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1 Investigation of relation between missingness
and labels on two real health care datasets

In many time series applications, the pattern of missing variables in the time
series is often informative and useful for prediction tasks. Here, we empirically
confirm this claim on real health care dataset by investigating the correlation
between the missingness and prediction labels (mortality and ICD-9 diagnosis
categories). For each patient and its corresponding time series X, we denote the

missing rate for a variable d as pdX and calculate it by pdX = 1− 1
T

∑T
t=1m

d
t . Note

that pdX is dependent on the mask vector (md
t ) of that patient and the number of

time steps T . Then for each patient, we will have a vector pX = (p1X , . . . , p
D
X)
>

to represent the missing rates of all D time series features for that patient.
For each prediction task denoted by label ` and each d-th feature, we compute
the Pearson correlation coefficient between variable pd and ` given the entire
dataset. As shown in Figure 1(a), we observe that on MIMIC-III dataset the
missing rates with low rate values are usually highly (either positive or negative)
correlated with the labels. The distinct correlation between missingness and
labels demonstrates usefulness of missingness patterns in solving prediction tasks.
The list of variables and the list of the ICD-9 diagnosis categories can be found in
Table 1 and 2 respectively. We can also find similar useful correlations in another
real-world health care dataset, PhysioNet dataset, as shown in Figure 1(b), and
the list of variables is shown in Table 3.
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(a) The bottom figure shows the missing rate of each input variable. The middle figure shows
the absolute values of Pearson correlation coefficients between missing rate of each variable
and mortality. The top figure shows the absolute values of Pearson correlation coefficients
between missing rate of each variable and each ICD-9 diagnosis category.
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(b) The bottom figure shows the missing rate of each input variable. The top figures show
the absolute values of Pearson correlation coefficients between missing rate of each variable
and each of the 4 prediction tasks.

Figure 1: Demonstrations of informative missingness on two datasets. (color:
absolute value of Pearson correlation coefficient.)
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2 Model variations of GRU-D

A better model should have the flexibility to capture different missing patterns.
In this section, we will discuss some variations of GRU-D model, and also
compare some related RNN models which are used for time series with missing
data with the proposed model. Empirical evaluations on these model variations
will be provided later.

2.1 GRU model with different trainable decays

The proposed GRU-D applies trainable decays on both input and hidden state
transitions in order to capture the temporal missing patterns explicitly, which is
presented by Equation (1) and (2) below.

xdt ← md
tx
d
t + (1−md

t )γx
d
tx
d
t′ + (1−md

t )(1− γxdt )x̃d (1)

ht−1 ← γht � ht−1, (2)

This decay idea can be straightforwardly generated to other parts inside the
GRU models separately or jointly, given different assumptions on the impact of
missingness. As comparisons, we also describe and evaluate several modifications
of GRU-D model.

GRU-DI (Figure 2(a)) and GRU-DS (Figure 2(b)) decay only the input
and only the hidden state by Equation (1) and (2), respectively. They can be
considered as two simplified models of the proposed GRU-D. GRU-DI aims at
capturing direct impact of missing values in the data, while GRU-DS captures
more indirect impact of missingness. Another intuition comes from this per-
spective: if an input variable is just missing, we should pay more attention
to this missingness; however, if an variable has been missing for a long time
and keeps missing, the missingness becomes less important. We can utilize this
assumption by decaying the masking. This brings us the model GRU-DM
shown in Figure 2(c), where we replace the masking md

t fed into GRU-D in by

md
t ← md

t + (1−md
t ) · γmd

t · (1−md
t ) = md

t + (1−md
t )γm

d
t

where the equality holds since md
t is either 0 or 1. We decay the masking for

each variable independently from others by constraining W γm to be diagonal.
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Figure 2: Graphical illustrations of variations of proposed GRU models.
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2.2 GRU-IMP: Goal-oriented imputation model

We may alternatively let the GRU-RNN predict the missing values in the next
timestep on its own. When missing values occur only during test time, we simply
train the model to predict the measurement vector of the next time step as a
language model and use it to fill the missing values during test time. This is
unfortunately not applicable for some time series applications such as in health
care domains, which also have missing data during training.

Instead, we propose goal-oriented imputation model here called GRU-IMP,
and view missing values as latent variables in a probabilistic graphical model.
Given a timeseries X, we denote all the missing variables by MX and all
the observed ones by OX . Then, training a time-series classifier with missing
variables becomes equivalent to maximizing the marginalized log-conditional
probability of a correct label l, i.e., log p(l|OX).

The exact marginalized log-conditional probability is however intractable to
compute, and we instead maximize its lowerbound:

log p(l|OX) = log
∑
MX

p (l|MX ,OX) p (MX |OX)

≥ EMX∼p(MX |OX) log p (l|MX ,OX)

where we assume the distribution over the missing variables at each time step is
only conditioned on all the previous observations:

p (MX |OX) =

T∏
t=1

md
t=1∏

1≤d≤D

p(xdt |x1:(t−1),m1:(t−1), δ1:(t−1))

Although this lowerbound is still intractable to compute exactly, we can ap-
proximate it by Monte Carlo method, which amounts to sampling the missing
variables at each time as the RNN reads the input sequence from the beginning
to the end, such that

xdt ← md
tx
d
t + (1−md

t )x̃
d
t

where x̃t ∼ xdt |x1:(t−1),m1:(t−1), δ1:(t−1).

By further assuming that x̃t ∼ N
(
µt,σ

2
t

)
, µt = γt � (W xht−1 + bx) and

σt = 1, we can use a reparametrization technique widely used in stochastic
variational inference to estimate the gradient of the lowerbound efficiently. During
the test time, we simply use the mean of the missing variable, i.e., x̃t = µt,
as we have not seen any improvement from Monte Carlo approximation in our
preliminary experiments. We view this approach as a goal-oriented imputation
method and show its structure in Figure 2(d). The whole model is trained to
minimize the classification cross-entropy error `log loss and we take the negative
log likelihood of the observed values as a regularizer.

` = `log loss + λ
1

N

N∑
n=1

1

Tn

Tn∑
t=1

∑D
d=1m

d
t · log p(xdt |µdt , σdt )∑D

d=1m
d
t
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3 Dataset preprocessing details

3.1 MIMIC-III datset preprocessing details

Here, we describe the preprocessing details for MIMIC-III dataset. MIMIC-III
provides several relational database tables containing information of data relating
to patients who stayed within the intensive care units (ICUs) at Beth Israel
Deaconess Medical Center. The admission table contains over 58,000 hospital
admission records of 38,645 adults and 7,875 neonates. We chose four tables
namely inputevents-mv (fluids into patient, e.g. insulin), outputevents (fluids
out of the patient, e.g. urine), labevents (lab test results, e,g. pH, Platelet
count) and prescription events (drugs prescribed by doctors, e.g. aspirin and
potassium chloride) to collect the patient data recorded in critical care units
and hospital record systems. The inputevents-mv table collects the intake for
patients monitored using the iMDSoft Metavision system. For our work, we
use 19,714 admission records collected during 2008-2012 by Metavision data
management system which is still employed at the hospital. The data collection
and organization in Metavision system is much neater than the earlier Philips
CareVue system [2001-2008]. From each of the four tables, we chose the top
50 items (i.e. features/variables) since these items are present in many of
the patients’ records. To avoid/reduce ambiguity and noisy observations, we
ensured that all the measurements for a particular variable has only one unit
of measurement. We also aggregated the multiple readings of a feature at a
single time stamp based on the feature type. For instance, some inputevents
features should be averaged while others need to be summed up. This resulted
in 99 variables being extracted from the four tables for 19,714 patient admission
records. The entire selected variable list and the variable index is shown in
Table 1.

For each of the admission records, we collected both the variable value xt
and the time-stamp of observation st. In addition, for each admission record we
queried the database tables to get the ICD-9 diagnosis codes. One admission
record can be associated with multiple ICD-9 codes. We also queried the
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Figure 3: ICD-9 diagnosis class (category) distribution in MIMIC-III dataset.
x-axis, ICD-9 diagnosis category id; y-axis, the ratio of admission records with
the diagnosis code.
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discharge time and death time from the Admissions table of MIMIC-III to find
the mortality label for each admission record. The ICD-9 diagnosis code were
grouped into 20 categories according to the information from the Thomson
Reuters webpage, and the categories are shown in Table 2. The class distribution
of the ICD-9 codes is shown in Figure 3.

3.2 PhysioNet dataset variable list

The original PhysioNet Challenge 2012 dataset consist of records with 42 variables.
6 of them are general descriptors collected on admission, and we only took
the other 36 variables which are time series. Among the 36 variables, we
further merged NIDiasABP, NIMAP, NISysABP to DiasABP, MAP, SysABP,
respectively, and got 33 final variables. 11 of them are vital signs and 22 of
them are lab measurements. The variables and their missing rates are shown
in Table 3. We can find most vital signs have smaller missing rate than lab
measurements.

3.3 Gesture synthetic dataset generation

The Gesture phase segmentation dataset is composed by features extracted from
7 videos with people gesticulating. It contains a time series with 18 numerical
attributes and timestamps, and a set of 32 processed features with no timestamps.
No missing values exist in this original dataset. Since the processed features are
not exactly mapped to the timestamps, we use only the 18 raw features and
their corresponding timestamps.

A phase label from 5 possible phases (rest, preparation, hold, stroke, and
retraction) is assigned at each time step. Noticing that the labels for neighbouring
time steps are usually the same, we first generated non-overlapped time series
with same label from the original data, which has 9900 time stamps in total.
From the beginning of each new phase, we truncate the time series by 30 time
steps until the end of the phase segment. We ignored the last extracted time
series if it is shorter than 7 time steps. After this step, we got 378 time series with
different lengths. The numbers of time series of the 5 labels are 65, 115, 76, 49, 73,
respectively.

We then generated several synthetic datasets by manually introducing missing
values. Our goal is that all the synthetic datasets have the same overall average
missing rates (50%), while the correlations between the missing rates and the
labels are different for all datasets. We did in the following ways to generate
datasets with the desired properties. First, for each feature d ∈ {1, · · · , 18}, we
randomly sample a number sd ∈ {−1, 1} with equal probabilities to indicate
whether the missing rate of that feature has positive or negative correlations with
the labels. Then for each sample i, we randomly choose a missing rate ri,d from
a uniform distribution U [0.3 +C · sd · yi, 0.7 +Cs ·d ·yi], where yi = {1, · · · , 5} is
the label for sample i, and C is a constant parameter for that synthetic dataset.
We select a proper value of C to control the average absolute values of the
Pearson correlation between missing rate for each feature rd and the label y.
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We then randomly introduce missing values based on the corresponding missing
rate. We repeated the above steps to generate 4 synthetic datasets, with the
average absolute correlation value to be 0, 0.2, 0.5, 0.8.

3.4 Dataset statistics

For each of the three datasets used in our experiments, we list the number of
samples, the number of input variables, the mean and max number of time steps
for all the samples, and the mean of all the variable missing rates in Table 4.
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Table 1: List of 99 extracted variables and their indexes after preprocessing
MIMIC-III dataset.

Table Name Variable Names

Output
(15 Variables)

1. Gastric Gastric Tube, 2. Stool Out Stool, 3. Urine Out
Incontinent, 4. Ultrafiltrate, 5. Foley, 6. Void, 7. Condom
Cath, 8. Fecal Bag, 9. Ostomy (Output), 10. Chest Tube
#1, 11. Chest Tube #2, 12. Jackson Pratt #1, 13. OR EBL,
14. Pre-Admission, 15. TF Residual

Input
(33 Variables)

16. Albumin 5%, 17. Dextrose 5%, 18. Fresh Frozen Plasma,
19. Lorazepam (Ativan), 20. Calcium Gluconate, 21. Midazo-
lam (Versed), 22. Phenylephrine, 23. Furosemide (Lasix), 24.
Hydralazine, 25. Norepinephrine, 26. Magnesium Sulfate, 27.
Nitroglycerin, 28. Insulin - Regular, 29. Insulin - Glargine,
30. Insulin - Humalog, 31. Heparin Sodium, 32. Morphine
Sulfate, 33. Potassium Chloride, 34. Packed Red Blood Cells,
35. Gastric Meds, 36. D5 1/2NS, 37. LR, 38. K Phos, 39.
Solution, 40. Sterile Water, 41. Metoprolol, 42. Piggyback,
43. OR Crystalloid Intake, 44. OR Cell Saver Intake, 45.
PO Intake, 46. GT Flush, 47. KCL (Bolus), 48. Magnesium
Sulfate (Bolus)

Lab Test
(41 Variables)

49. Hematocrit, 50. White Blood Cells, 51. Platelet Count,
52. Hemoglobin, 53. MCHC, 54. MCH, 55. MCV, 56. Red
Blood Cells, 57. RDW, 58. Potassium, 59. Sodium, 60. Chlo-
ride, 61. Bicarbonate, 62. Anion Gap, 63. Urea Nitrogen, 64.
Creatinine, 65. Glucose, 66. Magnesium, 67. Total Calcium,
68. Phosphate, 69. INR(PT), 70. PT, 71. PTT, 72. Lym-
phocytes, 73. Monocytes, 74. Neutrophils, 75. Basophils, 76.
Eosinophils, 77. Total Bilirubin, 78. PH, 79. Base Excess,
80. Calculated Total CO2, 81. PO2, 82. PCO2, 83. PH, 84.
Specific Gravity, 85. Lactate, 86. Alanine Aminotransferase
(ALT), 87. Asparate Aminotransferase (AST), 88. Alkaline
Phosphatase, 89. Albumin

Prescription
(10 Variables)

90. Aspirin, 91. Bisacodyl, 92. Docusate Sodium, 93. D5W,
94. Humulin-R Insulin, 95. Potassium Chloride, 96. Magne-
sium Sulfate, 97. Metoprolol Tartrate, 98. Sodium Chloride
0.9% Flush, 99. Pantoprazole
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Table 2: Descriptions of MIMIC-III ICD-9 diagnoses categories.

Task ID ICD-9 Codes Diagnoses Groups

1 001 - 139 Infectious and Parasitic Diseases

2 140 - 239 Neoplasms

3 240 - 279 Endocrine, Nutritional, Metabolic, Immunity

4 280 - 289 Blood and Blood-Forming Organs

5 290 - 319 Mental Disorders

6 320 - 389 Nervous System and Sense Organs

7 390 - 459 Circulatory System

8 460 - 519 Respiratory System

9 520 - 579 Digestive System

10 580 - 629 Genitourinary System

11 630 - 677 Pregnancy, Childbirth, and the Puerperium

12 680 - 709 Skin and Subcutaneous Tissue

13 710 - 739 Musculoskeletal System and Connective Tissue

14 740 - 759 Congenital Anomalies

15 780 - 789 Symptoms

16 790 - 796 Nonspecific Abnormal Findings

17 797 - 799 Ill-defined and Unknown Causes of Morbidity and
Mortality

18 800 - 999 Injury and Poisoning

19 V Codes Supplemental V-Codes

20 E Codes Supplemental E-Codes
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Table 3: List of 33 variables after preprocessing PhysioNet dataset.

Index Variable Name Category Missing Rate

1 ALP Lab Measurement 0.9888

2 ALT Lab Measurement 0.9885

3 AST Lab Measurement 0.9885

4 Albumin Lab Measurement 0.9915

5 BUN Lab Measurement 0.9496

6 Bilirubin Lab Measurement 0.9884

7 Cholesterol Lab Measurement 0.9989

8 Creatinine Lab Measurement 0.9493

9 (NI)DiasABP Vital Sign 0.2054

10 FiO2 Vital Sign 0.8830

11 GCS Vital Sign 0.7767

12 Glucose Lab Measurement 0.9528

13 HCO3 Lab Measurement 0.9507

14 HCT Lab Measurement 0.9338

15 HR Vital Sign 0.1984

16 K Lab Measurement 0.9477

17 Lactate Lab Measurement 0.9709

18 (NI)MAP Vital Sign 0.2141

19 Mg Lab Measurement 0.9507

20 Na Lab Measurement 0.9508

21 PaCO2 Vital Sign 0.9157

22 PaO2 Vital Sign 0.9158

23 Platelets Lab Measurement 0.9489

24 Resp Rate Vital Sign 0.8053

25 SaO2 Lab Measurement 0.9705

26 (NI)SysABP Vital Sign 0.2052

27 Temp Vital Sign 0.6915

28 Troponin-I Lab Measurement 0.9984

29 Troponin-T Lab Measurement 0.9923

30 Urine Vital Sign 0.5095

31 WBC Lab Measurement 0.9532

32 Weight Lab Measurement 0.5452

33 pH Lab Measurement 0.9118
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Table 4: Details about the three datasets used in our experiments.

MIMIC-III PhysioNet Gesture

# of samples (N) 19, 714 4, 000 378

# of variables (D) 99 33 18

Mean of # of time steps 35.89 68.91 21.42

Maximum of # of time steps 150 155 30

Mean of variable missing rate 0.9621 0.8225 N/A
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4 Supplemental experiments and discussions

4.1 GRU model size comparison

We show the the statistics of our GRU based models for three datasets in Table 5.
For the two real datasets, we show the numbers for mortality prediction, and the
numbers for multi-task classifications are also close for all the compared models.

Table 5: Size comparison of GRU models used in our experiments. Vars.: all
input features/variables in that dataset; Size: number of hidden states (h) in
GRU; Pars.: all parameters in the neural network model.

Other GRU Models GRU-Simple GRU-D

Gesture

# of Vars. 18 18 18

Size 64 50 55

# of Pars. 16, 281 16, 025 16, 561

MIMIC-III

# of Vars. 99 99 99

Size 100 56 67

# of Pars. 60, 105 59, 533 60, 436

PhysioNet

# of Vars. 33 33 33

Size 64 43 49

# of Pars. 18, 885 18, 495 18, 838

4.2 Multi-task prediction results

The AUC scores for predicting each of the 4 tasks on PhysioNet dataset are
shown in Figure 4, and those for each of the 20 ICD-9 diagnosis categories on
MIMIC-III dataset are shown in Figure 5. The proposed GRU-D achieves the
best average AUC score on both datasets, and it wins 2 most challenging tasks
on PhysioNet dataset and 11 of the 20 ICD-9 prediction tasks on MIMIC-III
dataset.

4.3 Evaluation on multi-layer RNNs

We also conducted experiments on 2-layer RNN models to demonstrate the
superiority of our proposed GRU-D models can be generalized to multi-layer
RNNs. For all baseline and proposed GRU models, we add one standard GRU
layer on top of the baseline or proposed GRU layer. We tested models both with
similar number of parameters to single layer models and with more parameters.
As shown in Table 6 and 7, our GRU-D model consistently outperforms other
baselines in all cases, and models with moderate size perform as good as larger
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Figure 4: Performance for predicting all 4 tasks on PhysioNet dataset. mortality,
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Figure 5: Performance for predicting 20 ICD-9 diagnosis categories on MIMIC-III
dataset.

models with more parameters. Compared with 1-layer RNNs, all models with
deeper structures perform much better on the larger MIMIC-III dataset but no
better on the relatively smaller PhysioNet dataset.

4.4 Empirical comparison of GRU-D model variations

As a thorough empirical comparison, we test all GRU model variations mentioned
in supplementary information Section 2 along with the proposed GRU-D, which
are 4 models with trainable decays (GRU-DI, GRU-DS, GRU-DM, GRU-IMP).
The results on three versions of GRU-simple models are also compared in the
table. The results are shown in Table 8. As we can see, GRU-D performs best
among these models.

4.5 Histograms of hidden state decay weights

We show the histograms of the hidden state decay weights for all 33 variables
in figure 6. The variables are sorted by their missing rate in this dataset, e.g.,
the variable with highest missing rate (Cholesterol) is shown on top-left, and
that with lowest missing rate (HR) is on bottom-right. We can find on average,
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Table 6: Comparison of multi-layer GRU models for mortality prediction on
PhysioNet dataset. Size: numbers of hidden states (h) of the two GRU layers.
Pars.: all parameters in the neural network model.

Models
PhysioNet

Size # of Pars. AUC score

Similar
size

GRU-Mean 40, 40 18, 643 0.8157 ± 0.008

GRU-Forward 40, 40 18, 643 0.8205 ± 0.008

GRU-Simple 32, 32 18, 947 0.8159 ± 0.007

GRU-D 34, 34 18, 599 0.8420± 0.009

Larger
size

GRU-Mean 64, 64 43, 651 0.8199 ± 0.002

GRU-Forward 64, 64 43, 651 0.8112 ± 0.035

GRU-Simple 43, 64 39, 250 0.8208 ± 0.009

GRU-D 49, 64 40, 739 0.8363± 0.013

the (absolute) weight values for low missing rate variable is larger, implies the
importance of the missingness of those variables in our model.
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Figure 6: Histrograms of hidden state decay weights W γh for all variables
(bottom) in GRU-D model for predicting mortality on PhysioNet dataset. x-
axis, value of decay parameter W γh ; y-axis, frequency. Variables are sorted in
descending order of missing rate.
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Table 7: Comparison of multi-layer GRU models for mortality prediction on
MIMIC-III dataset. Size: numbers of hidden states (h) of the two GRU layers.
Pars.: all parameters in the neural network model.

Models
MIMIC-III

Size # of Pars. AUC score

Similar
size

GRU-Mean 66, 66 59, 271 0.9538 ± 0.005

GRU-Forward 66, 66 59, 271 0.9441 ± 0.005

GRU-Simple 46, 46 60, 355 0.9527 ± 0.005

GRU-D 52, 52 60, 989 0.9606± 0.002

Larger
size

GRU-Mean 100, 128 148, 067 0.9539 ± 0.006

GRU-Forward 100, 128 148, 067 0.9457 ± 0.005

GRU-Simple 56, 128 130, 643 0.9523 ± 0.003

GRU-D 67, 128 135, 759 0.9618± 0.002

Table 8: Model performances of GRU variations measured by AUC score
(mean± std) for mortality prediction.

Models MIMIC-III PhysioNet

Baselines

GRU-simple w/o δ 0.8367 ± 0.009 0.8226 ± 0.010

GRU-simple w/o m 0.8266 ± 0.009 0.8125 ± 0.005

GRU-simple 0.8380 ± 0.008 0.8155 ± 0.004

Proposed

GRU-DI 0.8345 ± 0.006 0.8328 ± 0.008

GRU-DS 0.8425 ± 0.006 0.8241 ± 0.009

GRU-DM 0.8342 ± 0.005 0.8248 ± 0.009

GRU-IMP 0.8248 ± 0.010 0.8231 ± 0.005

GRU-D 0.8527± 0.003 0.8424± 0.012
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