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Reaction process

The SEIR model [1] is customarily used to describe the progression of acute infectious diseases, such as influenza in closed
populations, where the total number of individuals in the population is partitioned into the compartments S(t), E(t), I(t) and
R(t), denoting the number of susceptible, exposed, infected and recovered individuals at time t, respectively. By definition it
follows that N(t) = S(t) + E(t) + I(t) +R(t). In the SEIR model we have three transitions:

S + I
β−→ E + I

E
λ−→ I [1]

I
µ−→ R

The first one, denoted by S → E, is when a susceptible individual interacts with an infectious individual and enters in the
exposed state with probability β. After a time period (the so-called intrinsic incubation time) ti = 1/λ the exposed individual
becomes infected. An infected individual recovers from the disease in the viremic time te = 1/µ. The crucial parameter in the
analysis of single population epidemic outbreaks is the basic reproductive number R0, which counts the expected number of
secondary infected cases generated by a primary infected individual, given by R0 = β/µ. Here we propose a characterization of
a set of prototypical mechanisms for self-initiated social distancing induced by local prevalence-based information available to
individuals in the population. We characterize the effects of these mechanisms in the framework of a compartmental scheme
that enlarges the basic SEIR model by considering separate behavioral classes within the population (2). In particular the fear
of the disease is what induces behavioral changes in the population (3). For this reason we will assume that individuals affected
by the fear of the disease will be grouped in a specific compartment SF of susceptible individuals. We consider a mechanism for
which people can acquire fear assuming that susceptible individuals will adopt behavioral changes only if they interact with
infectious individuals in the same subpopulations. This implies that the larger the number of sick and infectious individuals
among one populations, the higher the probability for the individuals that resides in that nodes to adopt behavioral changes
induced by awareness/fear of the disease. Moreover we consider the scenario in which we also consider self-reinforcing fear
spread which accounts for the possibility that individuals might enter the compartment simply by interacting with people
in this compartment: fear generating fear. In this model people could develop fear of the infection both by interacting with
infected persons and with people already concerned about the disease. A new parameter α ≥ 0, is necessary to distinguish
between these two interactions. We assume that these processes, different in their nature, have different rates. To differentiate
them we consider that people who contact infected people are more likely to be scared of the disease than those who interact
with fearful individuals. For this reason we set 0 ≤ α ≤ 1 . The fear contagion process therefore can be modeled as:

S + I
βF−−→ SF + I [2]

where in analogy with the disease spread, βF is the transmission rate of the awareness/fear of the disease. In addition to
the local prevalence-based spread of the fear of the disease, in this case we assume that the fear contagion may also occur
by contacting individuals who have already acquired fear/awareness of the disease. In other words, the larger the number
of individuals who have fear/awareness of the disease among one individual’s contacts, the higher the probability of that
individual adopting behavioral changes and moving into the class SF . The fear contagion therefore can also progress according
to the following process:

S + SF
αβF−−−→ 2SF [3]

Then we consider the fact that people with fear have less probability to become infected:

SF + I
rbβ−−→ E + I [4]
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with 0 ≤ rb < 1(i.e. rbβ < β). Moreover we consider the fact that our social behavior is modified by our local interactions with
other individuals on a much more rapidly acting time-scale. The fear/awareness contagion process is not only defined by the
spreading of fear from individual to individual, but also by the process defining the transition from the state of fear of the
disease back to the regular susceptible state in which the individual relaxes the adopted behavioral changes and returns to
regular social behavior. We can therefore consider the following processes:

SF + S
µF−−→ 2S [5]

and
SF +R

µF−−→ S +R [6]
Finally the system can be described by the following set of equations:

dtS(t) = −βS(t)I(t)
N
− βFS(t)

[
I(t) + αSF (t)

N

]
+ µFS(t)

[
S(t) +R(t)

N

]
dtS

F (t) = −rbβSF (t)I(t)
N

+ βFS(t)
[
I(t) + αSF (t)

N

]
− µFS(t)

[
S(t) +R(t)

N

]
dtE(t) = −λE(t) + βS(t)I(t)

N
+ rbβS

F I(t)
N

[7]

dtI(t) = −µI(t) + λE(t)
dtR(t) = µI(t)

The system described by the Equation 7 is reduced to classic SEIR for βF = 0.

Definition of the control time TC

We set the control time TC as function of the epidemic extinction time TE for the different model parameters we considered.
The control time TC corresponds to the maximum extinction time TE for different values of epidemic reproductive number R0
an be defined.

Fig. S1 shows the epidemic extinction time decreasing the diffusion parameter p for three different values of the epidemic
reproduction number R0. Fig. S1 shows the value of the control time TC(R0) used in our experiments in both homogeneous
and heterogeneous networks in the diffusion case.

Critical Thresholds

For the SEIR model identify model a critical mobility value pc, below which the epidemics cannot invade the metapopulation
system given by the equation [2]:

pc = 1
N̂

〈k〉2

〈k2〉 − 〈k〉
(µ+ λ)R2

0

2(R0 − 1)2 [8]

where N̂ represents the average number of individuals in a population. In Fig. S3 we report the minimum valued of the resilience
(points) and the theoretical values of the invasion threshold (dotted lines) in both homogenous and heterogeneous networks.
The effect of the heterogeneity on the invasion threshold in metapopulation has been previously extensively analysed [3]. In
Fig. S3,Fig. S4, Fig. S5 we report the comparison between homogeneous and heterogeneous cases. Here we consider λ = 0.3
and µ = 0.1.

Self-initiated behavioral changes

Even in this scenario we observed the presence of a critical value of the precaution level βF after which there is the reduction
of the risk in the system (see Figure 3 in the main text). In correspondence of this critical point it is possible to observe
non trivial patterns of the system’s functionality [4–14]. Indeed the behavioral changes though complicates the dynamics
of the model [15]: in particular, within several regions of the parameter space we observe two or more epidemic peaks that
produce non-trivial patterns of the system’s critical functionality as shown in Fig. S6. This non-trivial behavior can be easily
understood. Behavioral change is a self-reinforcing mechanism until it causes a decline in new cases. At this point individuals
are lured into a false sense of security and return back to their normal behavior often causing a multiple epidemic peaks as
reported in Fig. S7. Some authors believe that a similar process occurred during the 1918 pandemic, resulting in multiple
epidemic peaks [16, 17]. In this following example it is possible to observe that before the critical (βF = 4.3) point even if all
the populations are interested by the disease the extinction time of the disease itself it is lower if compared with the extinction
time caused by the multiple peaks caused by the increasing of the precaution level (βF = 4.3). However after the transition
point the system starts to recover fast also reducing the risk.
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Data-driven simulations: GLEAM

In order to validate the theoretical framework developed, we considered data-driven simulations using the Global Epidemic
And Mobility Model (GLEAM) [18]. GLEAM is based on three different data layers (see Ref. [18] for details). In particular,

• The population layer is based on the high-resolution population database of the Gridded Population of the World project
by the Socio-Economic Data and Applications Center (SEDAC) that estimates population with a granularity given by a
lattice of cells covering the whole planet at a resolution of 15x15 minutes of arc.

• Mobility Layer integrates short-range and long-range transportation data. Long-range air travel mobility is based on
travel flow data obtained from the International Air Transport Association (IATA) and the Official Airline Guide (OAG)
databases, which contain the list of worldwide airport pairs connected by direct flights and the number of available
seats on any given connection. The combination of the population and mobility layers allows for the subdivision of
the world into geo-referenced census areas obtained by a Voronoi tessellation procedure around transportation hubs.
These census areas define the subpopulations of the metapopulation modeling structure, identifying 3,362 subpopulations
centered on IATA airports in 220 different countries. The model simulates the mobility of individuals between these
subpopulations using a stochastic procedure defined by the airline transportation data. Short-range mobility considers
commuting patterns between adjacent subpopulations based on data collected and analyzed from more than 30 countries
in 5 continents across the world. It is modeled with a time-scale separation approach that defines the effective force of
infections in connected subpopulations (see Ref. [18] for details). In other words, short-range mobility is considered at
equilibrium in the time scale of long-range patterns. Here, we restricted our analysis to the continental US. To this end,
we considered both long and short range mobility patterns limited to the continental US.

• Epidemic Layer defines the disease and population dynamics. The infection dynamics takes place within each subpopulation
and assumes a compartmentalization that can be defined according to the infectious disease under study and the
intervention measures being considered. As done for the other simulations we considered a SEIR model.

We applied the travel restrictions by multiplying the mobility flows by p. However, considering that by construction short-range
mobility is encoded in the effective force of infection (in other words in the simulations individuals do not “move” due to
short-mobility) we estimate the value of A(t) as:

A(t) = p
∑
i

[Ni(t)− Ii(t)]
Ni(t)

[9]
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Fig. S1. Control time definition. Median value of the epidemic extinction time Te as function of the diffusion rate p. The maximum time correspond to the epidemic control time
TC(R0).
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Fig. S2. Different values of the control time in both homogeneous and heterogeneous networks for different values of the epidemic reproduction number R0.
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Fig. S3. Effect of the network heterogeneity on the system’s risk and resilience. The minimum value of the resilience (dots), which corresponds to the theoretical value of
the final fraction of diseased subpopulations D∞/V at the end of the global epidemic (dotted lines), is shown as a function of the mobility rate p in a homogeneous and
heterogeneous networks. The minimum value of the resilience separates the two region of high resilience.
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Fig. S4. Resilience surface in homogeneous networks in the plane (p − R0). Figure B refers to R0 = 1.3.
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Fig. S5. Resilience surface in heterogeneous networks in the plane (p − R0). Figure B refers to R0 = 1.3.
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Fig. S6. (log-log) Average values of the system’s critical functionality for R0 = 2 before (dotted line), over (red line) and after the transition point.
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Fig. S7. (log-x) Average values of the diseased populations for R0 = 2 before (dotted line), over (red line) and after the transition point.
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