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Supplementary note 1: image acquisition parameters

Computed tomography (CT) images were acquired for both the non-small-cell lung car-

cinoma (NSCLC) and head and neck squamous cell carcinoma (HNSCC) cohorts. For the

NSCLC cohort, a second CT image was acquired 15 minutes after the first acquisition. The

patient was asked to leave the table between the scans and was repositioned before the

second image acquisition. For the HNSCC cohort a second CT image was recorded to de-

termine attenuation corrections for positron emission tomography (PET). This PET-CT scan

was recorded within 4 days after the original diagnostic CT scan. Acquisition parameters

and characteristics are shown in Table S1.

parameter NSCLC HNSCC

CT 1 CT 2 CT 1 CT 2

number 31 31 19 19

scanner GE Healthcare
Lightspeed 16

GE Healthcare
Lightspeed 16

Siemens
Biograph 16

Siemens
Biograph 16

GE Healthcare
VCT

GE Healthcare
VCT

tube voltage (kVp) 120 120 120 120

exposure (mAs) 8 (4-10) 8 (4-13) 36 (18-62) 9 (9-10)

reconstruction kernel Lung Lung B31f B19f

voxel spacing (𝑥-axis; mm) 0.67 (0.51-0.90) 0.67 (0.51-0.91) 0.98 1.37

voxel spacing (𝑦-axis; mm) 0.67 (0.51-0.90) 0.67 (0.51-0.91) 0.98 1.37

voxel spacing (𝑧-axis; mm) 1.25 1.25 3.00 (2.00-3.00) 2.00

image noise (𝜎; HU) 29.3 (16.6-76.1) 28.4 (16.9-70.3) 4.1 (3.9-5.4) 4.2 (3.7-6.8)

Table Sɰ | Image acquisition parameters and characteristics for both NSCLC and HNSCC image
data sets. Parameters were determined from the CT slices that contain portions of the gross
tumour volume (GTV) region of interest. Numeric parameters are presented as median (range),
unless only one value was found within the cohort. Image noise was calculated using Chang’s
methodɰ and represented by its standard deviation 𝜎 (supplementary note ҏ). kVp: peak kilo-
voltage; HU: Hounsfield unit

2



Supplementary note 2: pre-interpolation low-pass filtering

Image features are computed from voxels with uniform dimensions. In this work, features

are computed with voxel spacings of 1, 2, 3 and 4 mm. The in-plane original spacing of

the CT images is between 0.51 and 1.37 mm. We therefore need to down-sample images,

which may cause image artefacts through aliasing and thus reduce feature robustness. In

signal analysis, a signal may contain only frequencies up to half the sample frequency (the

Nyquist frequency𝜔𝑁) of the down-sampled signal to avoid artefacts. Signals are therefore

low-pass filtered before down-sampling to suppress high frequency contents. The same

concept applies to images as well. However, application of low-pass filters in radiomics is

often neglected, despite the beneficial effect on feature robustness2.

We use a low-pass Gaussian filter before interpolation scipy.ndimage.gaussian_filter. The

Gaussian function 𝑔(𝑥) is defined as:

𝑔(𝑥) = 1

𝜎√2𝜋
e

− 𝑥2

2𝜎2 ,

with 𝜎 the standard deviation, or width, of the distribution. 𝜎 is an input parameter for the

Gaussian filter for which optimal settings have not been established. 𝜎 moreover needs to

be definedwith respect to the typically non-uniformly spaced coordinate grid system of the

original image and is thus specified separately for each axis.

Fourier theory allows us to set𝜎 based on the Nyquist frequency. The Fourier transform

of the Gaussian function 𝑔 is3:

𝐺(𝜔) = e− 𝜔2𝜎2

2 ,

with 𝜔 being a frequency. An ideal low-pass filter will maintain all frequencies 𝜔 < 𝜔𝑁,

and remove frequencies 𝜔 ≥ 𝜔𝑁 completely. However, ideal filters do not exist and a com-

promise is required between the desired attenuation of high-frequency content and the un-

wanted attenuation of low-frequency content. We define a smoothing parameter 𝛽, with

0 < 𝛽 ≤ 1, for the Fourier transformed Gaussian at 𝜔 = 𝜔𝑁:

𝐺(𝜔𝑁) = e−
𝜔2

𝑁𝜎2

2 = 𝛽 (1)

The Nyquist frequency 𝜔𝑁 may be expressed in terms of voxel spacing. For instance,

we have a one-dimensional array of voxels with spacing 𝑑1. We want to sample this array

to spacing 𝑑2. The sampling frequency is then 𝜔𝑠 = 𝑑1/𝑑2, which leads to the Nyquist

frequency 𝜔𝑁 = 𝜔𝑠/2 = 𝑑1/ (2𝑑2).

We now solve equation (1) for 𝜎:

e− 𝜔𝑁
2𝜎2

2 = 𝛽 ⇔

ln(𝛽) = −𝜔𝑁
2𝜎2

2
⇔

𝜎2 = −2 ln(𝛽)
𝜔𝑁2

= −8 (𝑑2

𝑑1

)
2

ln(𝛽) ⇔

𝜎 = −2
𝑑2

𝑑1

√2 ln(𝛽)

We assess different parameter settings for 𝛽, namely 𝛽 = {0.50, 0.70, 0.80, 0.85, 0.90,
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0.93, 0.95, 0.97}, as well as no low-pass filtering. Test-retest intraclass correlation coeffi-

cients (ICC (1,1)) and their 95% confidence intervals (CI) are calculated on both test-retest

cohorts4. The ICCs are used to determine the number of robust features and to show the ICC

distribution. In addition, the distribution of the width of the ICC 95% confidence intervals

is assessed.

Example images of an interpolated slice acquired from an NSCLC and an HNSCC patient

are shown in Figures S1 and S2, respectively. Down-sampling without interpolation caused

visible image artefacts. On the other hand, images that are smoothed with a wide Gaussian

low-pass filter (low 𝛽 value) lack detail.

The percentage of robust features according to the test-retest ICC is shown in Figure S3.

For the NSCLC cohort, even very light smoothing (𝛽 = 0.97) increases the percentage of

robust features from 59.0% to 75.9%. With lower 𝛽-values, this percentage does not change,

nor does the distribution of ICCs (Figure S4) or the distribution of ICC CI widths (Figure S5).

For very low 𝛽-values, the ICC distribution for NSCLC may be less stable.

For the HNSCC cohort, the percentage of robust features increases with decreasing 𝛽,

which is also reflected in the ICC distribution. In particular, even very mild smoothing

(𝛽 = 0.97) increased the median ICC from 0.63 to 0.76. When only features computed with

minimal down-sampling are considered (1 mm), 𝛽 = 0.97 reduced the median ICC from

0.72 to 0.65, and only recovered at𝛽 = 0.93. The samemay be observed for the ICC CI width,

which was increased for 𝛽 = 0.97. A smoothing parameter value between 𝛽 = 0.93 (ro-

bust features: 34.0%; median ICC: 0.85; median CI width: 0.29) and𝛽 = 0.90 (robust features:

43.0%; median ICC: 0.88; median CI width: 0.23) offers a good compromise between aliasing

and lack of image details.
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Figure Sɰ | Effect of smoothing and interpolation on a CT slice of an NSCLC patient. A Gaussian
smoothing filter for the given 𝛽-values was applied before interpolation. Afterwards, tri-linear
interpolation was conducted to resample to uniform voxel spacing (in mm). All slices are shown
at the same size for comparison, and intensities were windowed between [−400, 300] HU.
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Figure Sҍ | Effect of smoothing and interpolation on a CT slice of an HNSCC patient. A Gaussian
smoothing filter was applied before interpolation for the given 𝛽-values. Afterwards, tri-linear
interpolation was conducted to resample to uniform voxel spacing (in mm). All slices are shown
at the same size for comparison, and intensities were windowed between [−220, 250] HU.
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Figure SҎ | Fraction of robust features according to the test-retest intraclass correlation coefficient
(ICC (ɰ,ɰ)) for a pre-interpolation Gaussian smoothing parameter 𝛽. A feature was considered
robust if ICC≥ 0.90. Lower𝛽-values indicate stronger smoothing. The fraction of robust features
is shown for all features (a) and for features acquired using a uniform spacing of ɰ mm (b).
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Figure Sҏ | Distribution of test-retest intraclass correlation coefficients (ICC (ɰ,ɰ)) for a pre-
interpolation Gaussian smoothing parameter 𝛽. Lower 𝛽-values indicate stronger smoothing.
The areas of the distributions were normalised. The median ICC in each distribution is indicated
by a horizontal line. ICC distributions are shown for all features (a) and for features acquired using
a uniform spacing of ɰ mm (b).

8



a

NSCLC HNSCC

none 0.97 0.95 0.93 0.90 0.85 0.80 0.70 0.50 none 0.97 0.95 0.93 0.90 0.85 0.80 0.70 0.50

0.00

0.25

0.50

0.75

1.00

smoothing parameter β

IC
C 

(1
,1

) 9
5%

 C
I w

id
th

b

NSCLC HNSCC

none 0.97 0.95 0.93 0.90 0.85 0.80 0.70 0.50 none 0.97 0.95 0.93 0.90 0.85 0.80 0.70 0.50

0.00

0.25

0.50

0.75

1.00

smoothing parameter β

IC
C 

(1
,1

) 9
5%

 C
I w

id
th

Figure SҐ | Distribution of the ғҐ % confidence interval (CI) widths of the test-retest intraclass
correlation coefficients (ICC (ɰ,ɰ)) for a pre-interpolation Gaussian smoothing parameter𝛽. Higher
CI widths indicate larger variance in feature values between test and retest images. Lower 𝛽-
values indicate stronger smoothing. The areas of the distributions were normalised. The median
ғҐ% CI width is indicated in each distribution by a horizontal line. ICC CI width distributions are
shown for all features (a) and for features acquired using a uniform spacing of ɰ mm (b).
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Supplementary note 3: image features

All image features were extracted according to the definitions provided by the Image Bio-

marker Standardisation Initiative5. Intensity-volumehistogram-based featureswere calcu-

lated for the 10th, 25th, 50th, 75th and 90th intensity and volume fraction percentiles. Moran’s

I index and Geary’s C measure were approximated by repeatedly selecting 100 voxels from

the ROI at random and computing these metrics until the standard error of the mean de-

creased below 0.002. A total of 4032 features were computed, see Table S2.

The following specific parameters were used to compute image features:

• Morphology: the surface mesh was constructed using the Marching Cubes algorithm,

with an iso-level of 0.56,7.

• Intensity-volume histogram: the intensity volume histogram was constructed as for

images with discrete, defined (non-arbitrary) image values5.

• Grey level co-occurrence matrix: grey level co-occurrence matrices (GLCM) were cal-

culated in 3D for 13 directions, with Chebyshev distance𝛿 = 1. GLCMwere symmetric

and not distance-weighted. GLCM features were first calculated for every GLCM, and

subsequently averaged.

• Grey level run length matrix: grey level run length matrices (GLRLM) were calculated

in 3D for 13 directions. GLRLMwere not distance-weighted. GLRLM features were first

calculated for every GLRLM, and subsequently averaged.

• Grey level size zonematrix: a single grey level size zonematrix was calculated for the

entire 3D volume.

• Grey level distance zone matrix: a single grey level distance zone matrix was calcu-

lated for the entire 3D volume.

• Neighbourhood grey tone difference matrix: a single neighbourhood grey tone differ-

ence matrix was calculated for the entire 3D volume, with Chebyshev distance 𝛿 = 1.

• Neighbouring grey level dependencematrix: a single neighbouring grey level depend-

ence matrix was calculated for the entire 3D volume, with Chebyshev distance 𝛿 = 1

and coarseness parameter 𝛼 = 0.

Intensity histogram, grey level co-occurrence matrix, grey level run length matrix, grey

level size zonematrix, grey level distance zonematrix, neighbourhood grey tone difference

matrix and neighbouring grey level dependencematrix-based features required image dis-

cretisation prior to computation, which was conducted using two methods, with four set-

tings each: a fixed bin number method with 8, 16, 32 or 64 bins; or a fixed bin width method

with bins that were 6, 12, 18 or 24 Hounsfield units (HU) wide. For the fixed bin number

method, the edge of the first bin coincided with the lowest intensity of the voxels included

in the intensity mask. For the fixed bin width method, the lower edge of the first bin coin-

cided with the lower edge of the re-segmentation range applied during image processing

(NSCLC: -300 HU; HNSCC: -150 HU).
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feature family base # multipl. total #

morphology 29 29

local intensity 2 2

intensity-based statistics 18 18

intensity histogram 23 ×8 184

intensity-volume histogram 15 15

grey level co-occurrence matrix 25 ×8 200

grey level run length matrix 16 ×8 128

grey level size zone matrix 16 ×8 128

grey level distance zone matrix 16 ×8 128

neighbourhood grey tone difference matrix 5 ×8 40

neighbouring grey level dependence matrix 17 ×8 136

total 1008

Table Sҍ | Feature families and the number of computed features. Many features require discret-
isation prior to computation. As two discretisation methods with four bin size settings each were
evaluated, the total number of such features is Ғ times the number of base definitions. The grand
total of features is ҏҔҎҍ, due to computation for four different interpolation spacings.

Supplementary note 4: Image perturbation algorithms

This note provides additional information with regards to the implementation of the image

perturbation algorithms. The algorithms were implemented in Python 3.6.1 (Python Soft-

ware Foundation, Beaverton, Oregon, USA, https://www.python.org/). The implementation

drew on functionality offered by the following libraries:

• NumPy ɰ.ɰҎ.Ҏ8,9, referred to as numpy.

• SciPy Ҕ.ɰғ.ɰ8,9, referred to as scipy.

• scikit-image Ҕ.ɰҎ.ɰ10, referred to as skimage.

• PyWavelets Ҕ.Ґ.ҍ11, referred to as pywt.

Specific functions from the libraries mentioned above are referred to in text.

Rotation

Image rotations emulate changesdue todifferent patient positioning. Image features should

be robust against such perturbations to be reproducible.

The image is rotated in-plane around the 𝑧-axis by an angle 𝜃. Rotation was performed

using the scipy.ndimage.rotate function, which implements rotation as an affine transforma-

tion. Bi-linear sampling is used todetermine intensities in the rotated image. After rotation,

intensities are rounded to the nearest integer value to conform with the expected integer

Hounsfield units in CT.

The ROI mask is rotated in the same way as the image. However, the threshold for par-

tial volume fractions in the mask is only applied after the interpolation step in the image

processing scheme.
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Noise

Noise affects voxel intensities. Reproducible features should be robust to the noise present

in an image. Perturbation by noise addition therefore follows two steps. First, the noise-

dependent intensity variance is determined. Secondly, noise drawn from a Gaussian dis-

tribution with the same variance is added to the image.

The method of Chang et al.1, 12 is used to determine noise variance. In short, the image

I is filtered in both the 𝑥 and 𝑦 direction in the image plane (𝑧 being the axis along which

the image slices are stacked) using a one-dimensional stationary coiflet-1 wavelet high-

pass filter, pywt.Wavelet(”coifɰ”).dec_hi. The filter convolution was implemented using the

scipy.ndimage.convolveɰd function. This cascade filter operation yields Idiff. Subsequently,

the noise level is estimated as:

𝜎noise = median (|Idiff|)
0.6754

.

Subsequently, for every image voxel randomnoise fromanormal (Gaussian) distribution

with mean 0 and standard deviation 𝜎 = 𝜎noise is generated (numpy.random.normal), and

added. After noise addition, intensities are rounded to the nearest integer value to conform

with the expected integer Hounsfield units in CT.

Noise variance is determined on the original image data, before any rotation, translation

or other operation occurs. In the image processing scheme, noise addition takes place after

rotation of the image, if applicable.

Translation

Translation, like rotation, emulates changes due to different patient positioning. Transla-

tion was performed concurrently with interpolation, i.e. the interpolation grid was shif-

ted off-centre by the provided translation fraction 𝜂 multiplied by the interpolation grid

spacing. Translation was conducted along the 𝑥, 𝑦 and 𝑧 axes. Translation and interpola-

tion was conducted with tri-linear approximation using the scipy.ndimage.map_coordinates

function.

Volume adaptation

Shrinking or growing the segmentation mask is a method to mimic variance in expert de-

lineations. For example, Fotina et al. reported a mean coefficient of variance in volume of

14.9% (range:[4.4, 29.3]%) in CT-based expert delineations for lung and prostate cancer. The

proposedmethod for volume adaptation is simple and intensity-agnostic, and is conducted

as follows:

1. Approximate the volume 𝑉0 of the ROI R0 by counting the number of voxels in the

mask.

2. Calculate the volume of the ROI after adaptation (rounded down towards the nearest

integer) by 𝑉𝑎 = ⌊𝑉0(1 + 𝜏)⌋, with 𝜏 the required growth/shrinkage fraction. 𝜏 > 0.0
indicates volume growth, and 𝜏 < 0.0 indicates shrinkage.

3. Define a geometric structure element that includes all voxels within Manhattan dis-

tance 1 (i.e. a centre voxel and its directly adjacentneighbours). Weused the scipy.ndim-

age.generate_binary_structure(Ҏ,ɰ) function.
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4. Initialise a place-holder for an adapted mask R𝑝 with volume 𝑉𝑝 by copying the ori-

ginal ROI and its volume. This place-holder is used to track the volume andmask over

iterative adaptations.

5. Iterate the mask shrinkage/growth process until the loop breaks:

(a) If 𝜏 > 0.0 dilate the mask (scipy.ndimage.binary_dilation) once, using the structure

element defined in step 3.

(b) If 𝜏 < 0.0 erode the mask (scipy.ndimage.binary_erosion) once, using the structure

element defined in step 3.

(c) Approximate the volume 𝑉𝑛 of the newly adaptedmaskR𝑛 by counting the num-

ber of voxels in the mask.

(d) If 𝑉𝑛 = 0.0 break from the loop.

(e) If 𝜏 > 0.0 and 𝑉𝑛 > 𝑉𝑎 break from the loop.

(f) If 𝜏 < 0.0 and 𝑉𝑛 < 𝑉𝑎 break from the loop.

(g) Replace the previous place-holder mask by setting R𝑝 = R𝑛. This is done until

the final growth/shrinkage iteration, when one of the conditions in steps d-f was

satisfied.

6. If𝑉𝑛 ≠ 𝑉𝑎,R𝑛 contains either toomany (𝜏 > 0.0) or too few (𝜏 < 0.0) voxels. A limited

number of voxels should be added to or removed from the mask R𝑝 to complete the

adaptation. Practically, we update the rim formed by the disjunctive union ofR𝑝 and

R𝑛, i.e. R𝑟 = R𝑛 ⊖ R𝑝:

(a) Determine the number of voxels to be added/removed from the mask: 𝑁 = |𝑉𝑎 −
𝑉𝑝|.

(b) Find rimR𝑟 by logical XOR comparison ofR𝑛 andR𝑝 (numpy.logical_xor).

(c) Select𝑁voxels from the rimat random,without replacement (numpy.random.choice).

(d) If 𝑁 > 0 and 𝜏 > 0.0 add the 𝑁 voxels to maskR𝑝.

(e) If 𝑁 > 0 and 𝜏 < 0.0 remove the 𝑁 voxels frommaskR𝑝.

7. Volume adaptation ends. The maskR𝑝 defines the perturbed region of interest.

Contour randomisation

Multiple image segmentations are required for randomising the contour of the region of in-

terest. Creating multiple segmentations usually requires delineation by multiple experts.

However, for larger quantities of image data, the creation of multiple manual delineations

is extremely time-consuming and unfeasible in practice. An automated contour random-

isation is therefore required. We use supervoxel-based segmentation algorithm for ran-

domising contours. Supervoxels are connected clusters of voxels with similar intensity

characteristics. To create a random contour, we compare supervoxels with a single seg-

mentation delineated by an expert. The region of interest (ROI) is then randomised based

on the overlap of supervoxels with the expert contour. Multiple algorithms produce super-

voxels. We used the simple linear iterative clustering (SLIC) algorithm as it efficiently produces

compact, contiguous supervoxels13. This algorithm was provided through the skimage.seg-

mentation.slic_superpixels function.

Contour randomisation is conducted as follows:
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1. Both the image and the region of interest (ROI) mask are cropped to 25mm around the

ROI bounding box to limit computational costs.

2. The intensities of the cropped image stack I are translated to a [0, 1] range:

(a) Intensities 𝐼𝑗 ∈ I are first restricted to range r, which is based on the range used

for ROI re-segmentation (Table 2 in main manuscript). The intensity range ex-

tends the re-segmentation range by 10% at both the upper (𝑔𝑢) and lower (𝑔𝑙)

boundaries:

r = [𝑔𝑙 − 0.1 ⋅ (𝑔𝑢 − 𝑔𝑙) , 𝑔𝑢 + 0.1 ⋅ (𝑔𝑢 − 𝑔𝑙)] = [𝑟1, 𝑟2]

All intensity values outside range r are replaced by the nearest valid intensity:

𝐼𝑗 =
⎧{{
⎨{{⎩

𝑟1, 𝐼𝑗 < 𝑟1

𝑟2, 𝐼𝑗 > 𝑟2

𝐼𝑗, otherwise

�

(b) Intensities are then mapped to the [0, 1] range by a simple transformation:

𝐼𝑗,𝑠 =
𝐼𝑗 − 𝑟1

𝑟2 − 𝑟1

3. The number of supervoxels is estimated so that on average each supervoxel occupies

0.5 cm3:

𝑁sx,est = ⌈𝑁𝑣 𝑉𝑣𝑜𝑥
0.5 ⌉ ,

with 𝑁𝑣 the number of voxels in I𝑠 and 𝑉vox the volume of each voxel (in cm3). ⌈…⌉
denotes a ceiling operation that rounds the fraction up towards the nearest integer.

4. TheSLIC algorithmpre-processes I𝑠 by applying aGaussian smoothingfilter. Thefilter

scaling parameter 𝜎 is set to the uniform voxel spacing (1,2,3 or 4 mm).

5. SLIC is performed, using the skimage.segmentation.slic_superpixels function, with filter

scaling parameter 𝜎, the estimated number of supervoxels 𝑁sx,est, compactness 𝛽 =
0.05, and by allowing supervoxels to vary in size between 0.25 cm3 and 1.5 cm3. This

results in a mask S that labels supervoxels in I𝑠. A total 𝑁sx supervoxels are labelled.

6. The overlap 𝜂𝑘 of the different supervoxels S𝑘 ⊂ S, where 𝑘 = 1, … , 𝑁sx, and the mor-

phological ROI maskR defined by the expert is determined as follows:

(a) The number of voxels 𝑚𝑘 labelled by supervoxel S𝑘 is counted.

(b) The number of voxels𝑚𝜂,𝑘 in the intersection of the ROImask and the supervoxel,

R ∩ S𝑘 is counted.

(c) The overlap fraction for supervoxel 𝑘 is then defined as:

𝜂𝑘 = 𝑚𝑘/𝑚𝜂,𝑘

By definition, 0.0 ≤ 𝜂𝑘 ≤ 1.0.

7. Subsequently, supervoxels are selected to form a new supervoxel-based ROImaskRsx,

as follows:

14



(a) To ensure that the new ROI mask will not remain empty, i.e. Rsx ≠ ∅, the super-
voxelwith the highest overlap is always selected, regardless of the actual overlap.

(b) Additionally, all supervoxels with overlap 𝜂 ≥ 0.90 are always selected.

(c) All supervoxels with overlap 𝜂 < 0.20 are never selected.

(d) All supervoxels with overlap 0.20 ≤ 𝜂 ≤ 0.90 are randomly selected. For each

supervoxel 𝑘, a random number is drawn uniformly from the interval [0, 1], i.e.
𝑥𝑘 ∼ 𝒰(0, 1), using the numpy.random.random function. If 𝑥𝑘 ≤ 𝜂𝑘, the supervoxel

is added to themask. Thus, selection probabilities for such supervoxels are equal

to the overlap.

(e) The resulting supervoxel-based ROI mask Rsx is morphologically closed using

the scipy.ndimage.binary_closing function with a geometric structure element that

includes all voxelswithinManhattandistance 1 (i.e. a centre voxel and its directly

adjacent neighbours).

8. Contour randomisation ends. The maskRsx defines the perturbed region of interest.
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Supplementary note 5: image perturbation settings

Eighteen perturbation chains were constructed from the five basic perturbations. Rotation

was performed by rotating the image around the 𝑧-axis by an angle 𝜃. Translation was per-

formed by shifting the voxel grid by a fraction 𝜂 of the voxel spacing. If more than one frac-

tion was provided, translations were performed using all permutations of 𝜂 and the three

primary axes. Thus, we performed eight permutations if two fractions𝜂were provided, and

27 for three fractions. Volume adaptation required a shrinkage/growth fraction𝜏, with neg-
ative values indicating shrinkage and positive values growth of themask. Noise adaptation

and contour randomisation did not require additional settings, but could be repeated.

We perturbed images using every permutation of the settings of a perturbation chain.

Several combinations of perturbations were not tested as the number of permutations was

excessive. In particular, chains that combined rotation, translation and volume adaptation

were not tested, as a typical set of 5 rotation angles, 2 translation fractions and 5 volume

growth/shrinkage factors would lead to 200 permutations. We defined perturbation chains

that lead to roughly 30 permutations to limit the effect of sample size on the intraclass

correlation coefficient. In addition, we did not test every possible perturbation chain that

included noise addition, as noise addition had amarginal effect if used in combinationwith

other perturbations.

The following perturbations were defined, with 𝑚 the total number of perturbed images

generated:

1. Rotation (R, 𝑚 = 27)

• rotation: 𝜃 = {−13∘, −12∘, … , 13∘}

2. Noise addition (N, 𝑚 = 30)

• noise addition: 30 repetitions

3. Translation (T, 𝑚 = 27)

• translation: 𝜂 = {0.0, 0.333, 0.667}

4. Volume adaptation (V, 𝑚 = 29)

• volume adaptation: 𝜏 = {−0.28, −0.26, … , 0.28}

5. Contour randomisation (C, 𝑚 = 30)

• contour randomisation: 30 repetitions

6. Rotation and translation (RT, 𝑚 = 32)

• rotation: 𝜃 = {−6∘, −2∘, 2∘, 6∘}
• translation: 𝜂 = {0.25, 0.75}

7. Rotation, noise addition and translation (RNT, 𝑚 = 32)

• rotation: 𝜃 = {−6∘, −2∘, 2∘, 6∘}
• noise addition: 1 repetition

• translation: 𝜂 = {0.25, 0.75}

8. Rotation and volume adaptation (RV, 𝑚 = 30)

• rotation: 𝜃 = {−10∘, −6∘, −2∘, 2∘, 6∘, 10∘}
• volume adaptation: 𝜏 = {−0.2, −0.1, 0.0, 0.1, 0.2}

9. Rotation and contour randomisation (RC, 𝑚 = 27)

• rotation: 𝜃 = {−13∘, −12∘, … , 13∘}
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• contour randomisation: 1 repetition

10. Translation and volume adaptation (TV, 𝑚 = 40)

• translation: 𝜂 = {0.25, 0.75}
• volume adaptation: 𝜏 = {−0.2, −0.1, 0.0, 0.1, 0.2}

11. Translation and contour randomisation (TC, 𝑚 = 27)

• translation: 𝜂 = {0.0, 0.333, 0.667}
• contour randomisation: 1 repetition

12. Rotation, translation, and contour randomisation (RTC, 𝑚 = 32)

• rotation: 𝜃 = {−6∘, −2∘, 2∘, 6∘}
• translation: 𝜂 = {0.25, 0.75}
• contour randomisation: 1 repetition

13. Rotation, noise addition, translation, and contour randomisation (RNTC, 𝑚 = 32)

• rotation: 𝜃 = {−6∘, −2∘, 2∘, 6∘}
• noise addition: 1 repetition

• translation: 𝜂 = {0.25, 0.75}
• contour randomisation: 1 repetition

14. Volume adaptation and contour randomisation (VC, 𝑚 = 30)

• volume adaptation: 𝜏 = {−0.2, −0.1, 0.0, 0.1, 0.2}
• contour randomisation: 6 repetitions

15. Rotation, volume adaptation and contour randomisation (RVC, 𝑚 = 30)

• rotation: 𝜃 = {−10∘, −6∘, −2∘, 2∘, 6∘, 10∘}
• volume adaptation: 𝜏 = {−0.2, −0.1, 0.0, 0.1, 0.2}
• contour randomisation: 1 repetition

16. Rotation, noise addition, volume adaptation and contour randomisation (RNVC, 𝑚 = 30)

• rotation: 𝜃 = {−10∘, −6∘, −2∘, 2∘, 6∘, 10∘}
• noise addition: 1 repetition

• volume adaptation: 𝜏 = {−0.2, −0.1, 0.0, 0.1, 0.2}
• contour randomisation: 1 repetition

17. Translation, volume adaptation and contour randomisation (TVC, 𝑚 = 40)

• translation: 𝜂 = {0.25, 0.75}
• volume adaptation: 𝜏 = {−0.2, −0.1, 0.0, 0.1, 0.2}
• contour randomisation: 1 repetition

18. Noise addition, translation, volume adaptation and contour randomisation (NTVC, 𝑚 = 40)

• noise addition: 1 repetition

• translation: 𝜂 = {0.25, 0.75}
• volume adaptation: 𝜏 = {−0.2, −0.1, 0.0, 0.1, 0.2}
• contour randomisation: 1 repetition

17



Supplementarynote 6: Robustnessdifferencesbetweenperturbed

test and retest images

Perturbation ICCs are averaged between test and retest images for easier comparison with

test-retest ICCs. To verify that there is no significant bias in perturbation ICC towards one

image, we first calculated the difference between the perturbation ICCs of the same feature

for every feature. Subsequently, we calculate the mean 𝜇 and standard deviation 𝜎 of the

differences, and perform a one-sided location test against mean 0:

𝑧 = √𝑛𝜇 − 0

𝜎

|𝑧| ≥ 1.96 corresponds to a significance level 𝑝 ≤ 0.05. The ICC difference of each feature

can not be considered independent as many features are known to be correlated, which

affects the choice for 𝑛. Hence, we chose 𝑛 = 1 (complete pooling), instead of 𝑛 = 4032 for

independent samples (𝑍-test). None of perturbations were distributed significantly from 0.

The distribution of perturbation ICC differences is shown in Figure S6.

NSCLC HNSCC

-0.1 0.0 0.1 -0.1 0.0 0.1
·NTVC
··TVC
RN·VC
R··VC
···VC
RNT·C
R·T·C
··T·C
··TV·
R···C
R··V·
RNT··
R·T··
····C
···V·
··T··
·N···
R····

ICC difference CT2-CT1

Figure Sґ | Box plots of the differences in intraclass correlation coefficient (ICC) between test
(CTɰ) and retest (CTҍ) data sets for the perturbation chains. The boxes cover the interquartile
range (IQR), and the median ICC is indicated. The whiskers of each plot extend to ɰ.Ґ times the
IQR.
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Supplementary note 7: Robustness under different image para-

meters

NSCLC and HNSCC cohorts have a different overall test-retest robustness. The particular

range of image parameters for interpolation and discretisation could be a principal cause

for these differences. Test-retest robustness fractions as a function of interpolated voxel

size are shown in Figure S7. Test-retest robustness fractions for features computed using

fixed bin size and fixed bin number discretisationmethods are shown in Figures S8 and S9,

respectively.

There does not appear to be a specific parameter setting that is causing the difference

in the number of robust features between both cohorts. Moreover, both cohorts have an

increasing amount of features for which robustness could not be accurately determined

with increasing voxel spacing, though the effect is more noticeable in the HNSCC cohort.

Figure Sɦ | Fraction of robust features in the test-retest set for different interpolated isotropic voxel
spacings. Robustness was determined using the ғҐ% confidence interval (CI) of the intraclass
correlation coefficient. Features with CI ≥ 0.90 were considered to be robust (+), CI < 0.90 non-
robust (-), and indeterminate (Ҕ) otherwise.

Figure SҒ | Fraction of robust features in the test-retest set for different bin sizes used with fixed
bin size discretisation. Robustness was determined using the ғҐ% confidence interval (CI) of
the intraclass correlation coefficient. Features with CI ≥ 0.90 were considered to be robust (+),
CI < 0.90 non-robust (-), and indeterminate (Ҕ) otherwise.
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Figure Sғ | Fraction of robust features in the test-retest set for different bin numbers used with
fixed bin number discretisation. Robustness was determined using the ғҐ% confidence interval
(CI) of the intraclass correlation coefficient. Features with CI ≥ 0.90 were considered to be robust
(+), CI < 0.90 non-robust (-), and indeterminate (Ҕ) otherwise.

Supplementary note 8: Robustness for different feature famil-

ies

NSCLC and HNSCC cohorts have a different overall test-retest robustness. As some feature

families contributed more features than others, we should assess whether the observed

difference is caused by just a few large feature families. Test-retest robustness for features

belonging to each family are summarised in Figure S10. With the exception of morpholo-

gical features, the fraction of robust features in HNSCC was lower for all feature families.

Figure SɰҔ | Fraction of robust features identified in the test-retest set for different feature families.
Robustness was assessed using the intraclass correlation coefficient (ICC). Features with ICC ≥
0.90 were considered to be robust. morph: morphological features; LI: local intensity features; IS:
intensity-based statistical features; IH: intensity-histogram features; IVH: intensity-volume histo-
gram features; GLCM: grey level co-occurrence matrix-based texture features; GLRLM: grey level
run length matrix-based texture features; GLSZM: grey level size zone matrix-based texture fea-
tures; GLDZM: grey level distance zone matrix-based texture features; NGTDM: neighbourhood
grey tone difference matrix-based features; and NGLDM: neighbouring grey level dependence
matrix-based texture features.
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