1 Supplementary Information

2 **3D Shape Modeling for Cell Nuclear Morphological Analysis**

3 and Classification

- 4 Alexandr A. Kalinin^{1,2,§}, Ari Allyn-Feuer^{1,§}, Alex Ade¹, Gordon-Victor Fon¹, Walter Meixner¹,
- 5 David Dilworth¹, Syed S. Husain², Jeffrey R. de Wet¹, Gerald A. Higgins¹, Gen Zheng³, Amy
- 6 Creekmore³, John W. Wiley³, James E. Verdone⁴, Robert W. Veltri⁴, Kenneth J. Pienta⁴, Donald
- 7 S. Coffey⁴, Brian D. Athey^{1,5,*}, Ivo D. Dinov^{1,2,5,*}
- 8
- 9 ¹Department of Computational Medicine and Bioinformatics, University of Michigan Medical
- 10 School, Ann Arbor, MI, USA
- ¹¹ ²Statistics Online Computational Resource (SOCR), Health Behavior and Biological Sciences,
- 12 University of Michigan School of Nursing, Ann Arbor, MI, USA
- ¹³ ³Division of Gastroenterology, Department of Internal Medicine, University of Michigan
- 14 Medical School, Ann Arbor, MI, USA
- ⁴Michigan Institute for Data Science (MIDAS), University of Michigan, Ann Arbor, MI, USA
- ⁵Department of Urology, The James Buchanan Brady Urological Institute, Baltimore, MD, USA
- 17
- 18 [§]These authors contributed equally to this work
- 19 *Correspondence to statistics@umich.edu
- 20
- 21 Validation on synthetic data

- 22
- 23

24 Supplementary Figure S1. Example of synthetic data. Overlapping spheres or 'beads' (R=30,

25 overlap=5) within an ellipsoid (a=80, b=40, c=40) used to validate shape morphometry measure

26 calculations and differences in morphometric features.

27

28 Supplementary Table S1. Morphometry of synthetic objects. Cube (a=160), octahedron and

20	anhara	$(\mathbf{D} - \mathbf{Q}\mathbf{n})$
29	sphere	(1-00)

Primitive	AvgMean Curvature	Compute Area	Volume	Curvedness	Shape Index	Fractal Dimension
Cube	0.029	144438.190	4060563.200	0.323	0.012	2.181
Octahedro n	0.036	42441.207	687556.250	0.349	0.017	2.016
Sphere	0.015	79633.500	2111214.800	0.713	0.009	2.095
Ellipsoid	0.026	33973.812	526245.700	0.633	0.013	2.097
Beads	0.029	29279.334	322649.560	0.612	0.035	2.147

30

31 Definitions of morphometric measures

32 Supplementary Table S2. Core morphometric measures

Geometric	Mathematical	Details and Interpretation
Measure	Formulas	
Volume	$V = \iiint_{R^3} I_D(x, y, z) dx dy dz$	The amount of 3D space enclosed by a closed boundary – inside
		of a 3D solid – which is quantified numerically in world
		coordinated (e.g., mm ³ or m ³). The volume of a solid represents
		the space capacity of the object.
Surface	$SA = \iint \vec{r_u} \times \vec{r_v} du dv$	The surface area of a 3D solid object is the total area of its
Area	Ω	(curved) boundary (a 2-manifold). Surface areas of flat
		polygonal shapes must agree with their geometrically defined
		area. Volume and Surface area are invariant under the group of
		Euclidean motions.
Mean	$MC = H = \frac{(\kappa_1 + \kappa_2)}{2}$	For an orientable surface defined as a function of two
or Gaussian	$GC = K = \kappa_1 \times \kappa_2$	parameters, $z = S(x, y)$, assuming an upward pointing normal, the
Curvature		mean curvature is: $MC = -(1/2)\nabla \cdot \left(\frac{\nabla(z-S)}{ \nabla(z-S) }\right) = (1/2)\nabla \cdot \left(\frac{\nabla S}{\sqrt{1+ \nabla S ^2}}\right) =$
	Example, $GC = -2$	$=_{\left(\frac{1}{2}\right)^{\frac{\partial^2 S}{\partial y^2}\left(1+\left(\frac{\partial S}{\partial x}\right)^2\right)-2\frac{\partial S\partial S}{\partial x\partial y\partial x\partial y}+\frac{\partial^2 S}{\partial x^2}\left(1+\left(\frac{\partial S}{\partial y}\right)^2\right)^{2/2}}_{\left(1+\left(\frac{\partial S}{\partial x}\right)^2+\left(\frac{\partial S}{\partial y}\right)^2\right)^{3/2}}.$ The only surface in R^3 with constant
		positive mean curvature is the sphere . The only surface in R^3
		with constant negative Gaussian curvature is the pseudosphere.
		The Curvature provides (local at each vertex) surface
	Saddle surface with	classification:
	normal planes in	• Elliptical: both principal curvatures have the same sign, an

	directions of principal	d the	surface is lo	cally convex.		
	curvatures	 Hyperbolic: the principal curvatures have opposite signs, a nd the surface will be locally saddle shaped. Parabolic: one of the principal curvatures is zero. Parabolic points generally lie in a curve separating elliptical and hype rbolic regions. 				
Shape	$SI = \frac{2}{\pi} \arctan\left(\frac{\kappa_2 + \kappa_1}{\kappa_2 - \kappa_1}\right)$	$-1 \le SI \le 1$				
Index		Cup	Rut	Saddle	Ridge	Сар
		-1	-0.5	0	0.5	+1
Curvedness	$CV = \sqrt{\frac{\kappa_1^2 + \kappa_2^2}{2}}$			к,		
[1]	$0 \leq CV$		Shape In Curvedness	ndex	rincipal irvatures	
Fractal	$FD = \frac{\log(N)}{\log\left(\frac{1}{\rho}\right)} = -\frac{\log(N)}{\log(\rho)}$	Topologic	al dimension	ns are always in	tegral, however	· · · ·
Dimension	· · · ·	dimensior	ality can be	extended to all	positive real nu	mbers.
		The fracta	l dimension	can take non-in	teger values inc	licating
		that a set f	ills its space	e qualitatively a	nd quantitativel	у
		differently	than ordina	ry geometric sh	apes.	

• A curve with fractal dimension=1.10 is similar to an ordi
nary line, but its 1D length would be infinite.
• A curve with fractal dimension 1.9 would wind through s
pace (R^3) very much like a 2D surface.
• A surface with fractal dimension>2.0 (e.g., of 2.1) would
look like a regular 2-manifold (e.g., sphere), but begins to
fill <i>R</i> ³ and it's 2D area would be infinite
• A surface with a fractal dimension of 2.9 folds and flows
to fill R ³
like a volume, but it's 3D measure of volume would be
trivial (0).
• The Koch curve (below) has a fractal dimension of 1.261
9.
⁶
<i>.</i>
That is, for a fractal described by $N = 4$, $\rho = \frac{1}{3}$, $D = 1.2619$, a
non-integer dimension > 1 , implying its length is
infinite.
Fractal dimension concept is based on self-similarity,
scaling and dimension. Classically, measuring the length
of a line using first one measuring stick of size 1, then
another 1/3 its size, will give for the second stick a total

length 3 times as many sticks long as with the first. Similarly in 2D – if we measure an area using a square of size 1, and then then measuring the same area a square of size 1/3 we will need 9 times as many squares as with the first measure. To generalize, let N, ρ , and Drepresent the number of new sticks, the scaling factor, and the fractal dimension, then:

$$N \cong \rho^{-D} \twoheadrightarrow \log_{\rho} N = -D \twoheadrightarrow D = -\frac{\log N}{\log \rho}$$

For the Koch curve, a fractal line is first measured with a stick of size 1, then re-measured using a new stick scaled by 1/3 but requires 4 sticks of this size. In this case, N = 4, $\rho = \frac{1}{3}$, and $D = -\frac{\log N}{\log \rho} = \frac{\log 4}{\log 3} = 1.2619.$

33

34

35 Running workflow demo using Pipeline Web Start

36 This demo is prepared for classification of serum-starved Fibroblast cells (SS, run #160). This

37 workflow take as an input original 16 1024x1024xZ 3D TIFF images (sub-volumes) in DAPI

38 channel (c0) and metadata. It demonstrates nuclear binary mask preparation, 3D shape modeling,

- 39 morphometric measure extraction, and classification running in distributed mode on a cluster
- 40 using LONI Pipeline guest mode. It outputs .csv file with image-level output label, nucleus-level
- 41 accuracy and average probability as well as labels and probabilities for individual nuclear masks

42	that were segmented out of 3D input sub-volume, passed the curation, 3D shape modeling,
43	feature extraction, and classification.
44	
45	Instructions below describe how to use Pipeline in a guest mode. If you already have LONI
46	Pipeline credentials you can just download Pipeline Client from
47	http://pipeline.loni.usc.edu/products-services/pipeline-software/ and log in using your username
48	and password.
49	Download and install LONI Pipeline Client Web Start from
50	http://pipeline.loni.usc.edu/files/webstart/pipeline.jnlp (requires Java ¹)
51	Create "Try-It-Now" connection by clicking Connections icon at the bottom-right corner
52	of the client to connect to the server without credentials (enter space for password)
53	• Download workflow file c0-classification-demo-run160.pipe from
54	http://www.socr.umich.edu/data/3d-cell-morphometry-data/workflows/c0-classification-
55	demo-run160.pipe and open in the Pipeline client
56	• Click Run button at the bottom of the client – after workflow validates the protocol,
57	presence of input data, and availability of free nodes in cluster, it will start running jobs
58	• Running the workflow take 2-3 hours on average, depending on availability of computing
59	nodes in the cluster
60	• After workflow is completed, right-click on Calculate Accuracy module in Classification
61	group and download or view the output file from Output Files tab

¹ If you have problems accessing Java applications using Chrome, Oracle recommends using Internet Explorer (Windows) or Safari (Mac OS X) instead. See https://www.java.com/en/download/faq/chrome.xml.

62	You can also double-click on group in the workflow at any moment to see individual
63	modules inside. You can disconnect while the workflow is running – under Connections
64	you will be able to see your unique GUEST-ID that you can use to reconnect later and
65	check workflow status (enter space for password). Having your GUEST-ID you should be
66	able to use LONI Pipeline Web App at http://pipeline.loni.usc.edu/webapp/ to reconnect to
67	the same sessions (web app is still in Beta and might not work as expected). Workflow
68	protocol can be ran multiple times to validate reproducibility of the morphometry results.
69	Pipeline documentation, including instructions module definition, modification, and
70	execution, is available on the official website at .

71

72 **References**

 Norman JF, Todd JT, Norman HF, Clayton AM, McBride TR. Visual discrimination of local surface structure: slant, tilt, and curvedness. Vision Res. 2006;46:1057-1069.