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A.  Supplementary Methods 
 

1. Data Preparation for use with ATLANTIS 

ATLANTIS takes three different files as input, including (i) network information file, (ii) 

network modification file and (iii) cell fate determination logic file. These files contain description of 

biomolecular networks and may be formatted as flat text files (‘.txt’) or comma separated files (‘.csv’). 

Flat text files (‘.txt’) can be generated using Microsoft Notepad®, Notepad++1, Sublime Text2 or any 

suitable text editor. Comma separated files (‘.csv’) can be created using a spreadsheet software such 

as Microsoft Excel®, LibreOffice® and Apple Numbers®. Below, we provide the details of each file 

processed by ATLANTIS. 

Network Inputs for Logic Weights Based DA: This file contains two types of data, (i) node interaction 

weights matrix and (ii) a vector of node basal values indicating background expression of each node. 

Figure S1 (a, b) shows the contents of a sample tab-delimited text and a spreadsheet data file for 

generating network. The interaction weight matrix contains node interaction strengths (termed 

interaction weights) augmented with their names within the file. 

Network Inputs for Rules Based DA: In case of rules-based DA, two inputs are required. These 

include: (i) a node list file containing names of all the nodes present in the network, and (ii) the path 

of a folder containing node state update logic files for each node in the node list file. Each node state 

update logic file contains information on the target node, regulatory nodes and the rules defining target 

node activity. 

Network Modification File: Biomolecular networks can be perturbed by mutating biomolecules within 

the network. Information for mutating the nodes and their interactions is provided as a separate file. 

These mutations can be introduced into the network in two different ways. Firstly, the network can be 

modified by altering node states (either from 0 to 1 or from 1 to 0). Secondly, modifications can also 

be made by deleting the interaction link between two nodes. To modify a user-defined network, for 

use in ATLANTIS, a simple text file (Figure S1c) or a comma separated file (Figure S1d) is required. 

These files can be used to mutate a node by providing node names and their altered (i.e. mutated) 

states (Figure S1c, d) or by removing the interaction between two nodes through providing names of 

interacting nodes (e.g. A and B) in the following format ‘A>B 2’ (Figure S1c, d). ATLANTIS 

identifies link deletion between two nodes by the label ‘2’ which should be followed by the two node 

names. 

Cell Fate Determination Logic File: Cell fates are specific network states constituted by combinations 

of node states. Biologically relevant network states are associated to cell fates by providing cell fate 

determination logic in the form of a spreadsheet (‘.csv’) file. In this file, the user can provide node 

state combinations pertaining to each cell fate. For instance, the node states of P53, P21, Cyclin-E and 

Caspase corresponding to cell fate “cellular proliferation” are 0, 0, 1 and 0 respectively (Figure S1e). 

Therefore, the network state arising out of this node state combination is 0010 and the associated cell 
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fate is cellular proliferation. An example spreadsheet for specifying the cell fate logic is provided in 

Figure S1e. 

 

Supplementary Figure S1. Network Information and Modification Files (‘.txt’ and ‘.csv’). (a) Flat text 

file containing interaction weight and node basal values. To incorporate MCF-7 characteristic mutations into 

the p53 signaling network3, Cyc G node is overexpressed, while Pten and p14ARF nodes are knocked down 

by setting the basal expression to 1000 and -1000, respectively, (b) Spreadsheet containing interaction weight 

matrix and node basal values, (c) Flat text file containing node state modification and link deletion, (d) 
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Spreadsheet containing node state modification and link deletion, (e) Cell fate determination logic file, where 

‘0’, ‘1’ and ‘2’ represent ‘on’, ‘off’ and ‘oscillatory’ (continuously flipping) states, respectively. 

 

2. Boolean Modelling of Biomolecular Networks 

Boolean models for gene regulatory networks as pioneered by Stuart A. Kauffman in 1969 

postulated that genes could be prototyped as switches acting in concert, towards a specific cell fate4,5. 

The approach formulated biomolecular network topology as a set of nodes, conjoined by a set of links, 

serving as a simplistic yet scalable approach towards capturing network dynamics. For modelling 

purposes, Boolean networks with ‘n’ nodes (where each node could represent a gene, a protein or any 

biomolecule) can be represented by a binary node vector, 𝑁 = [𝑥1, 𝑥2, … , 𝑥𝑛]. Each node in the vector, 

N, can take on two possible values, either 0 (denoting the inactive, unexpressed state of the 

biomolecule) or 1 (indicating active, expressed state of the biomolecule). Each network can, therefore, 

have a total of 2𝑛 states, where ‘n’ is the total number of nodes (or biomolecules) in the network6,7. 

Figure S2 portrays a three-node network, having a total of 23 = 8 states. These states are maintained 

in a state space matrix, 𝑆 = [𝑠𝑖𝑗]2𝑛×𝑛. The 3-node network shown in Figure S2 has its state space 

matrix represented by an 8×3 matrix, with each row representing a unique network and node state. 

Network evolution can be visualized using state transition plots. Each network state can, therefore, be 

termed as a biomolecular activity profile of the network at any given time instant7.  

 

Supplementary Figure S2. A Simplistic Node-Link Graph and its State Space. A three-node network has 

its state space comprising of eight states. The system can evolve from one network state to another, the 

dynamics of which can be visualized by a state transition plot (State-2, 001, (shown in blue) to State-3, 010, 

(shown in red)). 

 

3. State Transitions and Network Dynamics 

After computing the complete state space of any given network, we can define the constituent 

node state transition rules. Transition between two states depends upon a general transition function, 

𝑓, that governs the change in state (or value) of a single node, 𝑥𝑖. Therefore, to compute the change in 

state of a node, the transition function, 𝑓, considers all the parent nodes (activating or suppressing) of 
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the target node, 𝑥𝑖, at any time instant, 𝑡. Given, 𝑥𝑖 has 𝑘 parents, then the transition function from 𝑡 

to 𝑡 + 1 can be given by the equation as follows: 

𝑥𝑖(𝑡 + 1) = 𝑓(𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑗(𝑡)… , 𝑥𝑘(𝑡))  , 𝑘 ≤  𝑛 

Given that the transition function makes use of 𝑘 parent state values for updating the state of a 

node, at the next time step, a generic mathematical formulation for Boolean modelling has been 

derived6,7. These formulations for Boolean networks envisage two modelling paradigms6, (i) 

deterministic models, that represent a closed system with no external noise (or external input/outputs) 

and (ii) probabilistic models, representing open (noisy) systems hosting external noise (or 

inputs/outputs). Cellular and extracellular noise can also be termed as system perturbations6,7. 

Using ATLANTIS, users can perform deterministic as well as probabilistic modelling for cell 

fate discovery and reprogramming. Below, we detail on the node state transition mechanisms 

employed by ATLANTIS for deterministic analysis (DA) and probabilistic analysis (PA) respectively. 

 

4. Deterministic Analysis of Boolean Networks 

 In DA, a biomolecular network is represented as a closed system, assuming no external noise 

or extracellular signaling perturbations. Apart from the general Boolean model dynamics (discussed 

earlier), DA pipeline makes use of a node basal value vector, 𝐵 = [𝑏1, 𝑏2, … , 𝑏𝑛], provided by the user. 

This vector contains biomolecular expression values indicating basal activity of each node. Basal 

activity values are node expressions without any input or bias. The interaction weight matrix, 𝐼𝑤 =

[𝑤𝑖𝑗]𝑛×𝑛, represents the nature and effective mass of interaction between two participating nodes. The 

node-interaction model, thus formulated, can be simulated via a node state transition function. To 

update node states using DA, a transition function integrates each model component including basal 

values, interaction weights and node states3 as given by the piece-wise equation below: 

𝑥𝑖(𝑡 + 1) =  

{
  
 

  
 1                    𝑖𝑓 ∑ (𝑤𝑗𝑖𝑥𝑗(𝑡)) + 𝑏𝑖 > 0

𝑗

0          𝑒𝑙𝑠𝑒  𝑖𝑓 ∑ (𝑤𝑗𝑖𝑥𝑗(𝑡)) + 𝑏𝑖 < 0
𝑗

𝑥𝑖         𝑒𝑙𝑠𝑒  𝑖𝑓 ∑ (𝑤𝑗𝑖𝑥𝑗(𝑡)) + 𝑏𝑖 = 0
𝑗

 

The equation above defines node (𝑥𝑖) state transition from time step 𝑡 to 𝑡 + 1. The summation, 

∑ (𝑤𝑗𝑖𝑥𝑗(𝑡)) + 𝑏𝑖𝑗 , gives the cumulative weighted interactions and the basal value. The result from the 

expression is thresholded using a sign (Signum function) or a sigmoid function (Figure S3). 

ATLANTIS employs a sign function in this case (Figure S3) which is defined as follows: 5 

𝑥𝑖(𝑡 + 1) = 𝑓(∑ (𝑤𝑗𝑖𝑥𝑗(𝑡)) + 𝑏𝑖
𝑗

) 

where, 𝑓 is Signum (or Sign) function defined over any input variable, 𝑧 , as follows: 5 
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𝑓(𝑧) = {

1       𝑖𝑓 𝑧 > 0
0       𝑖𝑓 𝑧 = 0
−1     𝑖𝑓 𝑧 < 0

 

 

Supplementary Figure S3. Node Update for Deterministic Analysis in ATLANTIS. The example network 

has 1 target node, 𝑦, which has 5 parent nodes (𝑘 = 5) regulating it. Three of these parents are activating the 

node, 𝑦, while the remaining two are inhibiting its activity. Interaction weights indicate the magnitude of 

regulation of the target node by its parents. For deterministically updating the state of the node, 𝑦, from time, 𝑡 
to 𝑡 + 1, a threshold value, T, is computed followed by its use by a sign function that sets up updated node state. 

Figure S4 outlines the workflow of the DA pipeline implemented in ATLANTIS. The DA 

pipeline starts with a set of initial network states that can be generated by (1) exhaustive sampling 

(ES) of the state-space, (2) random sampling (RS) of the state-space or (3) inputting a custom state-

space (CS) file. ES generates all (2𝑛 ) possible states for onward analysis. RS selects a user-specified 

number of states from the complete state-space, thereby making the analysis of larger networks 

feasible. Using the CS option, ATLANTIS users can selectively incorporate specific network states 

for further analysis. To achieve steady state, network states and transition functions are used. Once the 

system attains steady-state, the frequently recurring states (or attractors) are identified for attractor 

landscape plotting (discussed later).  

 

Supplementary Figure S4. Deterministic Analysis Pipeline Implemented by ATLANTIS. 
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Rules Based Deterministic Analysis 

 To assist in cell fate discovery process, ATLANTIS users can incorporate specific node update 

rules into the DA pipeline. Node update rules are employed during network update and stored in the 

form of truth tables. State transition rules are constructed from the exhaustive state space and only the 

biologically plausible node state transitions are employed onwards. Therefore, each node state gets 

updated by a rules look-up from the rules table. An example of rules-based DA is given below in 

Figure S5. The child node ‘C’ with parents ‘A’ and ‘B’ is updated to state ‘0’ by applying the rule ‘0 

1 0’ (in red box). 

 

 

Supplementary Figure S5. Rules-Based Deterministic Analysis Methodology. A three-node network, with 

two parent nodes, ‘A’ and ‘B’ and one child node, ‘C’ is considered for rules-based DA. The state of node ‘C’ 

(‘0’) is computed by using rules-based logic defined (red box) from within the exhaustive state space.  

 

5. Probabilistic Analysis of Boolean Networks 

The probabilistic analysis (PA) pipeline of ATLANTIS (Figure S6) works off a biomolecular 

network input with nodes and interaction weights. As in the case of DA, PA can also employ 

exhaustive, randomly sampled or user-defined custom state-space for onwards analysis. However, 

unlike DA, the transitions between network states follows a Markovian model in PA. Network state 

at the next time step, 𝑡 + 1, is determined only by its state at the current time step, 𝑡, with no 

dependence on earlier time steps. As a result, the state transition probability from 𝑡 to 𝑡 + 1 is a product 

of individual node transition probabilities from 𝑡 to 𝑡 + 15, 6:     

T{𝑥𝑖(𝑡 + 1), 𝑥2(𝑡 + 1), …𝑥𝑛(𝑡 + 1)|𝑥1(𝑡), 𝑥2(𝑡), … 𝑥𝑛(𝑡)} =∏𝑇

𝑛

𝑖=1

{𝑥𝑖(𝑡 + 1)|𝑥1(𝑡), 𝑥2(𝑡), … 𝑥𝑛(𝑡)} 

To integrate the effect of background basal-level activity of nodes, (𝐵 = [𝑏1, 𝑏2, … , 𝑏𝑛]), in 

absence of any input, the cumulative inputs to each node are added with its basal expression. Intrinsic 

and extrinsic noise is incorporated with use of the noise parameter5, µ. An additional parameter c is 

used to quantify self-degradation of a node5. Given that the nodes lie within a dynamic system, the 

output from a single node is computed using the cumulative effect of its interaction with the parent 
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nodes, noise, basal values and self-degradation constant. The input can be either positive, negative or 

zero, according to which the node transition probability is updated. The transition matrix T for each 

node6 is defined as follows: 

𝑇{𝑥𝑖(𝑡 + 1) = 1|𝑥1(𝑡), 𝑥2(𝑡), … 𝑥𝑛(𝑡)} =  
1

2
+
1

2
 tanh [𝜇 (∑(𝑤𝑗𝑖𝑥𝑗(𝑡)) + 𝑏𝑖

𝑛

𝑗=1

)]    𝑖𝑓 ∑(𝑤𝑗𝑖𝑥𝑗(𝑡)) + 𝑏𝑖 > 0

𝑛

𝑗=1

 

𝑇{𝑥𝑖(𝑡 + 1) = 0|𝑥1(𝑡), 𝑥2(𝑡), … 𝑥𝑛(𝑡)} =  
1

2
−
1

2
 tanh [𝜇 (∑(𝑤𝑗𝑖𝑥𝑗(𝑡)) + 𝑏𝑖

𝑛

𝑗=1

)]    𝑖𝑓 ∑(𝑤𝑗𝑖𝑥𝑗(𝑡)) + 𝑏𝑖 < 0

𝑛

𝑗=1

 

𝑇{𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡)|𝑥1(𝑡), 𝑥2(𝑡), … 𝑥𝑛(𝑡)} =  1 − 𝑐                                                 𝑖𝑓 ∑(𝑤𝑗𝑖𝑥𝑗(𝑡)) + 𝑏𝑖 = 0

𝑛

𝑗=1

 

If the input  ∑ (𝑤𝑗𝑖𝑆𝑗(𝑡)) + 𝑏𝑖
𝑛
𝑗=1  received by a node i is positive (>0), the probability of 

transitioning to an ON state is high and its probability of transitioning to an OFF state is low. 

Conversely, if the input ∑ (𝑤𝑗𝑖𝑆𝑗(𝑡)) + 𝑏𝑖
𝑛
𝑗=1  is negative (<0), the node will transition to an OFF state 

with a high probability but its transition to an ON state will have a low probability. The last condition 

defines the probability of a node staying in the same state at the next time step, as there is essentially 

no change in the input coming into the node. In such a case, the transition probability is dependent on 

the self-degradation of the node with a value equal to 1 – c.6  

Following computation of network transition probabilities, it is important to see how the states 

evolve to reach a steady-state, such that there is no further change in their probabilities. This requires 

the use of kinetic master equations to update state probabilities over time6 and is given below: 

𝑑𝑃𝑖
𝑑𝑡

= −∑T𝑖𝑗𝑃𝑖
𝑗

+∑T𝑗𝑖𝑃𝑗
𝑗

 

The state transition probabilities change over time due to the effect of neighboring network 

states according to transitions in both directions from i to j, and j to i. Tij is the probability of a network 

state transitioning from a network state i to j, and the vice versa for Tji. i and j iterate over all the states 

(i.e. from 1 to 2n). The steady-state probabilities are stored in variables, Pi and Pj, wherein all states 

are initially assigned equal probabilities6 (𝑃𝑖 =
1

2𝑛
). After that, each Pi is dynamically updated until a 

steady state, i.e. Pi(t+1) equals Pi(t) to good approximation. For tractable computation in large 

networks, the state-space can also be pruned using one-step DA (termed Heuristic PA). Finally, a 

potential energy (PE) value is assigned to each state to represent its stability, which is then used to 

construct PE landscapes for visualizing PA results. 
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Supplementary Figure S6. Probabilistic Analysis Pipeline Implemented in ATLANTIS. 

 

6. Plotting Attractor and Cell Fate Landscape 

After the system attains its steady state using DA or PA, the most frequently occurring attractor 

states are extracted. In DA pipeline, attractor states are identified by their basin sizes (frequency of 

occurrence of each network state). In case of PA, each network state’s associated probability 

(likelihood of its emergence) defines the attractor states. These attractor states are then plotted and are 

termed as attractor landscapes. For plotting attractor landscapes, the high dimensional state space is 

projected onto a two-dimensional coordinate space using two approaches. These include Naïve 

mapping and Sammon mapping8. Naïve mapping maps the state-space onto a Cartesian plane without 

considering the spatial distance between different steady-states. Sammon mapping, on the other hand, 

clusters the related network states together before their projection onto a Cartesian plane.   

In case of PA, potential energies (PE) are plotted as PE landscapes. These PEs are derived 

from steady-state probabilities as follows: 

𝑃𝐸𝑖 = − ln(𝑃𝑖) 

Probability landscape provides a visualization of steady-state probabilities, whereas PE 

landscape provides an energetics perspective of the probabilities. Scaling by natural logarithm in PEs 

amplifies the distance between the attractor and low propensity states thereby imparting more clarity 

to PE landscapes. Additionally, ATLANTIS also provides for constructing cell fate landscapes (CFL). 

After DA, a treemap is constructed using basin sizes of attractors. Each attractor is then correlated to 

various cellular fates (e.g. proliferative or apoptotic) based on user-defined cell fate logic. 
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7. HCT-116 Characteristic Mutations 

In case study 4, ATLANTIS was used to discover cell fates including normal proliferation, 

abnormal proliferation, metastasis, and quiescence adopted by HCT-116 cells in control and post-

inhibitor treatment. For this purpose, an HCT-116 representative network was constructed by adding 

cell line characteristic mutations (Table S1) to the previously reported human CRC signaling network9. 

The cell line tailored network was deterministically analyzed. The resulting attractors were 

characterized and associated with the aforementioned cell fates.  

 

 

Supplementary Table S1. HCT-116 Characteristic Mutations Adapted from COSMIC Database10. 

  

Cancer Genes Protein sequence Pathogenicity Mutation Value

RAS p.G13D Pathogenic (score 0.98) 1

P14arf p.R24fs*20 None (score 0.00)

β-Catenin p.S45del None (score 0.00)

PI3K p.H1047R Pathogenic (score 0.96) 1

Supplementary Table S1| HCT-116 Characteristic Mutations
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B. Supplementary Results 

Functionality validation of ATLANTIS was undertaken by constructing four case studies 

including (1) Yeast cell cycle analysis11, (2) p53 network analysis3, (3) analysis of tumorigenesis in 

human colon9, and (4) drug-target interaction in HCT-116 cell lines. Results for probabilistic and 

deterministic analyses, basin ratios and attractor landscapes were compared with the results obtained 

from published literature for each case study. The supplementary results obtained from these analyses 

are described in the sub-sections below, along with their comparison with published data.  

1. Case Study 1 – Decoding Yeast Cell Cycle Progression using Attractor Landscape Analysis 
The first case study was performed by reconstructing the study “Yeast Cell Cycle Network: 

The Funneled Energy Landscape”, reported earlier by Han et al11. The cell cycle regulatory network 

had 11 nodes and 34 edges (Figure S7a). ATLANTIS was used to construct the attractor landscape of 

the cell cycle network (Figure S7b) and basin sizes were computed using deterministic and 

probabilistic analyses (DA and PA). Table S2 shows the high propensity network states constituting a 

state trajectory beginning at “Start signal” (state: 1093) and terminating at “Stationary G1 phase” 

(state: 69). ATLANTIS successfully reproduced the “Order in Trajectory” as reported by Han et al. 

More so, basin size of “Stationary G1 phase” reported by ATLANTIS was comparable with the value 

obtained from BoolNet12. Note that the basin sizes of off-pathway traps11 (states: 385, 581, 1, 5, 65, 

517) were also consistently reported by both ATLANTIS and BoolNet. 

 

Supplementary Figure S7. Decoding Yeast Cell Cycle Progression. (a) Han et al.’s yeast cell cycle network 

generated using ATLANTIS, (b) Attractor landscape plot of recovered cell fates from yeast cell cycle network 

by ATLANTIS, showing the complete state transition trajectory from the ‘start signal’ to ‘stationary G1’ phase. 
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Supplementary Table S2. Comparison of Results from Yeast Cell Cycle Network Analyses. Results from 

state transition trajectory analysis computed by Han et al, ATLANTIS and BoolNet are enumerated for 

comparison after rounding off to three significant figures. The highest steady state probability (0.539) was 

observed for “Stationary G1 phase” state marking the end of the state transition trajectory. The state also had 

the highest basin size (0.861) which was consistently reported by both ATLANTIS and BoolNet. Moreover, 

the order of state transitions (1 to 13) within the trajectory after a “Start Signal”, tallied with the results from 

Han et al. 

2. Case Study 2 – Reprogramming p53-mediated Apoptosis in MCF-7 Breast Cancer Cell Lines 
The second case study is built on “Attractor landscape analysis reveals feedback loops in the 

p53 network that control the cellular response to DNA damage” by Choi et al3. The P53 regulatory 

network (Figure S8) comprised of 16 nodes and 50 edges. ATLANTIS was used to construct the cell 

fate landscapes (CFL) (Figure S9) and compute basin sizes (Table S3) using DA. All possible 

combinations of Etoposide, Nutlin and WIP1 KD were tested and basin sizes as well as cell fates for 

each combination obtained from ATLANTIS and BoolNet were found to be in agreement. Next, to 

compare attractor landscapes, PA was performed to reconstruct the landscape reported by Choi et al 

for the combinatorial effect of Etoposide, Nutlin, and WIP1 KD. ATLANTIS accurately computed the 

landscape (Figure S10a) and identified three point attractors for cell senescence and 2 point attractors 

for cell death landscape as reported by Choi et al (Figure S10b). 
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Description Order in 

Trajectory

Order in 

Trajectory

Steady State 

Probabilities
Basin Size Basin Size

0 0 0 0 1 0 0 0 1 0 0 69 Stationary G1 phase 13 13 0.539 0.861 0.857
0 0 0 0 1 1 0 0 1 0 0 101 Excited G1 state 12 12 0.004 0 0
0 0 0 0 1 1 1 0 1 0 0 117 11 11 0.003 0 0
0 0 0 0 0 1 1 0 1 0 1 54 10 10 0.002 0 0
0 0 0 0 0 1 1 0 1 1 1 56 9 9 0.002 0 0
0 0 0 0 0 1 1 0 0 1 1 52 8 8 0.002 0 0
0 0 0 1 0 0 1 1 0 1 1 156 7 7 0.001 0 0
0 1 1 1 0 0 0 1 0 1 1 908 G2 phase 6 6 0.001 0 0
0 1 1 1 0 0 0 1 0 0 0 905 S phase 5 5 0.001 0 0
0 1 1 1 0 0 0 0 0 0 0 897 4 4 0.001 0 0
0 1 1 1 1 0 0 0 1 0 0 965 3 3 0.001 0 0
0 1 1 0 1 0 0 0 1 0 0 837 2 2 0.001 0 0
1 0 0 0 1 0 0 0 1 0 0 1093 Start signal 1 1 0.001 0 0
0 0 1 1 0 0 0 0 0 0 0 385 - - - 0.115 0.074 0.076
0 1 0 0 1 0 0 0 1 0 0 581 - - - 0.083 0.053 0.065
0 0 0 0 0 0 0 0 0 0 0 1 - - - 0.083 0.003 0.003
0 0 0 0 0 0 0 0 1 0 0 5 - - - 0.078 0.004 0.004
0 0 0 0 1 0 0 0 0 0 0 65 - - - 0.058 0.000 0.000
0 1 0 0 0 0 0 0 1 0 0 517 - - - 0.014 0.003 0.003

Supplementary Table S2 | Comparison of results  from Yeast cell cycle network analyses

State #

Network States Han et al

M phase

Excited G1 state

ATLANTIS
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Supplementary Figure S8. P53-mediated Apoptotic Network for MCF-7 Cells Comprising of 16 Nodes 

and 50 Edges. 

 

Supplementary Figure S9. MCF7 Cell Fate Propensity Landscape after Treatment with Etoposide, 

Nutlin and CCT007093/WIP1 KD. (a) Control (no treatment), (b) Etoposide treatment,  (c) Nutlin 

treatment, (d) WIP1 knock-down, (e) combined Etoposide  and Nutlin treatment, (f) combined Etoposide and 

WIP1 knock-down, (g) combined Nutlin and WIP1 knock-down, and (h) combined Etoposide, Nutlin and 

WIP1 knock-down treatment.  
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Supplementary Figure S10. Attractor Landscapes of MCF-7 Network after Combinatorial Treatment 

with Etoposide, Nutlin and CCT007093/WIP1 Knock-Down. (a) ATLANTIS-generated attractor 

landscape tallying each point attractor in (b) constructed using Sammon mapping, (b) attractor landscape as 

proposed in their work by Choi et al, containing 3 point attractors for cell senescence and 2 point attractors 

for cell death. 
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Supplementary Table S3. Comparison of Results from p53-mediated Apoptosis Network Analyses. 

Steady-state probabilities of several cell fates were computed using probabilistic analysis in ATLANTIS and 

results were compared with those from Choi et al. Basin sizes for various cell fates were then computed using 

deterministic analysis in both ATLANTIS and BoolNet. The results from probabilistic as well as 

deterministic analyses compared well and ATLANTIS accurately classified cell fates including proliferation, 

cell cycle arrest, apoptosis and senescence. 
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3. Case Study 3 – Investigating the Evolution of Cell Fate Landscape during Colorectal 
Tumorigenesis 

In this case study, we analyzed human signaling network constructed by Cho et al for 

evaluating colorectal tumorigenesis (CRC)9. The 201 nodes and 688 edges Boolean network is an 

integration of pertinent signaling pathways such as proliferation, metastasis, and apoptosis. 

ATLANTIS was employed to deterministically analyze the network. Sequential mutations were 

introduced into the network followed by construction of cell fates landscapes (Figure S11-S15). Basin 

sizes were used to compute cell fates which were then compared with Cho et al and resulting 

landscapes were found to be in agreement. 

 

Supplementary Figure S11. Cell fate Landscapes of Colorectal Tumorigenesis Network in Control 

Condition. Reconstruction of cell fate landscape (treemap) constructed utilizing the network logic presented 

by Cho et al during control conditions. 
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 Supplementary Figure S12. Cell fate Landscapes of Colorectal Tumorigenesis Network after mutating 

APC. Reconstruction of cell fate landscape (treemap) constructed utilizing the network logic presented by 

Cho et al for mutated APC gene. 

 

 Supplementary Figure S13. Cell fate Landscapes of Colorectal Tumorigenesis Network after mutating 

APC and RAS. Reconstruction of cell fate landscape (treemap) constructed utilizing the network logic 

presented by Cho et al for mutated APC and RAS. 

 

 

Supplementary Figure S14. Cell fate Landscapes of Colorectal Tumorigenesis Network after mutating 

APC, RAS and PTEN. Reconstruction of cell fate landscape (treemap) constructed utilizing the network 

logic presented by Cho et al for mutated APC, RAS and PTEN. 
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 Supplementary Figure S15. Cell fate Landscapes of Colorectal Tumorigenesis Network after mutating 

APC, RAS, PTEN and P53. Reconstruction of cell fate landscape (treemap) constructed utilizing the 

network logic presented by Cho et al for mutated APC, RAS, PTEN and P53. 
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C. Comparison of Features - ATLANTIS vs. Other Tools  

In this section, we have compared the salient features of ATLANTIS with contemporary 

Boolean network analysis tools aimed at computing attractor states. Below, a categorical list of 

features has been tabulated and the availability of these features is compared across each tool.  

 

Supplementary Table S4. Comparison of Features between ATLANTIS with other Tools. ATLANTIS 

has been compared with BoolNet12, BooleSim13, The Cell Collective14, CellNetAnalyzer15, GINsim16, 

ViSiBooL17 and CABeRNET18. Features from Network State Space Modelling, Types of Analyses, Types of 

Perturbation, Attractor Landscape Analysis & Cell Fate Determination, and Others categories have been 

compared. Green and Orange boxes indicate presence and absence of specific features, respectively.  
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D.Performance Analysis of ATLANTIS 

We have benchmarked the computational runtimes of case studies 1-4 towards apprising 

ATLANTIS users of the approximate time required to undertake such analyses. For this purpose, three 

hardware configurations were utilized, in light of typical computing infrastructures available to 

researchers. These configurations included a Laptop (Intel® Core i3-3120M @2.50GHz, 4GB RAM), 

a Desktop (Intel® Core i7-7700 @3.60GHz, 32GB RAM) and a Server (Dell® Power Edge R730, 

Dual Intel Xeon® E5-2620 @2.40GHz, 128GB RAM). The runtime benchmarking results obtained 

are tabulated in Supplementary Tables S5-S7.   

Overall runtimes of case studies (from 1 to 4) have been summarized in Supplementary Table 

S5. For case study 1, deterministic and probabilistic analyses (DA and PA) were benchmarked to take 

between 2-7 seconds (see Supplementary Table S5). For case study 2, DA took between 4-12 seconds, 

while PA (with heuristically pruned state-space) took nearly 2 seconds. PA with exhaustive state-space 

took 206 seconds to run on Server configuration (see Supplementary Table S5). The limited memory 

sizes available in Laptop and Desktop configurations inhibited exhaustive network state-space analysis 

in case study 2. DA in case studies 3 and 4 were benchmarked to take between 1095-3515 seconds, 

depending on the hardware configuration employed (see Supplementary Table S5). 

Supplementary Table S5. Overall Runtimes for Case Studies 1-4 using ATLANTIS.  

Next, to present the feature-specific runtime profiles of ATLANTIS, we clocked step-wise 

runtimes for case studies 1-4 (see Supplementary Table S6). The features that were individually 

benchmarked included weights-based and rules-based DA, heuristic and exhaustive state space PA, 

trajectory mapping, landscape construction and visualization. Again, the three aforementioned 

hardware configurations were employed to clock each step. The compute times for weights-based DA 

clocked between 1-8 seconds, whereas the rules-based DA took between 1076-3440 seconds. Heuristic 

PA in case study 2 took less than one second while exhaustive PA of CS1 took 2-5 seconds. Exhaustive 

PA in CS2 could only be performed using high-memory Server configuration with compute time of 

194 seconds. Data on feature-specific compute times has been provided in Supplementary Table S6. 

After registering runtimes of various features offered by ATLANTIS, we compared them with 

three other similar tools, namely, BoolNet12, BooleSim13 and GINsim16 using all three hardware 

configurations (see Supplementary Table S7). The benchmarking exercise was repeated for 11, 16 and 

201-node networks to additionally gauge the impact of network sizes on runtimes. For DA of 11 nodes 
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network (case study 1), the runtimes of all tools were comparable (time < 1 seconds, see 

Supplementary Table S7a). This time slightly increased for ATLANTIS (from < 2 to 8 seconds) in 

case of 16 nodes network (case study 2) but remained mostly unchanged for other tools (see 

Supplementary Table S7b). However, for 201 nodes network (case studies 3 and 4), ATLANTIS 

successfully analyzed 10,000 randomly selected input states in 1380-3440 seconds for different 

hardware configurations. On the other hand, BooleSim13 updated a single input state in approximately 

10 seconds, while BoolNet12 failed to perform the analysis. GINsim16 runtimes could not be 

determined in this case as it does not directly admit rules-based regulation which was employed in 

case study 3 (see Supplementary Table S7c).  

For exhaustive PA, ATLANTIS took around 2-5 seconds for 11 nodes (see Supplementary 

Table S7a). For 16 nodes, ATLANTIS required the Server configuration and returned the results in a 

maximum of 194 seconds (see Supplementary Table S7b). None of the other tools could undertake 

this exhaustive analysis. Heuristic PA runtimes were comparable for ATLANTIS and BoolNet12 

(between 1-2 and < 1 seconds, respectively). Attractor landscape construction cost was between 2-12 

seconds using ATLANTIS. However, these runtimes could not be compared with BoolNet12, 

BooleSim13 and GINsim16 due to unavailability of the feature in these tools. Heuristic PA runtimes 

were compared with BoolNet12 only as BooleSim13 and GINsim16 did not offer this feature as well. 

 

Supplementary Figure S16. Runtime comparison of Sammon and Naïve Transformation. A 

compute time vs. state size plot depicts the runtime cost incurred in both Sammon and Naïve mapping 

schemes. 

Lastly, we also profiled the Sammon and Naïve projection strategies to provide runtime 

insights into the two strategies. Supplementary Figure S16 clearly shows that compute times for 

Sammon mapping rise exponentially, as the number of states increase. On the other hand, Naïve 

mapping performs linearly even for large state-spaces. The runtime profiles for different system 

configurations highlight the suitability of Naïve mapping for large state-spaces (see Supplementary 

Figure S16). 
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             Supplementary Table S6. Individual Runtimes of Salient Features in ATLANTIS.  
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Supplementary Table S7. Effect of Network Size on Analysis Runtimes. Computational cost of analyzing 

(a) 11 nodes network, (b) 16 nodes network, and (c) 201 nodes network using ATLANTIS, BoolNet, BooleSim 

and GINsim. 
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E. Step by Step 

 

Step 1: Launch MATLAB 

and change the current 

working directory according 

to the path where 

ATLANTIS is downloaded. 

Step 2: Type ‘ATLANTIS’ in 

the command window to start 

the toolbox. 

Step 3: Main GUI of the 

toolbox pops up upon 

initializing the toolbox. 

 

 

Step 4: Click ‘Generate 

Network’ to input a user defined 

network. 

 Step 5: Select the file 

containing the network 

description. 

 Step 6: Click ‘Modify    

Network’ to insert mutations 

in the network. 

 
 

Step 7: Select the files listing 

node mutations and link 

modifications. 

 Step 8: Click ‘Sketch Network’ 
to visualize and assemble the 

network. 

 Step 9: Select ‘Biograph’ or 

‘Graphviz’ for network 

visualization. 
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Step 10a: Graphviz outputs a 

network that resembles the one 

shown above. 

 Step 11a: Next click 

‘Deterministic Analysis’ to 

perform the deterministic 

analysis (DA). 

 Step 12a: Enter input files for 

DA. 

 

Step 10b: Biograph outputs a 

network that resembles the one 

shown above. 

 Step 11b: Next click 

‘Deterministic Analysis’ to 

perform the DA. 

 Step 12b: Enter input files for 

DA. 
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Step 13: Next click 

‘Probabilistic Analysis’ to 

perform PA. 

 Step 14: Enter input files for 

PA. 
 Step 15: Click ‘Visualize 

Results’ to view results for the 

analyses. 

 
 

Step 16: Visualize Cell Fate 

Landscape (CFL) using 

ATLANTIS. 

 Step 17: Visualize Potential 

Energy Landscape (PEL) using 

ATLANTIS. 

 Step 19: Visualize Basin Size 

Landscape (BSL) using 

ATLANTIS. 
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F. Availability 

Item Description Link 

Project Home URL link for ATLANTIS project home https://github.com/BIRL/ATLANTIS  

Downloads Download ATLANTIS  
https://github.com/BIRL/ATLANTIS/a

rchive/master.zip  

Graphviz Downloadable version of Graphviz 
https://github.com/BIRL/ATLANTIS/t

ree/master/GraphViz%20-%20Setup 

User’s Manual ATLANTIS User manual can be found 

here. 

https://github.com/BIRL/ATLANTIS/t

ree/master/User%20Manual  

Pull Requests 
Pull Requests page is available at this 

link where codes for ATLANTIS are 

collaborated. 

https://github.com/BIRL/ATLANTIS/p

ulls 

Issues  Issues and related discussions can be 

made at the issues page for ATLANTIS.  

https://github.com/BIRL/ATLANTIS/i

ssues 

Datasets Sample Data files are available at the 

following link, for ATLANTIS. 

https://github.com/BIRL/ATLANTIS/t

ree/master/Sample%20Data  

ATLANTIS 

Executable 

Public Mega folder containing the 

ATLANTIS Executable file 

(ATLANTIS.exe) for 64-bit Windows® 

operating system 

https://mega.nz/#F!x7wRFDZY!t2PQT

dZZawF_Wiqn5rfepw 

 

 

  

https://github.com/BIRL/ATLANTIS
https://github.com/BIRL/ATLANTIS/archive/master.zip
https://github.com/BIRL/ATLANTIS/archive/master.zip
https://github.com/BIRL/ATLANTIS/tree/master/GraphViz%20-%20Setup
https://github.com/BIRL/ATLANTIS/tree/master/GraphViz%20-%20Setup
https://github.com/BIRL/ATLANTIS/tree/master/User%20Manual
https://github.com/BIRL/ATLANTIS/tree/master/User%20Manual
https://github.com/BIRL/ATLANTIS/pulls
https://github.com/BIRL/ATLANTIS/pulls
https://github.com/BIRL/ATLANTIS/issues
https://github.com/BIRL/ATLANTIS/issues
https://github.com/BIRL/ATLANTIS/tree/master/Sample%20Data
https://github.com/BIRL/ATLANTIS/tree/master/Sample%20Data
https://mega.nz/%23F!x7wRFDZY!t2PQTdZZawF_Wiqn5rfepw
https://mega.nz/%23F!x7wRFDZY!t2PQTdZZawF_Wiqn5rfepw
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G. Video Tutorials 

Video Link 

Complete Playlist - The following videos have 

been made available in the form of a playlist 

“ATLANTIS v2.0.0” at the following link. 

https://www.youtube.com/watch?v=oNTgIW4-

dd4&list=PLaNVq-

kFOn0YD_4lfJEEEzISNuqnTZVIa 

Launch ATLANTIS 

https://www.youtube.com/watch?v=oNTgIW4-

dd4 

Setting Up Graphviz for ATLANTIS 

https://www.youtube.com/watch?v=l6MbaJ9M

MRA 

Decoding Yeast Cell Cycle Progression - Case 

Study 1 

https://www.youtube.com/watch?v=ySvGu2b5H

2c 

Evaluation of Combinatorial Therapeutic 

Efficacy - Case Study 2 

https://www.youtube.com/watch?v=9t15WC5N

Cek 

Temporal Evolution of Cell Fate Landscape 

during Colorectal Tumorigenesis - Case Study 

3 

https://www.youtube.com/watch?v=CFUtIyf5Xc

A 

In silico Drug Screening in ATLANTIS - Case 

Study 4 

https://www.youtube.com/watch?v=uXaC_2X36

uA 

Deciphering the Transient Biological States by 

Trajectory Mapping in ATLANTIS 

https://www.youtube.com/watch?v=r81u_7Ku3e

0 

Interactively visualize Attractor Landscapes - 

Rotate, Invert, Adjust Transparency 

https://www.youtube.com/watch?v=dyI-

vDXJj3I 

Visualize Attractors in Basin Size Landscape 

https://www.youtube.com/watch?v=mH29IKbby

q8 

https://www.youtube.com/watch?v=oNTgIW4-dd4&list=PLaNVq-kFOn0YD_4lfJEEEzISNuqnTZVIa
https://www.youtube.com/watch?v=oNTgIW4-dd4&list=PLaNVq-kFOn0YD_4lfJEEEzISNuqnTZVIa
https://www.youtube.com/watch?v=oNTgIW4-dd4&list=PLaNVq-kFOn0YD_4lfJEEEzISNuqnTZVIa
https://www.youtube.com/watch?v=oNTgIW4-dd4
https://www.youtube.com/watch?v=oNTgIW4-dd4
https://www.youtube.com/watch?v=l6MbaJ9MMRA
https://www.youtube.com/watch?v=l6MbaJ9MMRA
https://www.youtube.com/watch?v=ySvGu2b5H2c
https://www.youtube.com/watch?v=ySvGu2b5H2c
https://www.youtube.com/watch?v=9t15WC5NCek
https://www.youtube.com/watch?v=9t15WC5NCek
https://www.youtube.com/watch?v=CFUtIyf5XcA
https://www.youtube.com/watch?v=CFUtIyf5XcA
https://www.youtube.com/watch?v=uXaC_2X36uA
https://www.youtube.com/watch?v=uXaC_2X36uA
https://www.youtube.com/watch?v=r81u_7Ku3e0
https://www.youtube.com/watch?v=r81u_7Ku3e0
https://www.youtube.com/watch?v=dyI-vDXJj3I
https://www.youtube.com/watch?v=dyI-vDXJj3I
https://www.youtube.com/watch?v=mH29IKbbyq8
https://www.youtube.com/watch?v=mH29IKbbyq8
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Interactive Visualization of Biomolecular 

Networks 

https://www.youtube.com/watch?v=Y6K4ETH

D4GQ  

Cancel Simulation in ATLANTIS 

https://www.youtube.com/watch?v=Dan_SdgSh

5U 

Viewing and Reusing Network State List files 

in '.csv' and '.mat' Format 

https://www.youtube.com/watch?v=07NAysmTj

iQ 

Build and Install ATLANTIS.exe https://www.youtube.com/watch?v=0lFV993ih-s 

Visualizing detailed information of Attractors 

and the states present in the mapped 

Trajectory 

https://www.youtube.com/watch?v=VoSCySbly

3Q 

 

https://www.youtube.com/watch?v=Y6K4ETHD4GQ
https://www.youtube.com/watch?v=Y6K4ETHD4GQ
https://www.youtube.com/watch?v=Dan_SdgSh5U
https://www.youtube.com/watch?v=Dan_SdgSh5U
https://www.youtube.com/watch?v=07NAysmTjiQ
https://www.youtube.com/watch?v=07NAysmTjiQ
https://www.youtube.com/watch?v=0lFV993ih-s
https://www.youtube.com/watch?v=VoSCySbly3Q
https://www.youtube.com/watch?v=VoSCySbly3Q
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H.Worked Examples 

To facilitate the ease of use, we present several elaborate worked out examples using 

ATLANTIS.  

 

1. Decoding Yeast Cell Cycle Progression using Attractor Landscape Analysis 
Step-1.  Click the ‘Generate Network’ button, select the option with ‘Node Names, Basal Values and 

Interaction Weights’. Next, click ‘Browse file’ to select the network. The network file for yeast 

cell cycle network (case study 1) can be found at: ATLANTIS\Sample Data\Case Study 1\Input 

Files\NetworkFile.txt 

 

  
Step-2.  After loading the network information file, click on ‘Sketch Network’ button. Select Graphviz 

or Biograph to visualize the specified Network. You can export the generated figure by right 

clicking on the figure.   

 

Step-3. After visualizing the network, click on the ‘Deterministic Analysis’ button. This would open 

the DA menu. The first step, now, would be generating the network states. Click on ‘Generate 

States’, select ‘Exhaustive (Complete State Space)’ option and press ‘Ok’. After this step, move 

back to the DA Window, click on the ‘Browse file’ icon under ‘Cell Fate Determination’ and select 

the folder with the following path: ATLANTIS\Sample Data\Case Study 1\Input Files\Cell Fate 

Determination Logic.csv 
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Step-4.  After performing DA, the next step is to visualize the results. Click on the ‘Visualize Results’ 

button. Select ‘CFL’ and ‘BSL’ from the ‘Plot Selection’ pane. Specify the ‘Treemap Plot Options’ 

as shown in figure. Select ‘Naïve Random’ from the ‘Mapping Method’ pane, specify ‘Attractor 

Plot Options’ and click ‘Plot’. You can export the generated figures as well. 

 

 
 

Step-5.  In order to perform PA, click on ‘Probabilistic Analysis’ button. Click on ‘Generate States’, 

if no modification is required in the network Select ‘Find Transient States’ from the ‘Trajectory 

Mapping’ pane. Click on the ‘Browse file’ option under ‘Trajectory Bounds’ and select file with 

the following path: ATLANTIS\Sample Data\Case Study 1\Input Files\TrajectoryBounds.csv 
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Step-6.  After performing the PA, the next step is to visualize the results. Click on the ‘Visualize 

Results’ button. Select ‘PEL’ and ‘PL’ from ‘Plot Selection Options’. Select “Naïve Random” 

from ‘Mapping Method’ and specify ‘Attractor Plot Options’ and press ‘Plot’. You can export the 

generated figures as well. 

 

 
 

 

2. Investigating the Evolution of Cell Fate Landscape during Colorectal 
Tumorigenesis 

Step-1. After clicking the ‘Generate Network’ button, select the option with ‘Node Names and State 

Update Logic Tables’. Next, browse the file and folder at given link: ATLANTIS\Sample 

Data\Case Study 3\Input Files\Network Details for further analysis. 
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Step-2.  Click on ‘Deterministic Analysis’ button. This would open the DA menu. The first step, now, 

would be generating the network state-space. Click on ‘Custom States’ and upload the file 

containing custom network states. The path of the file is given as: ATLANTIS\Sample Data\Case 

Study 3\Input Files\Network State Lists\Simulation 1 

 

  
 

 

 

Step-3.  On completion of DA move on to visualizing the results. Here, to visualize the Treemap plot 

for phenotype classification, check ‘CFL’, enter a title for your plot and then click ‘Plot’. 
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Step-4.  To visualize the attractor landscape, check ‘BSL’, enter remaining parameters and click ‘Plot’.  

 

3. Demonstrating the use of ‘Trajectory Mapping’ in Yeast Cell Cycle Progression 

Network 
Step-1.  Create ‘Trajectory Bounds.csv’ file for use in Step-4. The first and second row in the file 

represents the initial and final boundary state for complete trajectory respectively. 

 

 
 

Step-2.  Click the ‘Generate Network’ button, select the option with ‘Node Names, Basal Values and 

Interaction Weights’. Next, browse the file at given link for further analysis. The network file for 

yeast cell cycle can be found at: ATLANTIS\Sample Data\Case Study 1\Input 

Files\NetworkFile.txt 

 

 
 

Step-3.  After generating the network, click on ‘Deterministic Analysis’ button. This would open the 

DA menu. The first step, now, would be generating the network states. Click on ‘Generate States’ 

and select ‘Exhaustive (Complete State Space)’ and press ‘Ok’. After this step, move back to the 



35 
 

DA window, click on the ‘Browse file’ icon under ‘Cell Fate Determination’ and select the folder 

with the following path: ATLANTIS\Sample Data\Case Study 1\Input Files\Cell Fate 

Determination Logic.csv 

 

 
 

Step-4.  Next to perform PA, click on ‘Probabilistic Analysis’ button. Click on ‘Generate States’ 

followed by exhaustive sampling of the initial state-space. Under ‘Trajectory Mapping’, select 

‘Find Transient States’ checkbox. Click on the ‘Browse file’ option under ‘Trajectory Bounds’ 

and select file stored in Step-1. 

 

Step-5.  After performing the analyses, the next step is to visualize the results. Click on the ‘Visualize 

Results’ button. Select ‘PEL’ and ‘PL’ from ‘Plot Selection’ options. Select ‘Naïve Random’ from 

Mapping Methods and check annotation and tooltips options and press ‘Plot’.  
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Step-6.  To display transient states trajectory with in the attractor landscape, right-click on the figure, 

click ‘Toggle Annotations’ and then click ‘Show Arrows Linking States in Trajectory’.  

 

 
 

Step-7.  To view the trajectory path alone, right-click on the screen, click ‘Toggle Plot Properties’ and 

then click ‘Hide Surface Plot’.  

 

 

 

Step-8.  A variety of visualization options can be used to clearly view trajectory path and transient 

states. The trajectory path traces the route from the initial boundary state to the final boundary 

state, passing through all the intermediate transient states. The color intensity at every point along 

the path corresponds to its probability. 
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4. Demonstrating the use of ‘Fixed Nodes States’ feature in 201-node network for 
Colorectal Tumorigenesis 

Step-1.  Create ‘Input Node States.csv’ file for use in Step-4. The first row shows the names of the 

input nodes to be updated and the second row shows their fixed values. Once fixed, the values for 

these input nodes will remain constant throughout the simulation. 

 

 
 

Step-2.  The network file and update logic folder for colorectal tumorigenesis network can be found 

at: ATLANTIS\Sample Data\Case Study 3\Input Files\Network Details. After clicking the 

‘Generate Network’ button, select the option with ‘Node Names and State Update Logic Tables’. 

Next, browse the file and folder at given link for further analysis. 
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Step-3.  Click on ‘Deterministic Analysis’ button. This would open the DA menu. The first step, now, 

would be generating the network state-space. Click on ‘Custom States’ and upload the file 

containing custom network states. The path of the file is given as: ATLANTIS\Sample Data\Case 

Study 3\Input Files\Network State Lists\Simulation 1 

 

 
 

Step-4.  To set the values of input nodes in a modular network, select the ‘Fixed Node States’ file. 

Click on the ‘Browse file’ option under ‘Fixed Node States’ and select file stored in Step-1. 

 

 

 
Step-5.   Click ‘Ok’ on the DA menu to perform onward analysis. 
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5. Demonstrating the use of ‘Custom States’ feature in PA of Yeast Cell Cycle 
Progression Network 

Step-1.  Create ‘Custom States file.csv’ file for use in Step-3. Each row in the file represents a network 

state and each column represents a node’s value in each state. 

 

 
 

Step-2.   Click the ‘Generate Network’ button, select the option with ‘Node Names, Basal Values and 

Interaction Weights’. Next, browse the file at given link for further analysis. The network file for 

yeast cell cycle network can be found at: ATLANTIS\Sample Data\Case Study 1\Input 

Files\NetworkFile.txt . 

 

  
 

Step-3.  Next to perform PA, click on ‘Probabilistic Analysis’ button. Click on ‘Custom States’ to 

upload the custom states file created in Step-1. Then click ‘Ok’ to perform analysis. 
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