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1 Nodes
The information of nodes are summarized in Table 1 in the supplementary material. The location and color of nodes are shown
in Fig. 1 in the supplementary material.

(a) Frontal lobe (b) Limbic lobe (c) Parietal lobe

(d) Temporal lobe (e) Subcorcal region (f) Occipital lobe

Figure 1. Color of node. (a) Frontal lobe (red), (b) limbic lobe (yellow), (c) parietal lobe (green), (d) temporal lobe (blue), (e)
subcortical region (yellow-green), and (f) occipital lobe (purple).
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Table 1. Information of 90 nodes

Index (R,L) Lobe abbrev. Name
1, 90 F OLF Olfactory cortex
2, 89 F REG Gyrus rectus
3, 88 F IFGorb Inferior frontal gyrus, orbital part
4, 87 F IFGoper Inferior frontal gyrus, opercular part
5, 86 F IFGtri Inferior frontal gyrus, tri gular part
6, 85 F MFGorb Middle frontal gyrus, orbital part
7, 84 F MFG Middle frontal gyrus
8, 83 F SFGorb Superior frontal gyrus, orbital part
9, 82 F SFGmorb Superior frontal gyrus, medial orbital
10, 81 F SFGmed Superior frontal gyrus, medial
11, 80 F SFG Superior frontal gyrus, dorsolateral
12, 79 F PCL Paracentral lobule
13, 78 F SMA Supplementary motor area
14, 77 F PreCG Precentral gyrus
15, 76 F ROL Rolandic operculum
16, 75 L ACC Anterior cingulate and paracingulate gyri
17, 74 L MCC Median cingulate and paracingulate gyri
18, 73 P PoCG Postcentral gyrus
19, 72 P SPG Superior parietal gyrus
20, 71 P PCNU Precuneus
21, 70 P IPG Inferior parietal, but supramarginal and angular gyri
22, 69 P SMG Supramarginal gyrus
23, 68 P ANG Angular gyrus
24, 67 T STG Superior temporal gyrus
25, 66 T HES Heschl gyrus
26, 65 T MTG Middle temporal gyrus
27, 64 T ITG Inferior temporal gyrus
28, 63 T STGp Temporal pole: superior temporal gyrus
29, 62 T MTGp Temporal pole: middle temporal gyrus
30, 61 T INS Insula
31, 60 B CAU Caudate nucleus
32, 59 B PUT Lenticular nucleus, putamen
33, 58 B PAL Lenticular nucleus, pallidum
34, 57 L THA Thalamus
35, 56 L AMYG Amygdala
36, 55 L HIP Hippocampus
37, 54 L PHIP Parahippocampal gyrus
38, 53 L PCC Posterior cingulate gyrus
39, 52 O FUSI Fusiform gyrus
40, 51 O IOG Inferior occipital gyrus
41, 50 O MOG Middle occipital gyrus
42, 49 O SOG Superior occipital gyrus
43, 48 O V1 Calcarine fissure and surrounding cortex
44, 47 O CUN Cuneus
45, 46 O LING Lingual gyrus

2 Edge and node capacities on 38 functional networks
The edge capacity and node capacity of 38 functional networks constructed by fMRI data were respectively shown in Fig. 2
and 3 in the supplementary material. The subjects were sorted in the ascending order of their age. The age of each subject
was written above each figure. In Fig. 2, the minimum and maximum values of all edge capacity matrices are respectively
1.897×10−4 and 3.62×10−4 that are represented by dark red and light yellow. In Fig. 3, the size of nodes was proportional to
the absolute of node capacity, and the color of nodes represented positive (blue) and negative (red) node capacities.
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Figure 2. Edge capacity matrices of 38 functional networks. The range of edge capacities is between 1.897×10−4 and
3.62×10−4. As the edge capacity increases, the color is changed from dark red to light yellow.
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Figure 3. Node capacity of 38 functional networks. The network is sorted in the ascending order of the subject’s age. The age
of each subject was written above each figure. The size of nodes was proportional to the absolute of node capacity, and the blue
and red nodes represented positive and negative node capacities, respectively.
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3 Simulation using artificial binary networks
In this simulation, we compared the performance of six global graph measures in distinguishing five artificial unweighted
graphs with varying the sparsity of a graph. The six different global graph measures were as follows:

• global efficiency eglo ,

• average local efficiency eloc ,

• modularity Q,

• functional entropy h f un
1,

• spectral entropy hspe
2, and

• volume entropy hvol (the proposed method),

The five artificial unweighted graphs that were used for the comparison of performance were as follows:

• regular graph (RE),

• small-world graph (SW),

• random graph (RA),

• scale-free graph (SF), and

• hyperbolic graph (HY).

RE is an unweighted graph where all nodes have the same degree. SW is a globally and locally efficient graph with short
characteristic path length and large average clustering coefficient3. SF has heterogeneous degree distribution with a few number
of heavily linked nodes, termed hubs, but many nodes with few connections4. Hubs make a great contribution to propagating
information quickly throughout a network. On the other hand, it is vulnerable to targeted attacks on hubs. Thus, SF is known to
be globally efficient and locally inefficient. HY is known to have both strong heterogeneity and high clustering coefficient5. It
can be thought as a maximally efficient unweighted graph. These unweighted graphs were generated by CNM matlab toolbox6.

The number of nodes was fixed by p = 90. The sparsity, which was the ratio of the number of edges to the number of
maximally possible edges, was varied from 0.04 to 0.90. All nodes in a graph should have more than three edges for the
estimation of volume entropy7. If there were nodes with degree less than three in the generated graph, we randomly took
an edge connecting nodes with degree more than four and rewired it to a node with degree less than three. In this way, we
generated 150 artificial unweighted graphs for each sparsity and each graph type. After five measures were estimated in each
graph, Wilcoxon rank sum test was performed to assess the statistical difference of each measure between graph types at each
sparsity. We used brain connectivity toolbox for the estimation of global and local efficiencies and modularity8.

Fig. 5 in the manuscript showed the results of (a) hvol , (b) h f un , (c) Q, (d) hspe , (e) eloc , and (f) eglo . We plotted the
box plots at the sparsity 0.09,0.18,0.27,0.36,0.45, and 0.54 from left to right. In each figure, the horizontal and vertical axes
represented the graph type and the network measure, respectively. The color of line was changed by the type of graph: blue for
RE, green for SW, red for RA, cyan for SF, and magenta for HY. In Fig. 5 (a) eglo , the order of five graph types was changed
four times at the sparsity 0.04,0.12,0.20, and 0.48. The inconsistent order was due to SF and HY, and the order of RE, SW, and
RA was comparatively consistent for the sparsity with RE ≤ SW ≤ RA. In (b) eloc , the order of graph types was also changed
four times at the sparsity 0.04,0.08,0.40, and 0.66. eloc also consistently discriminated RE, SW, and RA in the order of RA <
SW < RE. However, the order with SF and HY was inconsistent. In (c) Q, the order was RA ≤ SF < HY < SW < RE for all
sparsity (p < .001, FDR-corrected). In (d), h f un of five network types was always the same at the fixed sparsity. It was because
the functional entropy consider only the distribution of edge weights, not the network topology. In addition, the functional
entropy did not monotonically increase or decrease over sparsity. Thus, it could also not distinguish the difference in the sparsity
of graph. In (e) hspe , the order of graph types in hspe was changed six times at the sparsity 0.04,0.12,0.16,0.30,0.40, and 0.62.
The order of graph types in hspe highly depended on the sparsity. hspe measured the connectedness of a graph. Because all
nodes in RE had the same degree, RE did not have a modular structure and it always had the smallest hspe among all five graph
types. In (f) hvol , the order of graph types was consistent for all sparsity. The order was RE < SW < RA < SF ≤ HY (p < .001,
FDR-corrected). The volume entropy of SF was similar to that of HY at large sparsity. It was because that as the number of
edges increased in a graph, SF lost its sparse property. The volume entropy also distinguished well between RE, SW, RA, SF,
and HY.
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4 Simulation using artificial weighted networks
In this simulation, we compared the six graph measures in discriminating three distinct types of artificial weighted networks.
These three types of weighted networks had the same topological structure, but they had different edge weights. We generated
150 hyperbolic unweighted graphs using CNM toolbox, and defined the edge distance of the graph in three different ways,

• Uniform edge distance (U): all edges had the same distance,

• Long edge distance with high node degrees (L): the edge distance was proportional to the degree of its initial and terminal
nodes, i(e) and t(e), determined by

l (e) =
log(ki (e) −1) + log(kt (e) −1)∑

∀v∈V kv log(kv −1)
, (1)

where kv is the number of edges connecting with a node v ∈ V 7.

• Short edge distance with high node degrees (S): the edge distance was inversely proportional to the degree of two
connected nodes, determined by the inverse of l (e) in (1).

These three networks had the same topology, but different geometries. The edge connecting nodes with higher degree was
longer in L, but shorter in S. Thus, it could be assumed that the information propagation was the fastest in S, followed by U and
L. Note that before estimating the graph measures, we normalized the volume of weighted graph to two, i.e.,

∑
e l (e) = 2.

The results of graph measures were shown in Fig. 6 in the manuscript. In each figure, three weighted graphs, S, U, and L
were represented by red, blue, and green, respectively. In (a) eglo , the order of S, U, and L was changed three times at the
sparsity 0.04,0.12, and 0.26. The order of graph types, S, U, and L was consistent for all sparsity in (b) eloc , (c) Q, (e) hspe ,
and (f) hvol . The order was L < U < S in hvol in Fig. 6 (f), S < U < L in Q and hspe in (c) and (e), and U ≤ S ≤ L in eloc in
(b) (p < .001, FDR-corrected). In (d), the order of graph types in h f un was changed twice at 0.04, and 0.80. h f un could not
find the difference between S and L.

5 Comparison with the previous studies
We estimated the volume entropy, global and local efficiencies, and modularity of the normalized and unnormalized metabolic
networks of Y and O based on PET imaging data. We performed the 1000 permutations for the statistical analysis. We estimated
the significance of the volume entropy, global and local efficiencies, and modularity in Y and O as well as the significance of
the difference of those measures between Y and O. The results are shown in Table 2 in the supplementary material. The volume
of normalized and unnormalized networks was not significant in Y and O, and the difference of the volume between Y and O
was also not significant both in the normalized and unnormalized networks.

Table 2. p-value of the volume entropy, global and local efficiencies, and modularity of the normalized and unnormalized
metabolic networks of Y and O. The p-value of the difference of the four network measures between Y and O are also
summarized.

p-value Group hvol eglo eloc Q
normalized Y 0.729 0.651 0.480 0.610

O 0.008 0.268 0.739 0.198
Diff. 0.069 0.306 0.372 0.281

unnormalized Y 0.333 0.330 0.367 0.610
O 0.545 0.700 0.723 0.198

Diff. 0.400 0.306 0.312 0.281

We estimated the volume entropy, global and local efficiencies, and modularity of the normalized and unnormalized
functional networks based on the fMRI data of 38 subjects. We estimated the significance of the relationship between the four
measures and the age of subjects. The results are shown in Table 3 in the supplementary material. The volume functional of
networks was negatively correlated with age (r = −0.411,p < .05).
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