SUPPLEMENTAL SECTION FOR

Quantitative Imaging features Improve Discrimination of Malignancy in Pulmonary nodules

Yoganand Balagurunathan¹, Matthew B. Schabath², Hua Wang^{1,3}, Ying Liu^{1,3}, Robert J. Gillies¹.

¹Department of Cancer Imaging and Metabolism and ²Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL. ³Department of Radiology, Tianjin Medical University and Cancer Hospital, China.

Corresponding Author

Dr. Yoga Balagurunathan, Cancer Imaging and Metabolism, Moffitt Cancer Center, 12901 USF Magnolia Avenue, SRB-4 Imaging, Tampa, FL 33612. Email: {yogab, Robert.gillies}@moffitt.org

Keywords: Radiomics on Lung Nodules, IPN, quantitative imaging, CAD methods in pulmonary nodules

Key: Abbreviations used in the study:

A.Classifier Results Section:

Error: Classifier error (1- Accuracy)

Sensitivity(or Recall): True Positive Rate (TPR) =>(True Positive/True Positive + False Negative) Specificity: True Negative Rate (TNR) => (True Negative/True Negative + False Positive) PPV (or Precision): Positive predictive value: => (True Positive/True Positive + False positive) NPV: Negative Predictive value => (True negative/True negative + False negative) AUC: Area under the Receiver Operator Curve CI: 95% Confidence Limits (on AUC).

B. Nodule Size

Mixed/All: All size range Range 1 (R1): Nodule size: ≥ 4 to ≤ 12 mm (indeterminate range) Range 2 (R2): Nodule size: >12 to ≤ 30 mm (intermediate range)

C. Feature Categories

Mixed/All: Mixed categories (129 re-producible & non redundant features)
C1: Size & Shape Features (17 features)
C2: Location, Co-occurrence, Runlength, Histogram (26 Features)
C3: Texture: Wavelets & Laws (86 features)
Stable in Controls: Features stable in Nodule positive (Nodule +) controls (26 features)

Definiens Suite (1): Commercial imaging suite used to read and segment CT thorax images. We extract quantitative features using custom routines.

Table S1. Details on CT scanner parameters for case-control cohorts used in the study.

a. Patient Sa	ample Dist	ribution	(Scanner	Par	a	meters)		
	Training)	•			Testing		
	Cancer	Normal	Total		-	Cancer	Normal	Total
Samples	78	166	244		Ī	88	147	235
•								
NLST Trial: Colle	ction Cent	ter	I				I	1
LSS (Lung screening Studv)	48	126	174			59	105	164
ACRIN (American College of Radiology Imaging Network)	30	40	70		-	29	42	71
Scanner Types				_	-	Scanner	Types	
GE	41	86	127	\neg	ŀ	50	70	
Siemens	31	59	90		ľ	31	52	
Toshiba	3	7	10		Ī	5	7	
Philips	3	14	17		Ī	2	18	
Slice Thickness (mm)				-	Slice Th	ickness (I	mm)
1	1	1		2	-	0	0	
1.25	6	5	1	.1	-	5	6	
2	31	64	<u> </u>	-5	-	36	56	
2.5	35	80	11	.5	-	45	72	
3	2	2		4	-	0	2	
3.2	3	14		./	-	2	13	
Reconstruction K	Cernel				-	Reconst	ruction K	ernel
Bone (GE)	1	7		8	Ī	0	8	
Standard (GE)	40	48	8	8	ļ	50	69	
Lung (GE)	0	1		1	Ī	0	1	
					-			
B50f (Siemens)	31	58	5	1		30	55	
DOUL (Siemens)	0	1		<u> </u>		1	1	
FC01(Toshiba)	0	1		1	ŀ	1	1	
FC02(Toshiba)	0	1	1	1	ŀ	0	0	
FC10(Toshiba)	0	2		2	ľ	3	2	
FC30(Toshiba)	2	1		3	ľ	0	1	1
FC51(Toshiba)	1	2		3		1	3	
(Dhiling)					ļ			
A (Philips)		0		1		0		
C (Philips)	0	13]	.3	-	2	12	
ט (Philips)	2	1		3		0	0	

a) Patient distribution for train and test cohort

a. Case Con	trol (Sca	anner & F	Reconstruction	n kerne	els)		
	Cancer	r Cases		1	Normal	Cases	
	Train	Test	Total		Frain	Test	Total
Samples	78	88	165	1	166	147	313
Collection Center			•			•	•
LSS (Lung	48	126	174	4	59	105	164
screening Study)							
ACRIN(American	30	40	70	2	29	42	71
College of							
Natwork)							
Network)							
Scanner					Scanner	•	
GE	41	50	91	8	36	70	156
Siemens	31	31	61	4	59	52	111
Toshiba	3	5	8		7	7	14
Philips	3	2	5		14	18	32
Slice Thickness (n	nm)		I	5	Slice Thickness (mm)		
1	1	0	1	1	1	0	1
1.25	6	5	11	4	5	6	11
2	31	36	66	6	54	56	120
2.5	35	45	80	3	30	72	152
3	2	0	2	4	2	2	4
3.2	3	2	5	1	14	13	27
Reconstruction K	ernel]	Reconst	ruction K	ernel
Bone (GE)	1	0	1	7	7	8	15
Standard (GE)	40	50	90	4	48	69	117
Lung (GE)	0	0	0		1	1	2
B30f (Siemens)	31	30	60	4	58	55	113
B50f (Siemens)	0	1	1		1	1	2
FC01(Toshiba)	0	1	1		1	1	2
FC02(Toshiba)	0	0	0		1	0	1
FC10(Toshiba)	0	3	3		2	2	4
FC30(Toshiba)	2	0	2		1	1	2
FC51(Toshiba)	1	1	2	2	2	3	5
А	1	0	1	()	1	1
С	0	2	2		13	12	25
D	2	0	2	1	1	0	1

b) Patient distribution based on case and control.

b. Case Co	ntrol (Tu	be Volta	ge & Curr	ent)			
(Cancer Ca	ses			Normal C	ases	
	Train	Test	Total		Train	Test	Tota
Tube Voltage (K	VP)				Tube Volt	age (KVP)	
120	75	152	227		78	143	221
140	3	14	17		10	11	21
Tube Current (n	 19)			-	Tube Cur	rent (ma)	
40	0	1	1		0	1	1
50	10	13	23	-	14	9	
60	4	13	17		5	16	
67	1	0	1		0	0	
70	1	4	5		4	5	
75	3	15	18		3	19	
80	18	22	40		17	19	
90	12	16	28		9	21	
93	1	9	10		2	9	
100	6	4	10		2	3	
105	0	0	0		4	1	
102	1	1	2		0	0	
108	1	0	1		0	1	
117	0	0	0		0	2	
120	8	10	18		9	19	
140	2	0	2		2	1	
150	5	3	8		3	1	
160	5	23	28		13	26	
187	0	1	1		0	0	
417	0	0	0		0	1	

Supplemental	Table S2.	Common	Segmentation	Complications
		••••••		

Complication	Description
Nadula attached to lung wall	Often the lung field proprocessing will identify any
Noture attached to lung wan	nodules attached to the lung wall as hody tissue
Semisolid Nodules	When selecting a seed point in tissue composed of
	varied intensities (GGO + Solid) Definiens software
	suite (1) will sometimes select the entire area of interest
	while other times only selecting the solids, leaving out
	the GGO
GGO	Ground glass opacity nodules will segment incorrectly
	depending on the intensity of the surrounding tissue. In
	some cases the "click and grow" will yield no results.
	(Error Message: Area too Dark)
Inflammation / Scar tissue	When selecting a GGO the "click and grow" will lock
	onto nearby inflammation with brighter intensity. When
	selecting a solid nodule the "click and grow" will lock
Contains air	If a larger podule has a dark center the "click and grow"
Contains an	routine will try to segment it out but the result is usually
	quite incorrect: removing tissue that should be included
Spiculation	Generally the more highly spiculated nodules will
~F	present more difficulty, and will have a greater chance
	of selecting nearby bronchi
Between two lobes	A nodule can sometimes attach itself to a fissure line
	between two lobes, allowing it to "move" more than
	nodules normally do when scrolling through a series.
Bronchial Tree	If the bronchial tree is anywhere near the tumor nodule it
	is almost always included when growing the ROI
"Independent" nodules too close	Two independent nodules at T0 can intersect later at T2
	and be mostly impossible to differentiate.
Bone/ Calcification	If nodule contains a calcification or is near a bone and
	that tissue is included, the features can be highly skewed
	by even a pixel or two.

Supplemental Table S3.	Feature categories	with description.
------------------------	--------------------	-------------------

Category		Description	Number of Descriptors		
	Sub category		Subtotal	Subtotal	Test-retest (CCC \geq 0.7 & $R^2 \geq 0.95$)
C1. Tumor Size	a: Tumor Size	Size, volume descriptors	13	25	17
& Shape	b: Tumor Shape	Roundness/circularity descriptors	12		
C2:Tumor Location, Co-	a: Tumor Location	Relative to pleural wall, border flags	14	39	26
occurrence, Run L and	b: Pixel Intensity Histogram	Statistics on the Intensity or Attenuation values (in HU)	8		
Histogram.	c: Grayscale: Runlength & CoOccurrence	Run length and Co- occurrence patterns	17		
C3: Texture: Laws &	a: Texture: Laws features	Laws Kernel (energy)	125	155	86
Wavelets	b: Texture: Wavelets	Wavelet kernels (entropy and energy)	30		
Total			21	9	129

Index	Feature Index	Description of the Features	Feature Category
1	F1	LongDia	C1.Tumor Size & Shape
2	F2	ShortAx-LongDia	(Size Information)
3	F3	ShortAx	
4	F6	Vol-cm	
5	F33	Area-Pxl	
6	F34	Volume-pxl	
7	F35	Num-Px1	
8	F36	Width-Pxl	
9	F37	Thickness-Px1	
10	F38	Length-Px1	_
11	F39	Length-by-Thick	_
12	F40	Length-by-Width	_
13	F41	Border-Leng-Px1	_
	57	5. 2D M. C.	C1 T
14	F/	Sa-3D-MacSpic	Cl. Iumor Size & Shape
15	F13	9b-3D-Circularity	(Snape Information)
16	F14	9c-3D-Compact	_
17	F23	Asymmetry	_
18	F24	Compactness	_
19	F25	Density	_
20	F26	EllipticFit	
21	F28	Rad-Largest-Enclosed-Ellipse	
22	F29	Rad-Smallest-Enclosed-Ellipse	
23	F30	Shape-Index	
24	F31	Roundness	
25	F32	RectangularFit	
	-		
26	F8	8a-3D-Attch-Pleural	C2. Location, RunL, CoOcc &
27	F9	8b-3D-Bord-to-Lung	Histogram
28	F10	8c-3D-Bord-to-Pleural	(Location Information)
29	F11	8d-3D-Rat-Free-to-Attach	
30	F12	9a-3D-FractionalAnisotropy	
31	F15	9d-3D-AV-Dist-COG-to-Border	
32	F16	9e-3D-SD-Dist-COG-to-Border	
33	F17	9f-3D-Min-Dist-COG-to-Border	
34	F18	9g-3D-Max-Dist-COG-to-Border	
35	F19	10a-3D-Relat-Vol-Airspaces	
36	F20	10b-3D-Num-AirSpaces	_
37	F21	10c-3D-Av-Vol-AirSpaces	
38	F22	10d-3D-SD-Vol-AirSpaces	
39	F27	Main-Direction	<u>] </u>
	I		
40	F4	Mn-Hu	C2. Location, RunL, CoOcc &
41	F5	Std-Hu	Histogram
42	F184	Hist-Mean-L1	(Pixel Intensity Histogram)
43	F185	Hist-SD-L1	

Supplemental S.4 Quantitative Image features used to describe the lung tumors*.

	l .		
44	F186	Hist-Energy-L1	
45	F187	Hist-Entropy-L1	
46	F188	Hist-Kurt-L1	
47	F189	Hist-Skew-L1	
19	F42	AvgCoOc-Homo	C2 Location RunL CoOcc &
40	F43	AvgCooc Mp	Histogram
49 E0	F44	AvgCooC Constrast	(Runlength and Cooccurrence)
50	F44	AvgCooC Energy	(
51	F45	AvgCooC-Entropy	
52	Г40 Е47	AvgCooC-Entropy	
53	Γ4/ Ε40		
54	F48	AVgGLN	
55	F49	AVGHGRE	
56	F50	AvgLGRE	
57	F51	AvgLRE	
58	F52	AvgLRHGE	
59	F53	AvgLRLGE	
60	F54	AvgRLN	
61	F55	AvgRP	
62	F56	AvgSRE	
63	F57	AvgSRHGE	
64	F58	AvgSRLGE	
59	F59	3D-Laws-1(E5 E5 E5 Layer 1)	C3.Texture:
60	F60	3D-Laws-2(E5 E5 L5 Layer 1)	Laws & Wavelet Feature
61	F61	3D-Laws-3(E5 E5 R5 Layer 1)	
62	F62	3D-Laws-4(E5 E5 S5 Layer 1)	(with different convolution
63	F63	3D-Laws-5(E5 E5 W5 Layer 1)	filters)
64	F64	3D-Laws-6(E5 L5 E5 Layer 1)	
65	F65	3D-Laws-7(E5 L5 L5 Layer 1)	
66	F66	3D-Laws-8(E5 L5 R5 Layer 1)	
67	F67	3D-Laws-9(E5 L5 S5 Layer 1)	
68	F68	3D-Laws-10(E5 L5 W5 Layer 1)	
69	F69	3D-Laws-11(E5 R5 E5 Layer 1)	
/0	F70	3D-Laws-12(E5 R5 L5 Layer 1)	
/1	F/1	3D-Laws-13(E5 R5 R5 Layer 1)	
12	F72	3D-Laws-14(E5 K5 S5 Layer 1)	
74	F74	3D Laws 16(E5 S5 E5 Layer 1)	
74	Г/4 F75	3D Laws 17(E5 S5 L 5 Layer 1)	
76	F76	3D Laws 18(E5 S5 R5 Layer 1)	
70	F77	$3D_{-}Laws - 10(E5 S5 K5 Layer 1)$	
78	F78	3D-Laws-20(E5 S5 W5 Layer 1)	
79	F79	3D-Laws-20(125 W5 F5 Layer 1)	
80	F80	3D-Laws-22(E5 W5 L5 Layer 1)	
81	F81	3D-Laws-23(E5 W5 R5 Layer 1)	
82	F82	3D-Laws-24(E5 W5 S5 Laver 1)	
83	F83	3D-Laws-25(E5 W5 W5 Laver 1)	
84	F84	3D-Laws-26(L5 E5 E5 Laver 1)	
85	F85	3D-Laws-27(L5 E5 L5 Layer 1)	
86	F86	3D-Laws-28(L5 E5 R5 Layer 1)	
97	F87	3D-Laws-29(L5 E5 S5 Laver 1)	

88	F88	3D-Laws-30(L5 E5 W5 Layer 1)	
89	F89	3D-Laws-31(L5 L5 E5 Layer 1)	
90	F90	3D-Laws-32(L5 L5 L5 L5 Layer 1)	
91	F91	3D-Laws-33(L5 L5 R5 Layer 1)	
92	F92	3D-Laws-34(L5 L5 S5 Layer 1)	
93	F93	3D-Laws-35(L5 L5 W5 Layer 1)	
94	F94	3D-Laws-36(L5 R5 E5 Layer 1)	
95	F95	3D-Laws-37(L5 R5 L5 Layer 1)	
96	F96	3D-Laws-38(L5 R5 R5 Layer 1)	
97	F97	3D-Laws-39(L5 R5 S5 Layer 1)	
98	F98	3D-Laws-40(L5 R5 W5 Layer 1)	
99	F99	3D-Laws-41(L5 S5 E5 Layer 1)	
100	F100	3D-Laws-42(L5 S5 L5 Layer 1)	
101	F101	3D-Laws-43(L5 S5 R5 Layer 1)	
102	F102	3D-Laws-44(L5 S5 S5 Layer 1)	
103	F103	3D-Laws-45(L5 S5 W5 Layer 1)	
104	F104	3D-Laws-46(L5 W5 E5 Layer 1)	
105	F105	3D-Laws-47(L5 W5 L5 Layer 1)	
106	F106	3D-Laws-48(L5 W5 R5 Layer 1)	
107	F107	3D-Laws-49(L5 W5 S5 Layer 1)	
108	F108	3D-Laws-50(L5 W5 W5 Layer 1)	
109	F109	3D-Laws-51(R5 E5 E5 Layer 1)	
110	F110	3D-Laws-52(R5 E5 L5 Layer 1)	
111	F111	3D-Laws-53(R5 E5 R5 Layer 1)	
112	F112	3D-Laws-54(R5 E5 S5 Layer 1)	
113	F113	3D-Laws-55(R5 E5 W5 Layer 1)	
114	F114	3D-Laws-56(R5 L5 E5 Layer 1)	
115	F115	3D-Laws-57(R5 L5 L5 L4yer 1)	
116	F116	3D-Laws-58(R5 L5 R5 Layer 1)	
117	F117	3D-Laws-59(R5 L5 S5 Layer 1)	
118	F118	3D-Laws-60(R5 L5 W5 Layer 1)	
119	F119	3D-Laws-70(R5 R5 E5 Layer 1)	
120	F120	3D-Laws-71(R5 R5 L5 Laver 1)	
121	F121	3D-Laws-72(R5 R5 R5 Laver 1)	
122	F122	3D-Laws-73(R5 R5 S5 Laver 1)	
123	F123	3D-Laws-74(R5 R5 W5 Laver 1)	
124	F124	3D-Laws-75(R5 S5 E5 Laver 1)	
125	F125	3D-Laws-76(R5 S5 L5 Laver 1)	
126	F126	3D-Laws-77(R5 S5 R5 Layer 1)	
127	F127	3D-Laws-78(R5 S5 S5 Laver 1)	
128	F128	3D-Laws-79(R5 S5 W5 Laver 1)	
129	F129	3D-Laws-80(R5 W5 E5 Laver 1)	
130	F130	3D-Laws-81(R5 W5 L5 Laver 1)	
131	F131	3D-Laws-82(R5 W5 R5 Laver 1)	
132	F132	3D-Laws-83(R5W5S5Laver 1)	
133	F133	3D-Laws-84(R5 W5 W5 Layer 1)	
134	F134	3D-Laws-85(\$5 E5 E5 Layer 1)	
135	F135	3D-Laws-86(\$5 E515 Layer 1)	
136	F136	3D-Laws-87(\$5 E5 R5 Layer 1)	
137	F137	3D-Laws-88(\$5 E5 \$5 Laver 1)	
138	F138	3D-Laws-89(\$5 E5 W5 Laver 1)	
139	F139	3D-Laws-90(\$515 E5 Laver 1)	
140	F140	3D-Laws-91(\$515151 aver 1)	
110		ca Lund / (So Lo Lo Layor 1)	1

141	F141	3D-Laws-92(S5 L5 R5 Layer 1)	
142	F142	3D-Laws-93(S5 L5 S5 Layer 1)	
143	F143	3D-Laws-94(S5 L5 W5 Laver 1)	
144	F144	3D-Laws-95(S5 R5 E5 Laver 1)	
145	F145	3D-Laws-96(S5R5L5Laver 1)	
146	F146	3D-Laws-97(\$5 R5 R5 Layer 1)	
147	F147	3D-Laws-98(\$5 R5 \$5 Laver 1)	
148	F148	3D-Laws 90(55 R5 W5 Layer 1)	
1/0	F1/9	3D Laws 99(105 R5 W5 Layer 1)	
150	F150	3D-Laws-100(-55-55-L5-Layer 1)	
150	F150	3D-Laws-101(55 55 L5 Layer 1)	
152	E152	3D-Laws-102(35 35 K5 Layer 1)	
152	F152	3D-Laws-105(55 55 55 Layer 1)	
155	F155	3D-Laws-104(53 55 W5 Layer 1)	
154	F154	3D-Laws-105(S5 w5 E5 Layer 1)	
155	F155	3D-Laws-106(S5 W5 L5 Layer 1)	
156	F156	3D-Laws-10/(S5 W5 R5 Layer 1)	
157	F157	3D-Laws-108(S5 W5 S5 Layer 1)	
158	F158	3D-Laws-109(S5 W5 W5 Layer 1)	
159	F159	3D-Laws-110(W5 E5 E5 Layer 1)	
160	F160	3D-Laws-111(W5 E5 L5 Layer 1)	
161	F161	3D-Laws-112(W5 E5 R5 Layer 1)	
162	F162	3D-Laws-113(W5 E5 S5 Layer 1)	
163	F163	3D-Laws-114(W5 E5 W5 Layer 1)	
164	F164	3D-Laws-115(W5 L5 E5 Layer 1)	
165	F165	3D-Laws-116(W5 L5 L5 Layer 1)	
166	F166	3D-Laws-117(W5 L5 R5 Layer 1)	
167	F167	3D-Laws-118(W5 L5 S5 Layer 1)	
168	F168	3D-Laws-119(W5 L5 W5 Layer 1)	
169	F169	3D-Laws-120(W5 R5 E5 Layer 1)	
170	F170	3D-Laws-121(W5 R5 L5 Layer 1)	
171	F171	3D-Laws-122(W5 R5 R5 Layer 1)	
172	F172	3D-Laws-123(W5 R5 S5 Layer 1)	
173	F173	3D-Laws-124(W5 S5 E5 Layer 1)	
174	F174	3D-Laws-125(W5 S5 L5 Layer 1)	
175	F175	3D-Laws-126(W5 R5 W5 Layer 1)	
176	F176	3D-Laws-127(W5 S5 R5 Laver 1)	
177	F177	3D-Laws-128(W5 S5 S5 Laver 1)	
178	F178	3D-Laws-129(W5 S5 W5 Laver 1)	1
179	F179	3D-Laws-130(W5 W5 E5 Laver 1)	
180	F180	3D-Laws-131(W5 W5 L5 Layer 1)	
181	F181	3D-Laws-132(W5 W5 R5 Layer 1)	
182	F182	3D-Laws-133(W5 W5 S5 Laver 1)	1
183	F183	3D-Laws 135(W5 W5 B5 Edger 1) 3D-Laws-134(W5 W5 W5 U aver 1)	
105	1105		
190	F190	3D-Wave-1(P2 L2 C9 Laver 1)	C3 Texture:
191	F191	3D-Wave-2(P1 L2 C9 Layer 1)	Laws & Wavelet Feature
192	F192	3D-Wave-3(P2 I 2 C10 I aver 1)	
192	F193	3D Wave A(P2 I 2 C10 Layer 1)	(with different Wavelets)
195	F10/	3D Wave 5(P2 L 2 C 11 Layer 1)	
194	F105	3D - wave - 3(F - 2 L - 2 C + 2 L - 2 L	4
193	E106	$\frac{1}{2D} = \frac{1}{2D} $	
190	F107	$\frac{1}{2D} = \frac{1}{2D} $	
19/	F19/	$\frac{3D}{W} = \frac{9}{2} \frac{12}{2} $	
198	Г198	1 SD-wave-9(P2 L2 C1 Layer 1)	1

199	F199	3D-Wave-10(P2 L2 C2 Layer 1)	
200	F200	3D-Wave-11(P2 L2 C3 Layer 1)	
201	F201	3D-Wave-12(P2 L2 C4 Layer 1)	
202	F202	3D-Wave-13(P2 L2 C5 Layer 1)	
203	F203	3D-Wave-14(P2 L2 C6 Layer 1)	
204	F204	3D-Wave-15(P2 L2 C7 Layer 1)	
205	F205	3D-Wave-16(P2 L2 C8 Layer 1)	
206	F206	3D-Wave-17(P1 L2 C11 Layer 1)	
207	F207	3D-Wave-18(P1 L2 C10 Layer 1)	
208	F208	3D-Wave-19(P1 L2 C12 Layer 1)	
209	F209	3D-Wave-20(P1 L2 C13 Layer 1)	
210	F210	3D-Wave-21(P1 L2 C14 Layer 1)	
211	F211	3D-Wave-22(P1 L2 C15 Layer 1)	
212	F212	3D-Wave-23(P1 L2 C1 Layer 1)	
213	F213	3D-Wave-24(P1 L2 C2 Layer 1)	
214	F214	3D-Wave-25(P1 L2 C3 Layer 1)	
215	F215	3D-Wave-26(P1 L2 C4 Layer 1)	
216	F216	3D-Wave-27(P1 L2 C5 Layer 1)	
217	F217	3D-Wave-28(P1 L2 C6 Layer 1)	
218	F218	3D-Wave-29(P1 L2 C7 Layer 1)	
219	F219	3D-Wave-30(P1 L2 C8 Layer 1)	
	*See description (2	2)	

<u>SUPPLEMENTALS:</u> Quantitative Imaging Features Improves Discrimination of Malignancy in Pulmonary Nodules (Y. Balagurunathan et al.)

Supplemental S.4 (continued). Description of Texture Features

A. Run-length analysis: Run-length texture features (3) examine runs of similar gray values in an image. Runs may be labeled according to their length, gray value, and direction (either horizontal or vertical). Long runs of the same gray value correspond to coarser textures, whereas shorter runs correspond to finer textures. In our study, texture information was quantified by computing 11 features (4) derived from the run-length distribution matrix. They are: 1: Short Run Emphasis (SRE). 2: Long Run Emphasis (LRE). 3: Gray-Level Non-uniformity (GLN). 4: Run Length Non-uniformity (RLN). 5: Run Percentage (RP). 6: Low Gray-Level Run Emphasis (LGRE). 7: High Gray-Level Run Emphasis (HGRE). 8: Short Run Low Gray-Level Emphasis (SRLGE). 9: Short Run High Gray-Level Emphasis (SRHGE). 10: Long Run Low Gray-Level Emphasis (LRLGE). 11: Long Run High Gray-Level Emphasis (LGHGE).

The Co-occurrence matrices and run-length analysis features can be obtained in 3D (5), the features are calculated in 13 different directions, in each direction, processing is done by plane instead of slice. Hence, information between slices is used.

B. **Co-occurrence matrices:** the co-occurrence matrix (6) is a matrix that contains the frequency of one gray level intensity appearing in a specified spatial linear relationship with another gray level intensity within a certain range. Computation of features requires first constructing the co-occurrence matrix, then different

measurements (7) can be calculated based on the matrix. The measurements include: contrast, energy, homogeneity, entropy, mean and max probability.

C. Laws features : Laws features (8) were constructed from a set of five onedimensional filters, each designed to reflect a different type of structure in the image. These one-dimensional filters are defined as E5 (edges), S5 (spots), R5 (ripples), W5 (waves), and L5 (low pass, or average gray value). By using these 1-D convolution filters, 2-D filters are generated by convolving pairs of these filters, such as L5L5, E5L5, S5L5, W5L5, R5L5, etc. We can generate 25 different 2-D filters. 3D laws filters were constructed similarly to 2D. 3D filters are generated by convolving 3 types of 1D filter, such as L5L5L5, L5L5E5, L5L5S5, L5L5R5, L5L5W5, etc. The total number of 3-D filters is 125. For the 3D case, after the convolution with the 3D filters for the image, the energy (9) of the texture feature was computed by the following equation:

Energy =
$$\frac{1}{R} \sum_{i=N+1}^{I-N} \sum_{j=N+1}^{J-N} \sum_{k=N+1}^{K-N} h^2(i, j, k)$$

where R is a normalizing factor, I and J, K are image dimensions, h(i,j,k) is derived from the convolution filters and original image. For the 2D case, the above equation is very similar, but without the 3rd (z direction) dimension.

D. Wavelet Decomposition: the discrete wavelet transform (10) can iteratively decompose an image (2D) into four components. Each iteration splits the image both horizontally and vertically into low-frequency (low pass) and high-frequency (high pass) components. Thus, four components are generated: a high-pass/high-pass

component consisting of mostly diagonal structure, a high-pass/low-pass component consisting mostly of vertical structures, a low-pass/high-pass component consisting mostly of horizontal structure, and a low-pass/low-pass component that represents a blurred version of the original image. Subsequent iterations then repeat the decomposition on the low-pass/low-pass component from the previous iteration. These subsequent iterations highlight broader diagonal, vertical, and horizontal textures. And for each component, we calculated the energy (referred to with a suffix P1) & entropy (referred to with a suffix P2) feature. A wavelet transform of a 3D signal can be achieved by applying the 1D wavelet transform along all the three directions (x,y,z). Features obtained at each level of decomposition are referred with suffix L (example: L1, L2) and level of decomposition is referred to with a prefix C (example: C1 to C9).

E. Pixel Histogram Features: the pixel intensity histogram h(a) is the number of pixels that occurred for brightness level "a" with brightness level on the x-axis. The probability distribution of the brightness P(a) can be calculated as well. Six features: mean, standard deviation, skewness, kurtosis, energy, and entropy were then incorporated.

Supplemental Table S5. CT scanner details for reconstruction kernel variation study.

Sample size to study Scanner Variations on predictions											
Scanner Type &	Types	Total	Cancer	Normal							
Slice											
Siemens 30F, 2mm	Paired	95	43	52							
Siemens 50F, 2mm											
GE Bone, 2.5 mm	Paired	53	28	25							
GE Standard, 2.5											
mm											
All Samples		148	71	77							
(Siemens & GE)											

Supplemental Table S6. Feature distribution for a range of difference in the Area under the Receiver operative characteristics (AUC) with different reconstruction kernels a) Number features for range of AUC difference, b) features at different AUC difference. Details of the analysis will be reported in our following study (11).

a. Nu	a. Number of Features (% in category)										
Features	Difference	in test AUC: C	an	cer Vs Normal Dis	criı	mination					
	Difference Range (%)	Train :Siemens, B30F, 2mm		Train : GE, Standard, 2.5mm		Train: Siemens B3 GE Bone & Standa	80F & 50F 2mm, ard, 2.5mm				
		Test : Siemens, 50F, 2mm		Test : GE, Bone, 2.5mm		Test: Siemens B30F & 50F, 2mm	Test: GE Bone & Standard, 2.5mm				
Size &	≥0, ≤5%	11 (64.71)		8 (47.06)		16 (94.12)	12 (70.59)				
Shape	> 5, ≤ 10%	2 (11.76)		6 (35.29)		0 (0)	3 (17.65)				
(1/	>10, ≤15%	0 (0)		3 (17.65)		1 (5.88)	0 (0)				
reatures)	>15, ≤20%	2 (11.76)		0 (0)		0 (0)	1 (5.88)				
	>20, ≤30%	0 (0)		0 (0)		0 (0)	0 (0)				
	>30, ≤50%	2 (11.76)		0 (0)		0 (0)	1 (5.88)				
	>50%	0 (0)		0 (0)		0 (0)	0 (0)				
Location,	≥0, ≤5%	12 (46.15)		11 (42.31)		16 (61.54)	8 (30.77)				
RunL, Co-	>5, ≤10%	3 (11.54)		10 (38.46)		3 (11.54)	9 (34.62)				
occ &	>10, ≤15%	3 (11.54)		5 (19.23)		7 (26.92)	5 (19.23)				
Histogram	>15, ≤20%	2 (7.69)		0 (0)		0 (0)	2 (7.69)				
(26	>20, ≤30%	1 (3.85)		0 (0)		0 (0)	1 (3.85)				
features)	>30, ≤50%	2 (7.69)		0 (0)		0 (0)	1 (3.85)				
	>50%	3 (11.54)		0 (0)		0 (0)	0 (0)				
Texture:	≥0, ≤5%	84 (97.67)		83 (96.51)		84 (97.67)	81 (94.19)				
Laws &	> 5, ≤ 10%	0 (0)		2 (2.33)		1 (1.16)	3 (3.49)				
Wavelets	>10, ≤15%	0 (0)		1 (1.16)		1 (1.16)	1 (1.16)				
(86	>15, ≤20%	0 (0)		0 (0)		0 (0)	0 (0)				
features)	>20, ≤30%	0 (0)		0 (0)		0 (0)	1 (1.16)				
	>30, ≤50%	0 (0)		0 (0)		0 (0)	0 (0)				
	>50%	2 (2.33)		0 (0)		0 (0)	0 (0)				

Supplemental Table 6b. Feature with different AUC variability

Features wit	Features with Minimal Variability between Scanner Reconstructions										
Category	AUC	Matched Pair (difference in	convolutional kernel)								
	Difference	Siemens 30F Vs 50F (2	GE Standard Vs Bone (2.5mm)								
	Range (%)	<u>mm)</u>									
Size &	[0 to ≤5]	F30:Shape-Index, F26:EllipticFit,	F36:Width-PxI,F30:Shape-Index,								
Shape		F1:LongDia, F38:Length-Pxl,	F34:Volume-pxl,F41:Border-Leng-Pxl,								
(17		F6:Vol-cm, F36:Width-Pxl	F14:9c-3D-Compact,F25:Density,								
features)		F34:Volume-pxl, F37:Thickness-Pxl,	F38:Length-PxI,F6:Vol-cm								
		F2:ShortAx-LongDia,									
		F41:Border-Leng-Pxl,									
		F14:9c-3D-Compact,F25:Density.									
	[>5 to ≤10]	F3:ShortAx,F40:Length-by-	F37:Thickness-PxI,F26:EllipticFit,								
		Width,F32:RectangularFit,	F3:ShortAx,F1:LongDia,F2:ShortAx-								
		F39:Length-by-Thick,	LongDia,F32:RectangularFit								
		F23:Asymmetry.									
Location,	[0 to ≤5]	F9:8b-3D-Bord-to-Lung,	F44:AvgCooC-Constrast,								
RunL, Co-		F51:AvgLRE, F186:Hist-Energy-	F51:AvgLRE,F186:Hist-Energy-L1,								
& 3 20		L1,F187:Hist-Entropy-L1,	F17:9f-3D-Min-Dist-COG-to-Border,								
Histogram		F21:10c-3D-Av-Vol-AirSpaces,	F4:Mn-Hu,F20:10b-3D-Num-AirSpaces,								
(00		F16:9e-3D-SD-Dist-COG-to-	F188:Hist-Kurt-L1,F187:Hist-Entropy-L1,								
(26		Border, F55: AvgRP, F48: AvgGLN,	F55:AVGRP,F22:10d-3D-SD-Vol-								
teatures)		F19:10a-3D-Relat-Vol-Airspaces,	AirSpaces,F189:Hist-Skew-L1								
		F52:AVGLRHGE,F4:MIN-HU,									
		F17.91-3D-WIN-DISt-COG-to-									
	[>5 to <10]	E45:AvgCooC	E48: AverCLN E10:10a 2D Polat Vol								
	[2010]	Epergy E43:AvgCooc-Mp	Airspaces E42: AvgCoOc-Homo								
		E42:AvaCoOc-Homo E5:Std-Hu	F27:Main-Direction E5:Std-Hu								
		F188:Hist-Kurt-I 1 F185:Hist-SD-	F43:AvaCooc-Mp F8:8a-3D-Attch-								
		I 1 F8:8a-3D-Attch-Pleural	Pleural F9:8b-3D-Bord-to-Lung								
			F16:9e-3D-SD-Dist-COG-to-Border.								
			F45:AvaCooC-Energy.								
Texture:	[0 to ≤5]	F216:3D-WaveP1-L2-27,	F214:3D-WaveP1-L2-25,F216:3D-WaveP1-								
Wavelets		F215:3D-WaveP1-L2-26,	L2-27								
(86		F214:3D-WaveP1-L2-25	(refer to Supplemental Table S4)								
features)		(refer to Supplemental									
		Table S4)									
	[>5 to ≤10]	F60:3D-Laws-2	F215:3D-WaveP1-L2-26,F60:3D-Laws-2								
		(for additional features refer to	(for additional features refer to Supplemental								
		Supplemental Table S4)	Table S4)								

Supplemental Table S7. Summary of Area under the Receiver operative characteristics (AUC) between training on a CT images with consistent convolution kernel type to testing on an image with different reconstruction kernel. In the summary tables, a) training with Siemens B30F, 2mm b) training with GE Standard, 2.5mm, c) training with mixed scans & slice thickness d) Features for difference AUC difference range.

Features	(a) Difference in test AUC: Cancer Vs Normal Discrimination									
	(Training:	CT on Sier	<u>nens B30F, 2</u>	<u>mm</u> (D1))						
	Difference	Δ(D1	$\Delta(D1)$	$\Delta(D1)$	$\Delta(D1)$	$\Delta(D1)$	$\Delta(D1)$	{Δ(D1	{Δ(D1	
	Range	Vs 30F,	Vs 50F,	Vs 50F,	Vs All	Vs GE	Vs GE	Vs All	Vs All) (%)	
		5mm)	2mm) (%)	5mm) (%)	Siemens)	Standard,	Bone,	GE) (%)		
		(%)			(%)	2.5mm)	2.5mm)			
						(%)	(%)			
Size &	$\geq 0, \leq 5\%$	12						10		
Shape		(70.59)	11 (64.71)	10 (58.82)	13 (76.47)	6 (35.29)	3 (17.65)	(58.82)	13 (76.47)	
(17	$>5, \le 10\%$	5						3		
features)		(29.41)	2 (11.76)	3 (17.65)	1 (5.88)	5 (29.41)	7 (41.18)	(17.65)	2 (11.76)	
	>10, ≤15%	0 (0)	0 (0)	0 (0)	1 (5.88)	1 (5.88)	3 (17.65)	1 (5.88)	1 (5.88)	
	>15, ≤20%	0 (0)	2 (11.76)	0 (0)	1 (5.88)	2 (11.76)	2 (11.76)	1 (5.88)	1 (5.88)	
	>20, ≤30%							2	0	
		0 (0)	0 (0)	1 (5.88)	1 (5.88)	1 (5.88)	2 (11.76)	(11.76)	(0)	
	>30, ≤50%	0 (0)	2 (11.76)	2 (11.76)	0 (0)	2 (11.76)	0 (0)	0 (0)	0 (0)	
	>50%	0 (0)	0 (0)	1 (5.88)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	
Location,	$\geq 0, \leq 5\%$	13						6		
RunL,		(50)	12 (46.15)	9 (34.62)	16 (61.54)	7 (26.92)	8 (30.77)	(23.08)	11 (42.31)	
CoOcc &	$>5, \le 10\%$	7						9		
Histogram		(26.92)	3 (11.54)	5 (19.23)	3 (11.54)	4 (15.38)	5 (19.23)	(34.62)	4 (15.38)	
(26	>10, ≤15%	3						3		
features)		(11.54)	3 (11.54)	4 (15.38)	2 (7.69)	8 (30.77)	7 (26.92)	(11.54)	9 (34.62)	
	>15,≤20%							3		
		1 (3.85)	2 (7.69)	1 (3.85)	1 (3.85)	2 (7.69)	1 (3.85)	(11.54)	1 (3.85)	
	>20, ≤30%							5		
		1 (3.85)	1 (3.85)	3 (11.54)	4 (15.38)	4 (15.38)	5 (19.23)	(19.23)	1 (3.85)	
	>30, ≤50%	1 (3.85)	2 (7.69)	1 (3.85)	0 (0)	1 (3.85)	0 (0)	0 (0)	0 (0)	
	>50%	0 (0)	3 (11.54)	3 (11.54)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	
Texture:	$\geq 0, \leq 5\%$	81	84 (97.67)	82 (95.35)	84 (97.67)	83 (96.51)	82 (95.35)	82	84 (97.67)	
Laws &		(94.19)						(95.35)		
Wavelets	$>5, \le 10\%$	3 (3.49)	0 (0)	2 (2.33)	0 (0)	2 (2.33)	1 (1.16)	2 (2.33)	0 (0)	
(86	>10, ≤15%	1 (1.16)	0 (0)	0 (0)	0 (0)	1 (1.16)	2 (2.33)	2 (2.33)	0 (0)	
features)	>15, ≤20%	1	0 (0)	0 (0)	0 (0)	0 (0)	1 (1.16)	0 (0)	2 (2.33)	
		(1.163)								
	>20, ≤30%	0 (0)	0 (0)	0 (0)	2 (2.33)	0 (0)	0 (0)	0 (0)	0 (0)	
	>30, <50%	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	
	>50%	0 (0)	2 (2.33)	2 (2.33)	0 (0)	0 (0)	0(0)	0 (0)	0 (0)	

SUPPLEMENTALS:	Quantitative Imaging	Features Improves	Discrimination of	of Malignancy in	Pulmonary	Nodules (J	Υ.
Balagurunathan et al.)		_					

Features	(b) Diff	erence in te	st AUC: Ca	ncer Vs Nor	mal Discrir	nination			
Category	(Training:	GE Standar	d, 2.5 mm (1	D2))					
	Difference	$\Delta(D2)$	$\Delta(D2)$	$\Delta(D2)$	$\Delta(D2)$	$\Delta(D2)$	$\Delta(D2)$	{Δ(D2	{Δ(D2
	Range	Vs 30F,	Vs 30F,	Vs 50F,	Vs 50F,	Vs All	Vs GE	Vs All	Vs All)
		2mm)	5mm)	2mm)	5mm)	Siemens)	Bone,	GE)	
							2.5mm)		
Size & Shape	$\geq 0, \leq 5\%$							12	
(17 features)		6 (35.29)	4 (23.53)	4 (23.53)	3 (17.65)	6 (35.29)	8 (47.06)	(70.59)	9 (52.94)
	$>5, \le 10\%$	5 (20, 41)	C (25.20)	((25.20)	C (25.20)	((25.20)	C (25.20)	1 (5.99)	2(17.5)
	> 10 <150/	5 (29.41)	6 (35.29)	6 (35.29)	6 (35.29)	6 (35.29)	6 (35.29)	1(5.88)	3 (17.65)
	>10, ≤15%	0(0)	3 (17.65)	3 (17.65)	3 (17.65)	0(0)	3 (17.65)	3 (17.65)	1 (5.88)
	>15, ≤20%	3 (17.65)	0(0)	1 (5.88)	0(0)	2(11.76)	0(0)	1 (5.88)	2 (11.76)
	<u>>20, ≤30%</u>	2 (11.76)	2 (11.76)	2(11.76)	2(11.76)	2 (11.76)	0(0)	0(0)	1 (5.88)
	>30, ≤50%	1 (5.88)	2 (11.76)	0(0)	2 (11.76)	1 (5.88)	0 (0)	0 (0)	1 (5.88)
	>50%	0 (0)	0 (0)	1 (5.88)	1 (5.88)	0 (0)	0 (0)	0 (0)	0 (0)
Location,	$\geq 0, \leq 5\%$	7	3	7	3	5	11	11	6
RunL, CoOcc		(26.92%)	(11.54%)	(26.92%)	(11.54%)	(19.23%)	(42.31%)	(42.31%)	(23.08%)
& Histogram	$>5, \le 10\%$	4	3	5	11	5	10	14	9
(26 features)		(15.38%)	(11.54%)	(19.23%)	(42.31%)	(19.23%)	(38.46%)	(53.85%)	(34.62%)
	>10, ≤15%	3	5	5	5	3	5	1	7
		(11.54%)	(19.23%)	(19.23%)	(19.23%)	(11.54%)	(19.23%)	(3.85%)	(26.92%)
	>15, ≤20%	8	3	2	1	8			3
		(30.77%)	(11.54%)	(7.69%)	(3.85%)	(30.77%)	0 (0%)	0 (0%)	(11.54%)
	>20, ≤30%	4	10	3	2	4			
		(15.38%)	(38.46%)	(11.54%)	(7.69%)	(15.38%)	0 (0%)	0 (0%)	0 (0%)
	>30, ≤50%		2	1	1	1			1
		0 (0%)	(7.69%)	(3.85%)	(3.85%)	(3.85%)	0 (0%)	0 (0%)	(3.85%)
	>50%			3	3				
		0 (0%)	0 (0%)	(11.54%)	(11.54%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
Texture:	\geq 0, \leq 5%	83	81	81	82	81	83		81
Laws &		(96.51)	(94.19)	(94.19)	(95.35)	(94.19)	(96.51)	86 (100)	(94.19)
Wavelets	$>5, \le 10\%$	1 (1.16)	1 (1.16)	3 (3.49)	1 (1.16)	0 (0)	2 (2.33)	0 (0)	3 (3.49)
(86 features)	>10, ≤15%	2 (2.33)	2 (2.33)	0 (0)	1 (1.16)	3 (3.49)	1 (1.16)	0 (0)	1 (1.16)
	>15, ≤20%	0 (0)	1 (1.16)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (1.16)
	>20, ≤30%	0 (0)	1 (1.16)	0 (0)	0 (0)	2 (2.33)	0 (0)	0 (0)	0 (0)
	>30, ≤50%	0 (0)	0 (0)	0 (0)	1 (1.16)	0 (0)	0 (0)	0 (0)	0 (0)
	>50%	0 (0)	0 (0)	2 (2.33)	1 (1.16)	0 (0)	0 (0)	0 (0)	0 (0)

SUPPLEMENTALS: Quantitative Imaging	Features Improves	Discrimination of	of Malignancy in	Pulmonary	Nodules (Y
Balagurunathan et al.)	-				

Features Category	(c)Difference (Training: /	in test AUC All available	C: Cancer V e – Siemens	s Normal I & GE, (D3	Discriminat	ion			
g,	Difference	A(D3	Δ(D3	$\Lambda(D3)$	Δ(D3	Δ(D3	Δ(D3	Δ(D3	{A(D3
	Range	Vs 30F.	Vs 30F.	Vs 50F.	Vs 50F.	Vs All	Vs GE	Vs GE	Vs All
	U	2mm)	5mm)	2mm)	5mm)	Siemens)	Standard,	Bone,	GE)
		,	,	,	,	,	2.5mm)	2.5mm)	<i>,</i>
Size & Shape	$\geq 0, \leq 5\%$	13	14	12	11	16	10	4	12
(17 features)		(76.47)	(82.35)	(70.59)	(64.71)	(94.12)	(58.82)	(23.53)	(70.59)
	$>5, \le 10\%$	2	2	1 (5.88)	2	0 (0)	2 (11.76)	8	3
		(11.76)	(11.76)		(11.76)			(47.06)	(17.65)
	>10, ≤15%	1 (5.88)	1 (5.88)	1 (5.88)	0 (0)	1 (5.88)	0 (0)	2	0 (0)
								(11.76)	
	>15,≤20%	1 (5.88)	0 (0)	1 (5.88)	1 (5.88)	0 (0)	2 (11.76)	2	1 (5.88)
								(11.76)	
	>20, <30%	0 (0)	0(0)	1 (5.88)	1 (5.88)	0 (0)	1 (5.88)	0(0)	0(0)
	>30, ≤50%	0 (0)	0(0)	1 (5.88)	2	0(0)	1 (5.88)	1 (5.88)	1 (5.88)
	. 500/	0 (0)	0 (0)	0 (0)	(11.76)	0 (0)	1 (5.99)	0 (0)	0 (0)
	>50%	0 (0)	0(0)	0(0)	0(0)	0(0)	1 (5.88)	0(0)	0(0)
T	> 0 < 50/	11	11	11	1.4	16		11	0
Location,	$\geq 0, \geq 5\%$	(11)	(11)	(42.21)	14	10 (61.54)	7 (26.02)	(11)	ð (20.77)
& Histogram	> 5 < 10%	(42.51)	(42.31) 8	(42.31)	(55.65)	(01.34)	7 (20.92)	(42.31)	(30.77)
(26 features)	$> 5, \leq 10/0$	(15 30)	(30.77)	(15.30)	(15.30)	3 (11 54)	6 (23.08)	(10.23)	(34.62)
(20 features)	>10 <15%	10	(30.77)	5	(15.57)	5 (11.54)	10	(1).23)	5
	× 10, <u>-</u> 1570	(38.46)	2 (7.69)	(19.23)	2 (7.69)	7 (26.92)	(38.46)	(26.92)	(19.23)
	>15. <20%	()	3	(· · · · /	(/		()		
	,	0 (0)	(11.54)	1 (3.85)	1 (3.85)	0 (0)	1 (3.85)	1 (3.85)	2 (7.69)
	>20, ≤30%	1 (3.85)	2 (7.69)	2 (7.69)	2 (7.69)	0 (0)	1 (3.85)	1 (3.85)	1 (3.85)
	>30, ≤50%	0 (0)	0 (0)	1 (3.85)	1 (3.85)	0 (0)	1 (3.85)	1 (3.85)	1 (3.85)
	>50%	0 (0)	0 (0)	2 (7.69)	2 (7.69)	0 (0)	0 (0)	0 (0)	0 (0)
Texture: Laws	$\geq 0, \leq 5\%$	84	82	84	84	84	81	81	81
& Wavelets		(97.67)	(95.35)	(97.67)	(97.67)	(97.67)	(94.19)	(94.19)	(94.19)
(86 features)	$>5, \le 10\%$	0 (0)	2 (2.33)	0 (0)	0 (0)	1 (1.16)	3 (3.49)	0 (0)	3 (3.49)
	>10, ≤15%	0 (0)	2 (2.33)	0 (0)	0 (0)	1 (1.16)	0 (0)	3 (3.49)	1 (1.16)
	>15, ≤20%	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	2 (2.33)	0 (0)	0 (0)
	>20, ≤30%	2 (2.33)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (1.16)	1 (1.16)
	>30, ≤50%	0 (0)	0 (0)	1 (1.16)	2 (2.33)	0 (0)	0 (0)	1 (1.16)	0 (0)
	>50%	0 (0)	0 (0)	1 (1.16)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)

See Attached excel sheet for details, three worksheets corresponds to a),b) & c) (SupplementalTableS5_ExcelSheetAttach_forREconAUC.xlsx)

(Picture shown for reference).

GID-1	Catg3	CategoryDesc	Error-HoldOut(train	: DeltaAUC	DeltaAUC	DeltaAUC	DeltaAUC	DeltaAUC	DeltaAUC	DeltaAUC	DeltaAUC
F1:LongDia	1	Size&Shape	0.251052	0.011882	0.000276	0.006986	0.002493	0.00806	0.069634	0.030601	0.002609
F2:ShortAx-LongDia	1	. Size&Shape	0.25421	0.026203	0.001301	0.007758	0.014031	0.000719	0.072462	0.005157	0.013482
F3:ShortAx	1	Size&Shape	0.251579	0.050865	0.011846	0.057256	0.030358	0.002989	0.05322	0.026108	0.034412
F6:Vol-cm	1	Size&Shape	0.323421	0.015049	0.007617	0.015458	0.007618	0.062601	0.10487	0.050027	0.019125
F14:9c-3D-Compact	1	. Size&Shape	0.320526	0.033137	0.045698	0.036644	0.018729	0.064421	0.086615	0.033082	0.008425
F23:Asymmetry	1	Size&Shape	0.522105	0.099831	0.1859	0.072061	0.016957	0.394459	0.202585	0.20183	0.022916
F25:Density	1	Size&Shape	0.390789	0.042479	0.061661	0.079356	0.014618	0.21899	0.172276	0.01236	0.010744
E26:EllipticEit	1	Size&Shape	0.327105	0.004717	0.064888	0.224693	0.050632	0.131742	0.178827	0.126138	0.060932
F30:Shane-Index	1	Size&Shape	0 20421	0.003737	0.007423	0.010665	0.018651	0.065421	0.077359	0.054947	0.031212
E32:RectangularEit	1	Size&Shane	0 313947	0.098975	0 353209	0.378504	0 156/32	0 173265	0 100584	0.150655	0 150989
E24:Volumo pyl	1	Size&Shape	0.211215	0.001056	0.01071	0.022275	0.130432	0.051777	0.070527	0.026977	0.002561
F34.VOIUIIIe-pxi	1	Size&Shape	0.311515	0.021550	0.01571	0.035275	0.00025	0.031777	0.070337	0.020077	0.002301
F30.WIULII-PXI	1	Ciae 8 Chara	0.231373	0.020001	0.053622	0.039233	0.010655	0.051554	0.055567	0.012331	0.003534
F37:Thickness-PXI	1	Size&Shape	0.219737	0.021522	0.017427	0.020305	0.013559	0.101005	0.110332	0.077418	0.00793
F38:Length-PXI	1	. Size&Shape	0.231842	0.012/6/	0.003524	0.020880	0.003639	0.006034	0.045112	0.025575	0.006407
F39:Length-by-Thick	1	. Size&Shape	0.518158	0.099633	0.492261	0.587099	0.24726	0.462753	0.255445	0.25463	0.130097
F40:Length-by-Width	1	Size&Shape	0.402105	0.061396	0.197231	0.356485	0.108498	0.07375	0.048823	0.006717	0.071924
F41:Border-Leng-PxI	1	. Size&Shape	0.248684	0.031032	0.024158	0.021892	0.016635	0.041201	0.061711	0.022494	0.005118
F4:Mn-Hu	2	Location,Runl,CoOc,Histog	0.484474	0.029247	0.022321	0.001396	0.008131	0.216834	0.204906	0.233714	0.114302
F5:Std-Hu	2	Location,Runl,CoOc,Histog	0.523947	0.068391	0.304199	0.258283	0.102381	0.203426	0.126167	0.141743	0.106379
F8:8a-3D-Attch-Pleura	1 2	Location,Runl,CoOc,Histog	0.468684	0.097856	0.088984	0.143782	0.083896	0.058377	0.126835	0.120437	0.090831
F9:8b-3D-Bord-to-Lun	8 2	Location,Runl,CoOc,Histog	0.519737	0	0	0	0	0	0	0	0
F12:9a-3D-FractionalA	r 2	Location,Runl,CoOc,Histog	0.513684	0.113079	0.506827	0.61404	0.255217	0.363974	0.202238	0.187905	0.148089
F16:9e-3D-SD-Dist-CO	(2	Location,Runl,CoOc,Histog	0.279473	0.013379	0.147838	0.039252	0.067183	0.061201	0.024266	0.002641	0.051372
F17:9f-3D-Min-Dist-CO) 2	Location,Runl,CoOc,Histog	0.269473	0.035675	0.205066	0.281802	0.051238	0.207759	0.206854	0.164989	0.057687
F19:10a-3D-Relat-Vol-	/ 2	Location,Runl,CoOc,Histog	0.438421	0.022625	0.02381	0.011777	0.022077	0.18749	0.141031	0.204742	0.082249
F20:10b-3D-Num-AirS	ç 2	Location,Runl,CoOc,Histog	0.432368	0.366828	0.194019	0.247731	0.203267	0.179547	0.209154	0.205256	0.270521
F21:10c-3D-Av-Vol-Air	: 2	Location,Runl,CoOc,Histog	0.446579	0.013327	0.036036	0.108599	0.016287	0.231495	0.080979	0.26162	0.125037
F22:10d-3D-SD-Vol-Ai	r 2	Location,Runl,CoOc,Histog	0.450789	0.196736	0.047799	0.156945	0.119111	0.046925	0.08809	0.110334	0.14486
F27:Main-Direction	2	Location.Runl.CoOc.Histog	0.50579	0.209447	0.44785	0.495676	0.244101	0.078444	0.010103	0.052459	0.17178
F42:AvgCoOc-Homo	2	Location. Runl. CoOc. Histor	0.198158	0.065374	0.033375	0.059183	0.006297	0.129314	0.077992	0.076501	0.010221
F43:AvgCooc-Mp	2	Location Runl CoOc Histor	0.21421	0.063269	0.030206	0.056288	0.006823	0.137937	0.075339	0.078527	0.010494
F44:AvgCooC-Constra	. 2	Location Runi CoOc Histor	0.362105	0 112467	0.599922	0.561819	0 194334	0.006405	0.006405	0.035579	0 104231
F45:AvgCooC-Energy	, ,	Location Run CoOc Histor	0.24	0.058361	0.0/2287	0.066052	0.000252	0.1/1379	0.066092	0.078871	0.016604
F47:AvgCoOc-Mean	2	Location Run CoOc Histor	0.435263	0.109865	0.6042267	0.585377	0.000232	0.028344	0.1053/8	0.056271	0.115099
F47.AvgC00C-Iviean	2	Location Run CoOc Histor	0.455205	0.001040	0.004308	0.010000	0.20045	0.020344	0.100040	0.057296	0.005424
F40.AVgGLIN	4	Location, Runi, CoOc, Histog	0.303621	0.021343	0.015150	0.013332	0.012010	0.077035	0.125625	0.037330	0.003424
F51:AVgLRE	2	Location, Runi, CoOc, Histog	0.202031	0 000000	0.076726	0.000440	0.014007	0 147017	0 220050	0.010447	0 111210
F52:AVgLRHGE	4	Location, Runi, CoOc, Histog	0.348084	0.023498	0.076736	0.008443	0.014227	0.14/21/	0.238959	0.210447	0.111219
F55:AVgRP	2	Location,Runi,CoOc,Histog	0.232631	0.01845	0.015738	0.006809	0.010459	0.110921	0.142914	0.070215	0.007374
F185:Hist-SD-L1	2	Location,Runi,CoOc,Histog	0.352631	0.089286	0.15303	0.1101/8	0.020804	0.10636	0.005589	0.057586	0.026859
F186:Hist-Energy-L1	2	Location,Runl,CoOc,Histog	0.292894	0	0	0	0	0	0	0	0
F187:Hist-Entropy-L1	2	Location,Runl,CoOc,Histog	0.239473	0.009735	0.051268	0.035237	0.021318	0.132757	0.103388	0.063247	0.001186
F188:Hist-Kurt-L1	2	Location,Runl,CoOc,Histog	0.45421	0.080238	0.13225	0.121017	0.000912	0.015025	0.01463	0.015003	0.000388
F189:Hist-Skew-L1	2	Location,Runl,CoOc,Histog	0.506053	0.047678	0.131245	0.096708	0.016077	0.140308	0.178383	0.183487	0.104507
F59:3D-Laws-1	3	Texture:Laws&Wavelet	0.534474	0	0	0	0	0	0	0	0
F60:3D-Laws-2	3	Texture:Laws&Wavelet	0.384473	0.108681	0.575153	0.583323	0.252406	0.028362	0.04559	0.052216	0.171183
F62:3D-Laws-4	3	Texture:Laws&Wavelet	0.535	0	0	0	0	0	0	0	0
F63:3D-Laws-5	3	Texture:Laws&Wavelet	0.46	0	0	0	0	0	0	0	0
F64:3D-Laws-6	3	Texture:Laws&Wavelet	0.364473	0	0	0	0	0	0	0	0
F67:3D-Laws-9	3	Texture:Laws&Wavelet	0.406842	0	0	0	0	0	0	0	0
F68:3D-Laws-10	3	Texture:Laws&Wavelet	0.397368	0	0	0	0	0	0	0	0
F69:3D-Laws-11	3	Texture:Laws&Wavelet	0.519474	0	0	0	0	0	0	0	0
F72:3D-Laws-14	3	Texture:Laws&Wavelet	0.525263	0	0	0	0	0	0	0	0
F73:3D-Laws-15	3	Texture:Laws&Wavelet	0.527105	0	0	0	0	0	0	0	0
F74:3D-Laws-16	3	Texture:Laws&Wavelet	0.44421	0	0	0	0	0	0	0	0
F75:3D-Laws-17	3	Texture:Laws&Wavelet	0.520526	0	0	0	0	0	0	0	0
F76:3D-Laws-18	3	Texture:Laws&Wavelet	0.321842	0	0	0	0	0	0	0	0
F77:3D-Laws-19	3	Texture:Laws&Wavelet	0.481316	0	0	n	0	0	0	0	n
F78:3D-Laws-20	3	Texture:Laws&Wavelet	0.382631	0	0	0	0	0	0	0	0
F79:3D-Laws-21	3	Texture:Laws&Wavelet	0.537368	0	0	0	0	0	0	0	0
F80:3D-Laws-22	2	Texture: aws&Wavelet	0.416842	0	0	0	0	0	0	0	0
F82:3D-Laws-24	3	Texture:Laws&Wavelet	0.51	0	0	0	0	0	0	0	0
F83-3D-Laws-25	3	Texture: Jaws&Wavelet	0.506316	0	0	0	0	0	0	0	0
		- Children Children Dok vv d v Ci Ci	0.000010	0	0	. 0	0	U	0	V	

Key for Abbreviations Used in the Classifier Results Section:

Error: Classifier error (1- Accuracy) Sensitivity(or Recall): True Positive Rate (TPR) =>(True Positive/True Positive + False Negative) Specificity: True Negative Rate (TNR) => (True Negative/True Negative + False Positive) PPV (or Precision): Positive predictive value: => (True Positive/True Positive + False positive) NPV: Negative Predictive value => (True negative/True negative + False negative) AUC: Area under the Receiver Operator Curve CI: Confidence Limits (on AUC).

Table S8. Top images features discriminating cancer to benign nodules using 129reproducible, non-redundant features. A) performance of radiomic model with increasing feature dimension and B) four feature predictors, across all feature category types.

Al	All categories: Cancer Vs Normal (129 Reproducible, Non-Redundant Features) – Hold out CV										
	Dimensions	Feature	E[Error]	E[Sen], E[Spec], (J-index)	E[AUC], with CI						
1	4 Features	F3:ShortAx, F4:Mn- Hu,,F26:EllipticFit, F150:3D-Laws-101	0.202	0.484, 0.929, (0.414)	0.834 [0.689,0.939]						
2	3 Features	F3:ShortAx, F4:Mn-Hu, F26:EllipticFit	0.235	0.506, 0.928, (0.435)	0.842 [0.71, 0.93]						
3	2 Features	F4:Mn-Hu, F37:Thickness- Pxl	0.271	0.462, 0.945, (0.407)	0.827 [0.694, 0.936]						
4	1 Feature	F1:LongDia	0.239	0.396, 0.945, (0.340)	0.786 [0.603, 0.916]						

A)

B)

TRAINING (4 Feature) : Primary : Cancer Vs Norm (78 <u>Vs 166</u>) All										
Features	Error	Sensitiv	Specifi	ifi PPV NI		AUC				
		ity	city			μ (σ)	CI			
F19:10a-3D-Relat-Vol-										
Airspaces;F36:Width-										
Pxl;F48:AvgGLN;F192:3D-						0.728				
WaveP2-L2-3	0.213	0.573	0.891	0.717	0.815	(0.141)	[0.522,0.927]			
F19:10a-3D-Relat-Vol-										
Airspaces;F34:Volume-										
pxl;F37:Thickness-						0.801				
Pxl;F48:AvgGLN	0.211	0.505	0.929	0.777	0.796	(0.07)	[0.652,0.921]			
F19:10a-3D-Relat-Vol-										
Airspaces;F21:10c-3D-Av-Vol-										
AirSpaces;F32:RectangularFit;F1						0.818				
98:3D-WaveP2-L2-9	0.211	0.538	0.911	0.746	0.806	(0.069)	[0.66,0.948]			
F3:ShortAx;F4:Mn-										
Hu;F26:EllipticFit;F176:3D-						0.833				
Laws-127	0.195	0.518	0.946	0.826	0.801	(0.055)	[0.708,0.941]			
F19:10a-3D-Relat-Vol-										
Airspaces;F21:10c-3D-Av-Vol-										
AirSpaces;F22:10d-3D-SD-Vol-										
AirSpaces;F201:3D-WaveP2-L2-						0.825				
12	0.207	0.605	0.891	0.735	0.817	(0.059)	[0.704,0.933]			

ImageF+Clinc (4Feature): Primary (Canc Vs Norm) Test (88 Vs 147) All											
F1	Error	Sensitivity	Specificity	PPV	NPV	AUC	CI				
Comb1	0.224	0.483	0.912	0.72	0.793	0.793(0.067)	[0.634,0.937]				
Comb2	0.231	0.435	0.929	0.75	0.775	0.798(0.057)	[0.678,0.892]				
Comb6	0.222	0.474	0.919	0.736	0.791	0.81(0.058)	[0.676,0.932]				
Comb8	0.219	0.468	0.928	0.756	0.791	0.815(0.061)	[0.683,0.936]				
Comb9	0.234	0.443	0.917	0.71	0.781	0.806(0.062)	[0.668,0.916]				

Clinc (4Feature): Primary (Canc Vs Norm) Test (88 <u>Vs 147</u>) All								
ClincErrorSensitiv itySpecifi cityPPVNPVAUCCI						СІ		
Age, Gender, Pky,						0.522	[0.364,0.689]	
Smoke-Status	0.325	0.003	0.997	0.022	0.677	(0.083)		

a. TESTING (4F: Img): Primary (Can	c Vs Nor	m) Test (8	8 <u>Vs 147</u>) Al	1		
F1	Error	Sensitivity	Specificity	PPV	NPV	AUC
F19:10a-3D-Relat-Vol-						
Airspaces;F36:Width-						
Pxl;F48:AvgGLN;F192:3D-WaveP2-						
L2-3	0.162	0.625	0.966	0.917	0.811	0.889
F19:10a-3D-Relat-Vol-						
Airspaces;F34:Volume-						
pxl;F37:Thickness-Pxl;F48:AvgGLN	0.17	0.568	0.986	0.962	0.792	0.9
F19:10a-3D-Relat-Vol-						
Airspaces;F21:10c-3D-Av-Vol-						
AirSpaces;F32:RectangularFit;F198:3D-						
WaveP2-L2-9	0.187	0.614	0.932	0.844	0.801	0.863
F3:ShortAx;F4:Mn-						
Hu;F26:EllipticFit;F176:3D-Laws-127	0.179	0.568	0.973	0.926	0.79	0.902
F19:10a-3D-Relat-Vol-						
Airspaces;F21:10c-3D-Av-Vol-						
AirSpaces;F22:10d-3D-SD-Vol-						
AirSpaces;F201:3D-WaveP2-L2-12	0.191	0.614	0.925	0.831	0.8	0.872

b. TESTING (4F: Img+Clinc): Primary (Canc Vs Norm) Test (88 <u>Vs</u> 147) All										
F1	Error	Sensitivity	Specificity	PPV	NPV	AUC				
Comb1	0.196	0.545	0.959	0.889	0.779	0.879				
Comb2	0.187	0.523	0.986	0.958	0.775	0.89				
Comb6	0.213	0.557	0.925	0.817	0.777	0.859				
Comb8	0.196	0.523	0.973	0.92	0.773	0.898				
Comb9	0.191	0.602	0.932	0.841	0.797	0.867				

Table S9. Classification results for training and independent testing using reproducible & nonredundant features in the following category I) C1:Size & Shape features, II) C2:Location, RunL, CoOcc & Histogram features III) C3:Texture features.

I) Size & Shape Features:

a.TRAINING (4 Feature) : Primary: Cancer Vs Norm (78 <u>Vs 166</u>) C1: Size & Shape Features									
Features	Error	Sensitivit	Specificit	PPV	NPV	AUC			
		У	У			μ (σ)	CI		
F2:ShortAx-									
LongDia;F3:ShortAx;F25:									
Density;F32:RectangularFi						0.79	[0.651,0.9		
t	0.216	0.465	0.938	0.788	0.786	(0.069)	02]		
F2:ShortAx-									
LongDia;F3:ShortAx;F39:									
Length-by-						0.791	[0.658,0.9		
Thick;F32:RectangularFit	0.224	0.465	0.931	0.775	0.778	(0.057)	16]		
F2:ShortAx-									
LongDia;F3:ShortAx;F37:									
Thickness-						0.797	[0.655,0.9		
Pxl;F32:RectangularFit	0.221	0.457	0.934	0.774	0.783	(0.07)	19]		
F2:ShortAx-									
LongDia;F3:ShortAx;F41:									
Border-Leng-						0.801	[0.677,0.9		
Pxl;F32:RectangularFit	0.227	0.454	0.934	0.779	0.773	(0.061)	2]		
F2:ShortAx-									
LongDia;F3:ShortAx;F38:									
Length-							[0.662,0.9		
Pxl;F32:RectangularFit	0.233	0.443	0.931	0.765	0.769	0.8(0.061)	1]		

b. Clinc (4Feature): Primary (Canc Vs Norm) Test (88 Vs 147)								
Clinc	Error	Sensitiv ity	Specifi city	PPV	NPV	AUC	СІ	
Age, Gender, Pky,						0.533	[0.372,0.672]	
Smoke-Status	0.321	0.002	0.994	0.01	0.681	(0.073)		

c. Image	c. ImageF+Clinc (4Feature): Primary (Canc Vs Norm) Test (88 <u>Vs 147</u>) C1: Size &									
Shape Features										
F1	Error	Sensitivity	Specificity	PPV	NPV	AUC	CI			
Comb1	0.221	0.478	0.915	0.722	0.797	0.789(0.075)	[0.595,0.91]			
Comb2	0.232	0.434	0.919	0.713	0.783	0.774(0.077)	[0.587,0.935]			
Comb3	0.236	0.454	0.918	0.738	0.774	0.783(0.054)	[0.678,0.89]			
Comb4	0.233	0.466	0.917	0.736	0.779	0.792(0.07)	[0.604,0.904]			
Comb6	0.223	0.452	0.924	0.736	0.789	0.783(0.066)	[0.651,0.92]			

d. TESTING (4Feature): Primary (Canc Vs Norm)	Test (8	8 <u>Vs 147</u> C	1: Size & Sha	<mark>ipe</mark> Feat	ures	
Features	Error	Sensitivity	Specificity	PPV	NPV	AUC
F2:ShortAx-						
LongDia;F3:ShortAx;F25:Density;F32:RectangularFit	0.179	0.557	0.98	0.942	0.787	0.858
F2:ShortAx-LongDia;F3:ShortAx;F39:Length-by-						
Thick;F32:RectangularFit	0.179	0.557	0.98	0.942	0.787	0.859
F2:ShortAx-LongDia;F3:ShortAx;F37:Thickness-						
Px1;F32:RectangularFit	0.179	0.557	0.98	0.942	0.787	0.863
F2:ShortAx-LongDia;F3:ShortAx;F41:Border-Leng-						
Px1;F32:RectangularFit	0.179	0.557	0.98	0.942	0.787	0.86
F2:ShortAx-LongDia;F3:ShortAx;F38:Length-						
Pxl;F32:RectangularFit	0.179	0.557	0.98	0.942	0.787	0.86

e.TESTING (4F: Img+Clinc): Primary (Canc Vs Norm) Test (88 <u>Vs</u> <u>147</u>) C1: Size & Shape										
F1	Error	Sensitivity	Specificity	PPV	NPV	AUC				
Comb1	0.191	0.534	0.973	0.922	0.777	0.85				
Comb2	0.2	0.523	0.966	0.902	0.772	0.85				
Comb3	0.187	0.545	0.973	0.923	0.781	0.856				
Comb4	0.196	0.534	0.966	0.904	0.776	0.851				
Comb6	0.196	0.534	0.966	0.904	0.776	0.852				

TRAINING (4 Feature) : Primary: Cancer Vs Norm (78 Vs 166) C2: Loc, CoOc& RunL Features									
(Sort: AUC, Sen/Spec)									
Features	Error	Sensitiv	Specifici	PPV	NPV	AUC			
		ity	ty			μ (σ)	CI		
F27:Main-									
Direction;F185:Hist-SD-									
L1;F186:Hist-Energy-							[0.587,0.92		
L1;F187:Hist-Entropy-L1	0.224	0.609	0.86	0.686	0.818	0.788(0.08)	9]		
F185:Hist-SD-L1;F186:Hist-									
Energy-L1;F187:Hist-									
Entropy-L1;F44:AvgCooC-						0.792(0.06	[0.649,0.94		
Constrast	0.23	0.611	0.851	0.669	0.817	9)	1]		
F9:8b-3D-Bord-to-									
Lung;F19:10a-3D-Relat-									
Vol-Airspaces;F21:10c-3D-									
Av-Vol-									
AirSpaces;F42:AvgCoOc-						0.851(0.05	[0.733,0.94		
Homo	0.215	0.544	0.908	0.746	0.802	3)	9]		
F9:8b-3D-Bord-to-									
Lung;F21:10c-3D-Av-Vol-									
AirSpaces;F42:AvgCoOc-							[0.692,0.91		
Homo;F52:AvgLRHGE	0.198	0.507	0.941	0.807	0.802	0.809(0.06)	1]		
F9:8b-3D-Bord-to-									
Lung;F19:10a-3D-Relat-									
Vol-Airspaces;F21:10c-3D-									
Av-Vol-						0.831(0.06	[0.688,0.93		
AirSpaces;F43:AvgCooc-Mp	0.216	0.539	0.904	0.736	0.803	1)	1]		

II. Location, RunL, CoOcc & Histogram:

Clinc (4Feature): Primary a (Canc Vs Norm) Test (88 <u>Vs 147</u>)								
Clinc	Error	Sensitiv ity	Specifi city	PPV	NPV	AUC	CI	
Age, Gender, Pky,						0.511	[0.308,0.651]	
Smoke-Status	0.328	0.008	0.99	0.052	0.676	(0.089)		

ImageF+	ImageF+Clinc (4Feature): Primary (Canc Vs Norm) Test (88 Vs 147) C2: Loc, CoOc&									
RunL Features										
F1	Error	Sensitivity	Specificity	PPV	NPV	AUC	CI			
Comb1	0.252	0.544	0.848	0.63	0.796	0.768(0.068)	[0.644,0.926]			
Comb2	0.25	0.531	0.859	0.642	0.794	0.774(0.061)	[0.638,0.92]			
Comb4	0.218	0.533	0.909	0.745	0.799	0.844(0.061)	[0.708,0.944]			
Comb7	0.227	0.477	0.915	0.733	0.785	0.801(0.067)	[0.659,0.908]			
Comb9	0.222	0.513	0.908	0.74	0.795	0.819(0.062)	[0.699,0.924]			

Ī

TESTING (4Feature): Primary (Canc Vs Norm) Test (88 Vs 147 C2: Loc, CoOc& RunL Feature)	es
(Sort: AUC Son/Spac)	

Features	Error	Sensitivit	Specificit	PPV	NPV	AUC			
		У	У						
F27:Main-Direction;F185:Hist-SD-									
L1;F186:Hist-Energy-L1;F187:Hist-									
Entropy-L1	0.191	0.625	0.918	0.821	0.804	0.856			
F185:Hist-SD-L1;F186:Hist-Energy-									
L1;F187:Hist-Entropy-L1;F44:AvgCooC-									
Constrast	0.174	0.67	0.918	0.831	0.823	0.858			
F9:8b-3D-Bord-to-Lung;F19:10a-3D-									
Relat-Vol-Airspaces;F21:10c-3D-Av-Vol-									
AirSpaces;F42:AvgCoOc-Homo	0.166	0.693	0.918	0.836	0.833	0.878			
F9:8b-3D-Bord-to-Lung;F21:10c-3D-Av-									
Vol-AirSpaces;F42:AvgCoOc-									
Homo;F52:AvgLRHGE	0.209	0.545	0.939	0.842	0.775	0.861			
F9:8b-3D-Bord-to-Lung;F19:10a-3D-									
Relat-Vol-Airspaces;F21:10c-3D-Av-Vol-									
AirSpaces;F43:AvgCooc-Mp	0.209	0.625	0.891	0.775	0.799	0.856			

TESTING (4F: Img+Clinc): Primary (Canc Vs Norm) Test (88 Vs 147)										
C2: Loc, CoOc& RunL										
F1	Error	Sensitivity Specificity PPV N		NPV	AUC					
		_								
Comb1	0.209	0.568	0.925	0.82	0.782	0.853				
Comb2	0.204	0.591	0.918	0.813	0.789	0.854				
Comb4	0.191	0.614	0.925	0.831	0.8	0.877				
Comb7	0.2	0.545	0.952	0.873	0.778	0.856				
Comb9	0.221	0.591	0.891	0.765	0.784	0.856				

III. Texture Features

a. TRAINING (4 Features) : Primary: Cancer Vs Norm (78 <u>Vs 166</u>) C3: Texture Features									
Features	Erro	Sensiti	Specifici	PPV	NPV	AUC			
	r	vity	ty			μ (σ)	CI		
F68:3D-Laws-10;F197:3D-									
WaveP2-L2-8;F214:3D-									
WaveP1-L2-25;F216:3D-						0.75(0.			
WaveP1-L2-27	0.242	0.426	0.926	0.745	0.763	076)	[0.601,0.897]		
F68:3D-Laws-10;F192:3D-									
WaveP2-L2-3;F215:3D-									
WaveP1-L2-26;F216:3D-						0.75(0.			
WaveP1-L2-27	0.24	0.42	0.924	0.73	0.77	081)	[0.563,0.916]		
F68:3D-Laws-10;F201:3D-									
WaveP2-L2-12;F214:3D-									
WaveP1-L2-25;F216:3D-						0.768(0			
WaveP1-L2-27	0.239	0.418	0.929	0.746	0.767	.076)	[0.603,0.932]		
F72:3D-Laws-14;F200:3D-									
WaveP2-L2-11;F215:3D-									
WaveP1-L2-26;F216:3D-						0.761(0			
WaveP1-L2-27	0.24	0.395	0.936	0.759	0.764	.075)	[0.63,0.915]		
F143:3D-Laws-94;F201:3D-									
WaveP2-L2-12;F214:3D-									
WaveP1-L2-25;F216:3D-						0.774(0			
WaveP1-L2-27	0.241	0.413	0.926	0.73	0.767	.07)	[0.619,0.9]		

a. Clinc (4Feature): Primary (Canc Vs Norm) Test (88 <u>Vs 147</u>)									
Clinc	Error	Sensitiv ity	Specifi city	PPV	NPV	AUC	CI		
Age, Gender, Pky,						0.52	[0.377,0.65]		
Smoke-Status	0.333	0.004	0.995	0.024	0.67	(0.066)			

a. I	a. ImageF+Clinc (4Feature): Primary (Canc Vs Norm) Test (88 Vs 147) C3:											
Texture Features												
F1	Error	Sensitivity	Specificity	PPV	NPV	AUC	CI					
Comb1	0.242	0.426	0.914	0.694	0.775	0.757(0.068)	[0.601,0.883]					
Comb2	0.252	0.409	0.919	0.721	0.757	0.758(0.071)	[0.604,0.868]					
Comb4	0.249	0.392	0.923	0.708	0.763	0.763(0.069)	[0.62,0.914]					
Comb5	0.243	0.382	0.934	0.741	0.761	0.749(0.081)	[0.535,0.886]					
Comb8	0.25	0.408	0.916	0.711	0.765	0.763(0.067)	[0.613,0.9]					

a. <u>TESTING</u> (4Feature): Primary (Canc Vs Norm) Test (88 <u>Vs 147</u> C3: Texture Features											
(Sort: AUC, Sen/Spec)											
Features	Error	Sensitivit	Specificit	PPV	NPV	AUC					
		У	У								
F68:3D-Laws-10;F197:3D-WaveP2-L2-											
8;F214:3D-WaveP1-L2-25;F216:3D-											
WaveP1-L2-27	0.243	0.477	0.925	0.792	0.747	0.824					
F68:3D-Laws-10;F192:3D-WaveP2-L2-											
3;F215:3D-WaveP1-L2-26;F216:3D-											
WaveP1-L2-27	0.255	0.443	0.925	0.78	0.735	0.803					
F68:3D-Laws-10;F201:3D-WaveP2-L2-											
12;F214:3D-WaveP1-L2-25;F216:3D-											
WaveP1-L2-27	0.255	0.443	0.925	0.78	0.735	0.82					
F72:3D-Laws-14;F200:3D-WaveP2-L2-											
11;F215:3D-WaveP1-L2-26;F216:3D-											
WaveP1-L2-27	0.268	0.398	0.932	0.778	0.721	0.792					
F143:3D-Laws-94;F201:3D-WaveP2-L2-											
12;F214:3D-WaveP1-L2-25;F216:3D-											
WaveP1-L2-27	0.243	0.5	0.912	0.772	0.753	0.819					

e.TESTI	e.TESTING (4F: Img+Clinc): Primary (Canc Vs Norm) T12 Test (88 Vs										
$147)\parallel C3: Texture Features$											
F1	Error	Sensitivity	Specificity	PPV	NPV	AUC					
Comb1	0.243	0.455	0.939	0.816	0.742	0.804					
Comb2	0.277	0.398	0.918	0.745	0.718	0.791					
Comb4	0.285	0.375	0.918	0.733	0.711	0.806					
Comb5	0.285	0.352	0.932	0.756	0.706	0.78					
Comb8	0.268	0.42	0.918	0.755	0.726	0.807					

31

Supplemental Table S10. Top images features discriminating cancer to benign nodules using 129 reproducible, non-redundant features. Features across all categories

Size Range:R1(4-12mm) & All Feature Categories: Youden metric (Sen/Spec, AUC)

TRAINING (4 Feature) : Primary: Cancer Vs Norm (78 <u>Vs 166</u>) All - R1 (4-12mm)									
Features	Erro	Sensit	Specifi	PPV	NPV	AUC			
	r	ivity	city			μ (σ)	CI		
F17:9f-3D-Min-Dist-COG-to-									
Border;F26:EllipticFit;F34:Volume-						0.683			
pxl;F189:Hist-Skew-L1	0.155	0.335	0.974	0.737	0.857	(0.116)	[0.409,0.909]		
F3:ShortAx;F26:EllipticFit;F34:Volu						0.663			
me-pxl;F189:Hist-Skew-L1	0.153	0.33	0.975	0.745	0.857	(0.115)	[0.406,0.903]		
F4:Mn-									
Hu;F26:EllipticFit;F34:Volume-						0.754			
pxl;F172:3D-Laws-123	0.16	0.313	0.966	0.691	0.858	(0.131)	[0.389,0.962]		
F4:Mn-									
Hu;F26:EllipticFit;F34:Volume-						0.748			
pxl;F138:3D-Laws-89	0.149	0.294	0.983	0.753	0.856	(0.11)	[0.468,0.948]		
F5:Std-									
Hu;F26:EllipticFit;F34:Volume-						0.67			
pxl;F189:Hist-Skew-L1	0.159	0.305	0.967	0.689	0.858	(0.099)	[0.452,0.882]		

Clinc (4Feature): Primary (Canc Vs Norm) Test (88 <u>Vs 147</u>)									
Clinc	Error	Sensitiv ity	Specifi city	PPV	NPV	AUC	CI		
Age, Gender, Pky, Smoke-Status	0.191	0	0.999	0	0.809	0.615 (0.103)	[0.382,0.836]		

TRAIN: ImageF+Clinc (4Feature): Primary (Canc Vs Norm) Test (88 Vs 147) R1: All											
F1	Error	Sensitivity	Specificity	PPV	NPV	AUC	CI				
Comb2	0.186	0.1	0.97	0.343	0.832	0.692(0.11)	[0.46,0.917]				
Comb3	0.201	0.054	0.965	0.162	0.822	0.67(0.107)	[0.413,0.907]				
Comb7	0.169	0.206	0.967	0.532	0.85	0.74(0.111)	[0.459,0.972]				
Comb8	0.182	0.141	0.971	0.46	0.834	0.73(0.106)	[0.477,0.96]				
Comb9	0.205	0.073	0.96	0.243	0.821	0.684(0.111)	[0.401,0.876]				

TESTING (4Feature): Primary (Canc Vs Norm) Test (88 <u>Vs 147</u>) All – R1										
F1	Error	· Sensitivity Specificity PPV N				AUC				
Comb2	0.173	0.161	0.985	0.714	0.832	0.771				
Comb3	0.167	0.161	0.992	0.833	0.833	0.786				
Comb7	0.179	0.194	0.969	0.6	0.836	0.795				
Comb8	0.191	0.161	0.962	0.5	0.829	0.778				
Comb9	0.167	0.161	0.992	0.833	0.833	0.814				

TESTING (4F: Img+Clinc): Primary (Canc Vs Norm) Test (88 Vs 147) R1- All										
F1	Error	Sensitivity	Specificity	PPV	NPV	AUC				
Comb2	0.179	0.129	0.985	0.667	0.827	0.732				
Comb3	0.167	0.129	1	1	0.829	0.745				
Comb7	0.173	0.194	0.977	0.667	0.837	0.767				
Comb8	0.191	0.161	0.962	0.5	0.829	0.754				
Comb9	0.173	0.129	0.992	0.8	0.828	0.765				

TRAINING (4 Feature) : Primary at T12: Cancer Vs Norm (78 <u>Vs 166</u>) All - R2 (>12 -30mm)										
Features	Erro	Sensit	Specifi	PPV	NPV	AUC				
	r	ivity	city			μ (σ)	CI			
F44:AvgCooC-Constrast;F196:3D-										
WaveP2-L2-7;F199:3D-WaveP2-L2-						0.702				
10;F214:3D-WaveP1-L2-25	0.211	0.913	0.569	0.815	0.732	(0.192)	[0.24,0.96]			
F17:9f-3D-Min-Dist-COG-to-										
Border;F44:AvgCooC-										
Constrast;F204:3D-WaveP2-L2-						0.707				
15;F214:3D-WaveP1-L2-25	0.207	0.925	0.518	0.818	0.719	(0.152)	[0.37,0.965]			
F44:AvgCooC-										
Constrast;F55:AvgRP;F204:3D-										
WaveP2-L2-15;F214:3D-WaveP1-						0.692				
L2-25	0.217	0.914	0.505	0.816	0.678	(0.143)	[0.4,0.933]			
F21:10c-3D-Av-Vol-										
AirSpaces;F38:Length-Px1;F64:3D-						0.684				
Laws-6;F204:3D-WaveP2-L2-15	0.224	0.906	0.499	0.81	0.68	(0.185)	[0.208,0.958]			
F43:AvgCooc-										
Mp;F55:AvgRP;F204:3D-WaveP2-						0.7				
L2-15;F214:3D-WaveP1-L2-25	0.226	0.925	0.477	0.802	0.689	(0.181)	[0.288,0.963]			

<u>Size Range: R2:</u> (>12 -30mm)

Clinc (4Feature): Primary at T12 (Canc Vs Norm) Prim at T12 Test (88 Vs 147) R2- (>12-30mm) All								
Clinc	Error	Sensitiv ity	Specifi city	PPV	NPV	AUC	CI	
Age, Gender, Pky,						0.36(0.	[0.068,0.645]	
Smoke-Status	0.388	0.92	0	0.651	0	162)		

TRAIN: ImageF+Clinc (4Feature): Primary at T12 (Canc Vs Norm) Prim at T12 Test(88 Vs 147) R2 (>12-30mm): All									
F1	Error	Sensitivity	Specificity	PPV	NPV	AUC	CI		
Comb1	0.32	0.858	0.319	0.732	0.504	0.69(0.206)	[0.2,0.95]		
Comb2	0.419	0.795	0.19	0.662	0.279	0.545(0.15)	[0.24,0.863]		
Comb5	0.402	0.787	0.217	0.688	0.292	0.571(0.171)	[0.167,0.88]		
Comb6	0.37	0.824	0.289	0.701	0.39	0.574(0.173)	[0.208,0.958]		
Comb10	0.392	0.8	0.268	0.686	0.336	0.576(0.164)	[0.288, 0.921]		

TESTING (4Feature): Primary at T12 (Canc Vs Norm) Prim at T12 Test (88 Vs 147) All – R2										
F1	Error	Sensitivity	Specificity	PPV	NPV	AUC				
Comb1	0.315	0.739	0.375	0.872	0.2	0.601				
Comb2	0.259	0.848	0.125	0.848	0.125	0.579				
Comb5	0.259	0.848	0.125	0.848	0.125	0.606				
Comb6	0.167	0.957	0.125	0.863	0.333	0.628				
Comb10	0.222	0.87	0.25	0.87	0.25	0.614				

TESTING (4F: Img+Clinc): Primary at T12 (Canc Vs Norm) Prim at T12 Test (88 Vs 147) R2 (>12-30mm)- All										
F1	Error	Error Sensitivity Specificity PPV NI				AUC				
Comb1	0.296	0.761	0.375	0.875	0.214	0.649				
Comb2	0.259	0.848	0.125	0.848	0.125	0.571				
Comb5	0.241	0.87	0.125	0.851	0.143	0.59				
Comb6	0.167	0.935	0.25	0.878	0.4	0.723				
Comb10	0.185	0.891	0.375	0.891	0.375	0.644				

Supplemental Table S11. Top images features discriminating cancer to benign nodules in Indeterminate size range (R1: 4 to 12mm) using 129 reproducible, non-redundant features in three categories (Size & Shape, CooCc & Run. Length, Texture).

A) Range R1 (4 to 12mm) and C1: Size & Shape: Youden metric (Sen/Spec, AUC)

TRAINING (4 Feature) : Primary	at T12	: Cancel	r Vs Nori	m (78 <u>V</u>	<u>s 166</u>) (21 & R1 (4 -12mm)
Features				PPV	NPV	AU	С
		• • •	G				CT.

	error	sensitivi	Specificit			μ (σ)	CI
		ty	у				
F1:LongDia;F6:Vol-cm;F37:Thickness-Px1;F14:9c-						0.556	
3D-Compact	.18	.115	0.989	0.517	0.824	(0.12)	[0.302,0.806]
F6:Vol-cm;F38:Length-Pxl;F40:Length-by-						<mark>0.615</mark>	
Width;F41:Border-Leng-Pxl	<mark>.168</mark>	<mark>.109</mark>	<mark>0.992</mark>	<mark>0.495</mark>	<mark>0.835</mark>	<mark>(0.107)</mark>	[0.415,0.811]
F6:Vol-cm;F38:Length-Pxl;F41:Border-Leng-							
Px1;F30:Shape-Index	.178	.104	0.994	0.546	0.824	0.586(0.121)	[0.313,0.844]
F6:Vol-cm;F34:Volume-px1;F38:Length-							
Px1;F30:Shape-Index	.189	.114	0.982	0.471	0.82	0.619(0.111)	[0.333,0.822]
F36:Width-Pxl;F38:Length-Pxl;F40:Length-by-							
Width;F41:Border-Leng-Px1	.173	.106	0.989	0.46	0.832	0.626(0.139)	[0.296,0.914]

Clinc (4Feature): Primary at T12 (Canc Vs Norm) Prim at T12 Test (88 Vs 147) C1 & R1 (4-12mm)									
Clinc	Error	Sensitivity	Specificit	PV	PV	AUC	CI		
			У						
							[0.299.0.811]		
Age, Gender, Pky, Smoke-						0.57	[01255,01011]		
Status	0.191	0	0.999	0	0.81	(0.115)			

TRAIN: ImageF+Clinc (4Feature): Primary at T12 (Canc Vs Norm) Prim at T12 Test (88 Vs 147) C1 & R1 (4 -12mm)									
F1	Error	Sensitivity	Specificity	PV	PV	AUC	CI		
Comb1	0.175	0.125	0.985	.517	.832	0.642(0.13)	[0.347,0.87]		
Comb2	0.168	0.098	0.99	.393	.836	0.609(0.108)	[0.385,0.82]		
Comb3	0.172	0.11	0.994	.535	.828	0.622(0.106)	[0.367,0.833]		
Comb4	0 .177	0.129	0.984	.508	.83	0.629(0.112)	[0.349,0.806]		
Comb5	0.171	0.122	0.989	.513	.833	0.647(0.125)	[0.374,0.89]		

TESTING (4Feature): Primary at T12 (Canc Vs Norm) Prim at T12 Test (88 Vs 147) C1 & R1 (4 - 12mm)											
F1	Error	Sensitivity	Specificity	PPV NPV		AUC					
Comb1	0.154	0.258	0.985	0.8	0.849	0.679					
Comb2	0.173	0.161	0.985	0.714	0.832	0.71					
Comb3	0.173	0.194	0.977	0.667	0.837	0.697					
Comb4	0.179	0.194	0.969	0.6	0.836	0.692					
Comb5	0.198	0.032	0.985	0.333	0.811	0.671					

TESTING (4F: Img+Clinc): Primary at T12 (Canc Vs Norm) Prim at T12 Test (88 <u>Vs 147</u>) C1 & R1 (4 -12mm)										
F1	Error	Sensitivity	Specificity	PPV	NPV	AUC				
Comb1	0.167	0.226	0.977	0.7	0.842	0.659				
Comb2	0.167	0.161	0.992	0.833	0.833	0.667				
Comb3	0.173	0.194	0.977	0.667	0.837	0.661				
Comb4	0.167	0.194	0.985	0.75	0.838	0.659				
Comb5	0.191	0.065	0.985	0.5	0.816	0.615				

B) Range R1 (4 to 12mm): C2: Location, CoOc & RunL: Youden metric (Sen/Spec, AUC)

TRAINING (4 Feature) : Primary at T12: Cancer Vs Norm (78 <u>Vs 166</u>) C2: CoOc & RunL Features (Range: R1: 4-12mm).											
Features	Error	Sensitivit	Specificity	PPV			AUC				
		У			NPV	μ (σ)	CI				
F9:8b-3D-Bord-to-Lung;F17:9f-3D-Min-Dist-COG-											
to-Border;F19:10a-3D-Relat-Vol-						0.825					
Airspaces;F55:AvgRP	0.176	0.256	0.969	0.656	0.838	(0.087)	[0.633,0.972]				
F9:8b-3D-Bord-to-Lung;F19:10a-3D-Relat-Vol-						0.806					
Airspaces;F5:Std-Hu;F48:AvgGLN	0.183	0.248	0.955	0.528	0.844	(0.091)	[0.598,0.965]				
F9:8b-3D-Bord-to-Lung;F19:10a-3D-Relat-Vol-						0.801					
Airspaces;F5:Std-Hu;F55:AvgRP	0.183	0.252	0.949	0.507	0.847	(0.103)	[0.57,0.944]				
F9:8b-3D-Bord-to-Lung;F19:10a-3D-Relat-Vol-						0.768					
Airspaces;F20:10b-3D-Num-AirSpaces;F55:AvgRP	0.189	0.246	0.951	0.499	0.839	(0.114)	[0.522,0.948]				
F9:8b-3D-Bord-to-Lung;F17:9f-3D-Min-Dist-COG-						0.774					
to-Border;F48:AvgGLN;F52:AvgLRHGE	0.173	0.225	0.972	0.608	0.841	(0.103)	[0.461,0.932]				

Clinc (4Feature): Primary at T12 (Canc Vs Norm) Prim at T12 Test (88 <u>Vs 147</u>) C2: RunG-CoOc -1 (4-12mm)								
Clinc	Error	Sensitivity	Specificit y	PPV	NPV	AUC	CI	
Age, Gender, Pky, Smoke- Status	0.189	0	0.999	0	0.812	0.593 (0.127)	[0.342,0.878]	

TRAIN: ImageF+Clinc (4Feature): Primary at T12 (Canc Vs Norm) Prim at T12 Test (88 <u>Vs 147</u>) C2: RunG-CoOc – R1 (4-12mm)								
F1	Error	Sensitivity	Specificity	PPV	NPV	AUC	CI	
Comb1	0.171	0.278	0.964	0.609	0.847	0.808(0.083)	[0.608,0.968]	
Comb2	0.179	0.278	0.954	0.567	0.846	0.803(0.097)	[0.554,0.952]	
Comb3	0.173	0.315	0.951	0.588	0.853	0.813(0.086)	[0.643,0.964]	
Comb4	0.176	0.261	0.957	0.565	0.848	0.773(0.106)	[0.554,0.967]	
Comb5	0.161	0.262	0.969	0.606	0.855	0.789(0.09)	[0.578,0.954]	

TESTING (4Feature: ImgF): Primary at T12 (Canc Vs Norm) Prim at T12 Test (88 Vs 147 C2: RunG-CoOc Features, Range:								
R1 (4-12mm)								
Features	Error	Sensitivity	Specificity	PPV	NPV	AUC		
Comb1	0.167	0.226	0.977	0.7	0.842	0.784		
Comb2	0.136	0.419	0.969	0.765	0.876	0.82		
Comb3	0.148	0.387	0.962	0.706	0.869	0.831		
Comb4	0.179	0.258	0.954	0.571	0.845	0.806		
Comb5	0.179	0.194	0.969	0.6	0.836	0.73		

TESTING (4Feature: ImgF+Clinc): Primary at T12 (Canc Vs Norm) || Prim at T12 Test (88 Vs 147 || C2: RunG-CoOc, Range: R1 (4 - 12mm).

Cooc, Kaige, KI (4 - 12mm).									
Features	Features Error		Specificity	PPV	NPV	AUC			
		, i							
Comb1	0.185	0.129	0.977	0.571	0.826	0.766			
Comb2	0.148	0.323	0.977	0.769	0.859	0.823			
Comb3	0.154	0.29	0.977	0.75	0.853	0.829			
Comb4	0.179	0.226	0.962	0.583	0.84	0.803			
Comb5	0.167	0.194	0.985	0.75	0.838	0.707			

Background Information for Supplemental Figure SF1.

We also attempted to find stable features across non-growing controls over three screening scans that were acquired about a year apart. We observed large variations in features due to patient level scan differences across time. In this sub-study, 26 features were stable at a CCC \geq 0.6; and these were included as part of the test-retest repeatable feature set (See *Supplemental Figure SF1*).

Supplemental Figure SF1. Differential variability plots (Bland-Altman plots) between noncancerous across time points (NC1 & 2 are Non-cancer cohort 1 & 2). A) Longest diameter for first cohort (top panel). B) Longest diameter for second cohort (bottom panel) C) Size distribution (longest diameter & volume) across time points.

Concordance Correlation Coefficient: Normal Cases (Nodule+, non-Cancer)								
(T0 Vs T1, T0 Vs T2, T1 Vs T2) : Min								
Category	Feature	Subtotal Percent of features (Num. Features)						
	Туре		≤60%	≥70%	\geq 80%	≥85%	\geq 90%	
	Size	13	84.6 (11)	76.9 (10)	46.2(6)	0 (0)	0 (0)	
C1.Size &	Shape	12	25 (3)	16.7(2)	0 (0)	0 (0)	0 (0)	
Shape								
C2. Location,	Location	14	42.9 (6)	35.7(5)	35.7 (5)	14.3	0 (0)	
RunL & CoOc,	Histogram	8	37.5 (3)	12.5(1)	0 (0)	0 (0)	0 (0)	
Histogram	Runlength	17	17.6 (3)	17.7(3)	11.7 (2)	0 (0)	0 (0)	
	& CoOcc							
C3. Texture:	Laws	125	0.8 (1)	0.8 (1)	0 (0)	0 (0)	0 (0)	
Laws&Wavelet	Wavelet	30	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	
	I	219	12.3 (27)	10.1 (22)	5.9 (13)	0.913 (2)	0 (0)	
Total								

Supplemental Figure SF2. The figure shows the workflow to assess classifier performance due to reconstruction kernels. The classifier was formed using a data set with one type of kernel (in a manufacturer) to discriminate malignant lung nodules and tested on a data set with different kernel type used by the same manufacturer, keeping other parameters constant. The variability in the predictions (AUC) was evaluated and reported as percent change. The figures contrast visual difference in image reconstructions of two different convolution kernels (across columns), where each row represents a patient nodule The panel shows A) workflow for the reconstruction study B) Patient scans reconstructed using Siemens scanner (B30F, B50F, slice thickness 2mm) C) Patient scans resconstructed using General Electric (GE) scanner (Standard & Bone, slice thickness 2.5mm). Details of the analysis will be reported in our following study (11).

(A)

Supplemental Figure SF3. Size distribution of lung nodules used in the training and validation (test) cohorts A) Longest diameter (mm), B) Volume (cm).

(A)

(B)

Reference

1. Schonmeyer R, Athelogou M, Sittek H, Ellenberg P, Feehan O, Schmidt G, Binnig G. Cognition Network Technology prototype of a CAD system for mammography to assist radiologists by finding similar cases in a reference database. International journal of computer assisted radiology and surgery. 2011;6(1):127-34. Epub 2010/05/27. doi: 10.1007/s11548-010-0486-8. PubMed PMID: 20503075.

2. Balagurunathan Y GY, Wang H, Kumar V, Grove O, Hawkins S, Kim J, Goldgof DB, Hall LO, Gatenby RA, Gillies RJ. Reproducibility and Prognosis of Quantitative features extracted from CT images Transl Oncol. 2014;7(1):72-87.

3. Xu D-H, Kuran AS, Furst JD, DS. R. RUN-LENGTH ENCODING FOR VOLUMETRIC TEXTURE. 4th IASTED Int'l Conf on Visualization, Imaging and Image Processing; September 6-8; Marbella, Spain.2004.

4. Tang X. Texture information in run-length matrices. IEEE Transactions on Image Processing. 1998;7(11):1602-9.

5. A.S. Kurani D-HX, J.D. Furst, and D.S. Raicu. Co-occurrence matrices for volumetric data. 7th IASTED Int'l Conf on Computer Graphics and Imaging2004.

6. Mokji M.M ABSAR. Gray Level Co-Occurrence Matrix Computation Based On Haar Wavelet. IEEE Computer Graphics, Imaging and Visualisation (CGIV '07): IEEE Aug 2007. p. 273-9.

7. V.A. Kovalev FK, H.-J Gertz, and D.Y. von Cramon. Three-dimensional texture analysis of MRI brain datasets. IEEE Trans on Medical Imaging. 2001;20(5):424-33.

8. Laws K. Texture Image Segmentation. Los Angeles: University of South California 1980.

9. Benke K K CDaSDR. A study of the effect of image quality on texture energy measures. Meas Sci Technol. 1994;5:400-7.

10. K. Jafari-Khouzani HS-Z, K. Elisevich, and S. Patel. Comparison of 2D and 3D wavelet features for the lateralization. In Proc of SPIE Medical Imaging 2004: Physiology, Function and Structure from Medical Images. 2004;5369:593-601.

11. Balagurunathan Y, Moros E, Garcia A, Schabath M, Gillies RJ. Effects of CT scanner variability on pulmonary nodule discrimination. (in preparation). 2017.