presented foiniesclassf, The same as (e) for the hard class.
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3-dimensional simple class
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Figure 2. Operational characteristics and operational zones foBtiienensional GKLS classes for metaheuristics FA, GA,
and ABC.a, Operational characteristics for deterministic methods@werational zones for FA are presented for the simple
class.b, The same as (a) for the hard classOperational characteristics for deterministic methodbs@erational zones for
GA are presented for the simple cladsThe same as (c) for the hard classOperational characteristics for deterministic
methods and operational zones for ABC are presented foiniesclassf, The same as (e) for the hard class.
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4-dimensional simple class 4-dimensional hard class
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Figure 3. Operational characteristics and operational zones fodtiienensional GKLS classes for metaheuristics FA, GA,
and ABC.a, Operational characteristics for deterministic methods@perational zones for FA are presented for the simple
class.b, The same as (a) for the hard classOperational characteristics for deterministic methodbs@werational zones for
GA are presented for the simple cladsThe same as (c) for the hard classOperational characteristics for deterministic
methods and operational zones for ABC are presented foinipesclassf, The same as (e) for the hard class.
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2-dimensional simple class
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Figure 4. Operational characteristics and operational zones fa2-tienensional GKLS classes for metaheuristics PSO and
DE. a, Operational characteristics for deterministic methods@perational zones for PSO are presented for the simpls.clas
b, The same as (a) for the hard classOperational characteristics for deterministic methodas@perational zones for DE

are presented for the simple cladsThe same as (c) for the hard class.
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3-dimensional hard class
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Figure 5. Operational characteristics and operational zones foB-tenensional GKLS classes for metaheuristics PSO and
DE. a, Operational characteristics for deterministic methods@perational zones for PSO are presented for the simpls.clas
b, The same as (a) for the hard classOperational characteristics for deterministic methodas@perational zones for DE

are presented for the simple cladsThe same as (c) for the hard class.
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4-dimensional simple class 4-dimensional hard class
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Figure 6. Operational characteristics and operational zones fot-tlienensional GKLS classes for metaheuristics PSO and
DE. a, Operational characteristics for deterministic methods@perational zones for PSO are presented for the simple. clas
b, The same as (a) for the hard classOperational characteristics for deterministic methodas@perational zones for DE

are presented for the simple cladsThe same as (c) for the hard class.
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5-dimensional simple class 5-dimensional hard class
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Figure 7. Operational characteristics and operational zones fos-tlienensional GKLS classes for metaheuristics PSO and
DE. a, Operational characteristics for deterministic methods@perational zones for PSO are presented for the simple. clas
b, The same as (a) for the hard classOperational characteristics for deterministic methodas@perational zones for DE

are presented for the simple cladsThe same as (c) for the hard class.
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Table 2. Results of the experiments. For each test class the aveuagiean of trials required to solve all 100 problems is
presented for each deterministic algorithm. For each neetidgstic method, the average number of trials required lieso

each problem on 100 runs has been calculated, and the awdrhgse 100 values is presentéd.

M etaheuristic algorithms Deterministic algorithms
(10000 runs for each algorithm and clags) (100 runs for each algorithm and class)
N | Class Differential Particle Swarm DIRECT DIRECT-L Diagonal
Evolution Optimization i Algorithm
2 | simple | >52910.38(511) | >110102.74(1046) 198.9 292.8 176.3
2 hard | >357467.49(3556) >247232.35(2282) 1063.8 1267.1 675.7
3 | simple | >165125.02(1515) >170320.10(1489) 1117.7 1785.7 735.8
3 | hard | >476251.20(4603) >285499.04(2501) >42322.7(4) 4858.9 2006.8
4 | simple | >462401.52(4546) >303436.36(2785) >47282.9(4) 18983.6 5014.1
4 | hard | >773481.03(7676) >456996.08(4157) >95708.3(7) 68754 16473
5 | simple | >294839.01(2815) >181805.17(1561) >16057.5(1) 16758.4 5129.9
5 | bhard | >751930.00(7473) >250462.63(2109) >217215.6(16)| >269064.4(4) 30471.8

TThe record “>m(i)” means that the algorithm did not solve a global optiatian probleni times in 100 runs<100 problems

(i.e., in 10000 runs for metaheuristics and in 100 runs for determmjorithms). In this case, the maximal number of
trials set to 18 was used to calculate the average number of trials
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