
3DµF- Interactive Design Environment for Microfluidic

Devices

Radhakrishna Sanka, Joshua Lippai, Dinithi Samarasekera,

Sarah Nemsick and Douglas Densmore

May 30, 2019

Supplementary Material

1

3DµF- Interactive Design Environment for Microfluidic Devices

Contents

1 Software 5

2 Parametric Component Library 6

3 Design Environment 9

3.1 Design Canvas . 10

3.2 Primary Toolbar . 10

3.3 Context Menu . 11

3.4 Tool Windows . 11

4 Semi-Automated Design Features 12

4.1 Design Primitives . 12

4.2 Parametric Design . 12

5 Mechanical Design Features 13

5.1 Position and Pattern Tools . 13

5.2 DXF Support . 13

5.2.1 DXF Import Examples . 13

5.2.2 Import Modes . 14

6 Extending the Component Library 16

6.1 Creating the Definition . 16

6.2 Registering the Definition . 19

6.3 Create UI Element . 19

6.4 Registering the Event Handlers . 20

6.4.1 Query Selectors . 20

6.4.2 Event Handlers . 20

6.4.3 Tool Association . 21

7 Interchange Format 22

7.1 Overview . 22

7.2 Feature Object . 23

8 Parametric Design Engineering 24

8.1 Effort Metrics . 24

8.1.1 Design Effort . 25

8.1.2 Parameterization Effort . 25

8.1.3 Constants and Assumptions . 26

8.2 Design Effort of a MIXER . 29

8.2.1 Design Effort (EDesign) . 29

8.2.2 Parameterization Effort (EParameterization) 29

Supplementary Material Page 2 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

9 Case Study 1 - Devices from Literature 30

9.1 Device Descriptions . 31

9.2 Milled Devices . 34

9.3 Designs Website . 41

9.4 Effort Calculation Script . 41

10 Case Study 2 - Modular System Design 42

10.1 Discussion . 42

10.2 Transformation . 44

10.2.1 Chip Design . 44

10.2.2 Design Layers . 45

10.2.3 Inputs and Outputs . 46

10.2.4 Protocol . 47

10.3 Ligation . 51

10.3.1 Chip Design . 51

10.3.2 Design Layers . 52

10.3.3 Inputs and Outputs . 52

10.3.4 Protocol . 53

10.4 DNA Digest . 57

10.4.1 Chip Design . 57

10.4.2 Design Layers . 58

10.4.3 Inputs and Outputs . 58

10.4.4 Protocol . 59

10.5 Cell Lysis . 62

10.5.1 Chip Design . 62

10.5.2 Design Layers . 63

10.5.3 Inputs and Outputs . 64

10.5.4 Protocol . 64

11 Platform Extensibility Demonstrations 67

11.1 Overview . 67

11.2 Specify - Support for High-Level Device Descriptions 67

11.2.1 Explanation of MINT Syntax . 68

11.2.2 Demonstration . 69

11.2.3 Resources . 70

11.3 Design - Support for Design of Experiments 71

11.3.1 Example - DOE to improve Mixer Efficiency 71

11.3.2 Generate Orthogonal Array . 72

11.3.3 Demonstration . 72

11.3.4 Resources . 73

11.4 Simulate - Support for Network Characterization 74

Supplementary Material Page 3 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

11.4.1 Demonstration . 74

11.4.2 Resources . 74

11.5 Build - Support for Fabrication . 75

11.5.1 Design For Manufacturing Classes . 75

11.5.2 Manufacturing Output Generation 75

11.5.3 Demonstration . 76

11.5.4 Resources . 76

11.6 Execute - Support for Valve Control Programability 77

11.6.1 Demonstration . 78

11.6.2 Sequential Command Examples . 78

11.6.3 Resources . 78

12 Makerfluidics Protocol - SVG Manipulation 79

12.1 Preparing the SVG . 79

12.2 Tool Settings . 80

12.3 Tool-path Generation . 80

Supplementary Material Page 4 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

1 Software

3DµF is entirely built in Javascript, enabling the software to be run entirely on the browser

without the need for an internet connection. The core libraries that powers 3DµF are

paper.js 1 to help it render the design canvas and generate SVG files, and dxf-parser to

help the import of DXF files generated by other tools. Since the Javascript language is not

strongly typed, the 3DµF source code takes advantage of ES6 syntax to allow for more

developer friendly code organization.

Functionality Library

Visualization and SVG Geometries
paperjs

http://paperjs.org/

DXF Deserialization
dxf-parser

https://github.com/gdsestimating/dxf-parser

DXF Shape Generation
graphlib

https://github.com/dagrejs/graphlib

Zip File Generation
jszip

https://www.npmjs.com/package/jszip

Zoombar UI
nouislider, wnumb

https://refreshless.com/nouislider/

https://www.npmjs.com/package/wnumb

Table 1: List of libraries used in 3DµF that are necessary

Since 3DµF is a large project intended to be extendable by the community, the entire

project was written using ES6 syntax to allow for more developer friendly code syntaxes,

object-oriented programming primitives, block scope identifiers, and a simplified import

system. The ES6 Javascript needs to be transpiled into standard Javascript that can be run

by the browser. This is done using the babel compiler https://babeljs.io/. All of the

development infrastructure required

1https://paperjs.org

Supplementary Material Page 5 of 84

http://paperjs.org/
https://github.com/gdsestimating/dxf-parser
https://github.com/dagrejs/graphlib
https://www.npmjs.com/package/jszip
https://refreshless.com/nouislider/
https://www.npmjs.com/package/wnumb
https://babeljs.io/

3DµF- Interactive Design Environment for Microfluidic Devices

2 Parametric Component Library

Figure 1: This figure shows the list of parametric components that are part of the MINT

library. Their function broadly classifies the components: Mix, Distribute, Control and

Process. The figure further illustrates the geometric features that are parametric in the

component specification. Components such as the TRANSPOSER and MUX are composed

of other components and include the parameters used by the individual component. These

components are shown to be enclosed by the rectangular boxes.

In addition to streamlining the design flow, a component based abstraction would allow

for refinement of fabrication processes involved with creating each of the components with

various manufacturing technologies[14]. 3DµF uses a parametric component library where

boolean and numeric parameters define the component geometry. The parametric compo-

nent library was first introduced in ‘Fluigi’[8], a microfluidic design automation tool, and was

expanded to include additional microfluidic components from scientific and microfluidic liter-

ature. It was further extended to include the syntax and semantics to create a self-contained

Microfluidic Hardware Description Language called MINT for describing microfluidics[7].

Supplementary Material Page 6 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

3DµF borrows the design paradigm introduced in MINT along with a subset of compo-

nents. These components are broadly categorized into Mix, Distribute, Control and Process

as described below and seen in Figure 1.

Mix: One of the most fundamental fluid operations in microfluidics is mixing. In order to

effectively mix multiple fluids, various types of mixing components are a part of the

MINT library. They consist of the MIXER[22], GRADIENT GENERATOR[4] and

ROTARY PUMP [26].

Distribute: Components such as CHANNEL, TREE and NET are included as a part of

the MINT library to allow fluids to be transported to various parts of the microfluidic

chip. The PORT primitive is provided to allow for fluids to be transported into and

out of the chip.

Control: mLSI chips require the presence of a large number of valves and constructs

which allow for complex routing of fluids throughout the chip. The components include

MUX [24], VALVE [24], TRANSPOSER[21] and VALVE3D [6].

Process: The components LONG CELL TRAP [18], SQUARE CELL TRAP [3], T DROPLET

GENERATOR[23], FLOW FOCUS DROPLET GENERATOR[23], DIAMOND RE-

ACTION CHAMBER and REACTION CHAMBER perform the device’s primary

functions such as trapping cells, generating droplets and storing biological reagents

and liquids on the chip.

Supplementary Material Page 7 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

Supplementary Material Page 8 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

3 Design Environment

Figure 2: 3DµF’s interface provides the user with a design canvas on which they can place

parametric components, and various tools in the toolbar which allow the user to customize the

placed components, select whether to place the component on the FLOW or the CONTROL

layer and choose how to export the designs.

Supplementary Material Page 9 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

When the user opens 3DµF, they are presented with a design environment as seen in Figure 2.

The design environment consists of four primary elements. Namely, the design canvas, the

primary toolbar hovering on the canvas, the context menu and the windows. Each of these

elements provides the user with the functionality that allows them to design microfluidic

devices. To design a device using 3DµF, the user first selects the layer on which they would

like to work by clicking on the respective button in the layer selection panel as seen in

Figure 2, allowing them to choose between the various FLOW and CONTROL layers. Users

typically start with the FLOW layer to make the functional design and then proceed to

designing on the corresponding CONTROL layer to incorporate valves into the design.

3.1 Design Canvas

The primary UX (user experience) that is central to 3DµF is driven by the large design

canvas that takes up the majority of the screen as seen in Figure 2. The design canvas gives

2D visualizations of the microfluidic designs constructed and illustrates how they would look

when fabricated. 3DµF implements elements of a PCB design editor by displaying the

borders of the device and a grid onto which placements snap automatically. In order to

allow the user to easily edit the device and assist the snapping at various zoom levels, the

design canvas has a built-in adaptive grid. The adaptive grid modifies the grid’s spacing to

5µm, 50µm, 100µm, 500µm, 1000µm based on the user’s zoom level which can be verified

using the label in the bottom right corner of the canvas as seen Figure 2. The user can

modify the grid spacing and enable/disable the adaptive grid by using the toolbar that is

enabled by clicking the Grid Widget on the top right corner of the design canvas as seen in

Figure 2. Additionally, the user can change the zoom level of the canvas by using the zoom

slider as seen in Figure 2.

3.2 Primary Toolbar

3DµF provides all the microfluidic design functionality available to the user in the form of

tool buttons in the Primary Toolbar. This design choice was implemented to help enable easy

access to the essential tools in order to lower the learning curve associated with the tool. The

toolbar consists of buttons that allow the user to place different microfluidic components2 and

feature onto the design canvas. Each of the placement tool buttons has a ’gear’ icon which

when clicked opens up the parameters window to allow the user to adjust the properties of

the component that will be placed onto the design canvas as seen in Figure 2. Additionally,

the toolbar provides the user with options that help them edit the device properties, import

components, make connections, switch design layers and save the design as both the JSON

file or as a Vector Design file (SVG) respectively used in 3DµF or manufacturing.

2The collection of tools can be extended trivially and will be expanded upon user requests and the

extension of the MINT component library. Users can fork the 3DµF repository on Github and extend the

tool collection on their own.

Supplementary Material Page 10 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

3.3 Context Menu

Once placed, the user can replicate, modify and delete elements of the microfluidic design

on the canvas by selecting (using the Select Tool) and then right-clicking on the selected

component to show the context menu as seen in Figure 2. While the context menu typically

allows the user to change the parameters of the component, the component menus, however,

have additional functionality embedded into them in the form of context menu buttons

present in the first row of the menu. Clicking each of the buttons allows the user to Copy,

Delete, Move, Revert Parameters, Change All, Rename or Generate GRID/BANK of the

selected component.

3.4 Tool Windows

While a majority of the user interactions are quite straightforward and require no additional

user input, in order to accommodate additional user inputs for some of the actions, the

context menu buttons and some of the primary toolbar buttons generate additional tool

windows that allow the user to give additional input to the tool as seen in Figure 2.

Supplementary Material Page 11 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

4 Semi-Automated Design Features

Being the first tool (to the best of our knowledge) combining the elements of both schematic

editors from EDA and mechanical engineering CAD tools, the design environment looks like

a WYSIWYG (what you see is what you get) user interface with specialized tools that help

enable the user to construct the device using specialized primitives that allow for design

automation. The strength of 3DµF in comparison to other design tools is when it comes

to the ability to understand and construct a logical model of the device internally while

simultaneously providing the user with a simple interactive user interface to construct the

design.

4.1 Design Primitives

Primitives are the basic building blocks used by design automation tools to abstract the

functional/logical units of the design. The user then constructs the device as a composition

of primitives. 3DµF, like any other design tools takes advantage of various primitives that

abstract the device design. The primitives are namely, LAYER, COMPONENT, CONNEC-

TION and FEATURE. 3DuF internally models the design as a collection of COMPONENTS

linked together with CONNECTIONS. It then understands the function of these primitives

based on the LAYER they belong to. 3DµF models all geometrical artifacts inserted into

the design as FEATURE s in order to accommodate variations made to the logical design

model. By retaining a separate data-structure for representing geometries in the design,

3DµF allows researchers to extend the design models for engineering microfluidics beyond

the COMPONENT and CONNECTION abstraction.

4.2 Parametric Design

One of the most fundamentally important features of 3DµF is the ability to parametrically

design the microfluidic design by encoding the definitions of the library components based

on the parametric dimensions of its principal geometries[7]. 3DµF enables the user to adjust

the parameters of COMPONENTS, CONNECTIONS and FEATURES. It allows users to

revert the component parameters to the inbuilt defaults and propagate the parameters to

all the other components of the same type as seen in Figure 2 via their respective context

menus.

Supplementary Material Page 12 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

5 Mechanical Design Features

3DµF in addition to giving schematic editor-like functionality to the user, also has some

built-in features that help microfluidics designers fine tune the physical characteristics of

the device itself. These features can be used to help the device match different interface

requirements used by various research groups in industry and academia.

5.1 Position and Pattern Tools

The Position and Generate GRID/BANK tools enable the user to adjust the position of the

components placed on the device canvas and generate 1D and 2D arrays (BANK, GRID)

of the component with predefined spacing information. The positioning tool allows the

user to match the position of components and ports to industry-wide standards such as the

96 well plate formats3, or for custom input/output interfacing standards used by different

instruments.

5.2 DXF Support

The Component and Border import features in 3DµF allow for an engineering process that

allows for the integration of the non-standardized components and mounting equipment. En-

gineers can simultaneously work on their favorite CAD tools like AutoCAD or SolidWorks to

design complex geometries and integrate those components into more extensive and complex

device architectures.

5.2.1 DXF Import Examples

Since the DXF designs generated by different tools have variations in coordinate tolerances,

DXF primitive utilization. 3DµF’s support for DXF files is a work in progress. Figure 3 are

some of the examples DXF files that were tested with 3DµF.

Supported DXF Primitives:

• LINE

• POLYLINE

• ARC

• ELLIPSE

• CIRCLE

• LWPOLYLINE

3http://www.slas.org/resources/information/industry-standards/

Supplementary Material Page 13 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

Figure 3: Visualization of DXF Files Imported into 3DµF

5.2.2 Import Modes

3DµF supports the import of DXF files in two modes, outline and filled. 3DµF uses the

DXF importer in the outline mode when the user imports border designs. In this mode,

3DµF translates the DXF geometries into SVG geometries with no fill properties.

When the user imports a custom component, 3DµF imports the geometry in the filled

mode. 3DµF parses through the DXF data and creates a graph G = (V,E) where

V = Geometry V ertices and where E = Connectivity betweenGeometries is computed

by computing exhaustive searching for overlap or juxtaposition to a tolerance of 1nm. Since

each shape in the geometry would form a component in a disconnected graph, each of the

disconnected components is processed individually to recreate the geometry defined in the

DXF file.

3DµF creates a CompundPath (defined in the paper.js drawing library) for each compo-

Supplementary Material Page 14 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

nent and creates a continuous geometry by traversing the Geometry Graph G utilizing the

geometry information stored in each of the vertices V . 3DµF then drawing library’s ability

to automatically generate solid fills for overlapping compound paths to generate the filled

geometry rendering that would be used to manufacture the component. The implementation

can be found in the source code files: /src/app/geometry/geometryEdge.js, /src/app/geom-

etry/geometryGraph.js and /src/app/view/render2D/dxfSolidObjectRenderer2D.js.

Supplementary Material Page 15 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

6 Extending the Component Library

In version 1.1 of 3DµF, the addition of new components to component library requires the

user to perform the following steps:

1. Create the definition of the component in the 3DµF code (Adding a ¡component¿.js

file to /src/app/library/).

2. Register the rendering definitions (Modifying /src/app/view/render2D/featureRenderer2D.js).

3. Create UI Elements in the front-end (Modifying index.html).

4. Register the event handlers for the UI Elements with the Placement Tool (Modifying

/src/app/view/ui/componentToobar.js and /src/app/viewManager.js).

6.1 Creating the Definition

Create the /src/app/library/newComponent.js file containing the definition.

1 import Template from "./template";

2 import paper from "paper";

3

4 export default class NewComponent extends Template{

5 constructor(){

6 super();

7 }

8

9 __setupDefinitions() {

10 ...

11 }

12

13 render2D(params, key) {

14 ...

15 }

16

17 render2DTarget(key, params){

18 ...

19 }

20 }

Populate the definition fields required to by overriding the setupDefinitions() method.

More information on the definitions and the different types of definitions are available at

https://github.com/CIDARLAB/3DuF/wiki/Adding-new-components-v2

Supplementary Material Page 16 of 84

https://github.com/CIDARLAB/3DuF/wiki/Adding-new-components-v2

3DµF- Interactive Design Environment for Microfluidic Devices

1 __setupDefinitions() {

2

3 /*

4 Describes the parameters the positioning too needs to capture

5 */

6 this.__unique = {

7 "<Parameter Name>" : "Point | Segment | String | Point

8 | Integer | Float | Boolean",

9 ...

10 };

11

12 /*

13 Describes the parameters that define the component/feature

14 */

15 this.__heritable = {

16 "<Parameter Name>" : "Point | Segment | String | Point

17 | Integer | Float | Boolean",

18 ...

19 };

20

21 /*

22 Default Values

23 */

24 this.__defaults = {

25 "<Parameter Name>" : "<Value>",

26 ...

27 };

28

29 /*

30 Display string used for the units

31 */

32 this.__units = {

33 "<Parameter Name>" : "<HTML Display String>",

34 ...

35 };

36

37 /*

38 Minimum value for slider in the parameter window

39 */

40 this.__minimum = {

Supplementary Material Page 17 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

41 "<Parameter Name>" : "<Value>",

42 ...

43 };

44

45 /*

46 Maximum value for slider in the parameter window

47 */

48 this.__maximum = {

49 "<Parameter Name>" : "<Value>",

50 ...

51 };

52

53 /*

54 Tool to activate when creating the feature/component

55 */

56 this.__placementTool = "Existing Tools | Custom Tool";

57

58 /*

59 Parameters captured by the tool

60 */

61 this.__toolParams = {

62 "<Parameter Name>" : "<Value>",

63 ...

64 };

65

66 this.__featureParams = {

67 "<Drawing Code Variable Name>" : "<Parameter Name>"

68 ...

69 };

70

71 this.__targetParams = {

72 "<Drawing Code Variable Name>" : "<Parameter Name>"

73 ...

74 }

75

76

77 }

Finally, the user needs to create the drawing code for allowing 3DµF to render the

geometries. render2D() is used for generating the device geometry that is displayed and is

used for fabrication and render2DTarget() is used for generating the translucent geometry

Supplementary Material Page 18 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

that trails the mouse pointer when the component placement is initiated, describing the

target. The drawing utilizes the library paperjs (https://paperjs.org)

6.2 Registering the Definition

In order to enable 3DµF to understand that a new feature has been added, the user needs

to ”register” the new component into the code. This is done by modifying the constructor

in the file: /src/app/featureSets/featureSet.js as shown below.

1 ...

2 import NewComponent from "../library/newComponent";

3

4 export default class FeatureSet {

5 constructor(definitions, tools, render2D, render3D, setString) {

6 ...

7 this.__library = {

8 ...

9 "NewComponent": {"object": new NewComponent(), "key":"FLOW" },

10 "NewComponent_control": {"object": new NewComponent(),

11 "key":"CONTROL"}

12 };

13 ...

14 }

6.3 Create UI Element

In order to add a new button to the 3DµF user interface, the user must include a new

HTML button set into the UI. The following snippet should be added into /index.html.

1 <div id="button_drawer" class="mdl-layout__drawer">

2 ...

3 <nav class="mdl-navigation" id="<feature-??>">

4 ...

5 <div class="button_row">

6 <a id="newComponent_button" class="mdl-button mdl-js-button

7 mdl-js-ripple-effect mdl-button--raised feature-button">Mixer

8 <button id="newComponent_params_button" class="params-button

9 mdl-button mdl-js-button mdl-button--icon">

10 <i class="material-icons">settings</i>

11 </button>

Supplementary Material Page 19 of 84

https://paperjs.org

3DµF- Interactive Design Environment for Microfluidic Devices

12 </div>

13 ...

14 </nav>

15 ...

16 </div>

6.4 Registering the Event Handlers

In order to register the event handlers for the button and to enable the activation of the

corresponding placement tool many additions need to be made to the file /src/app/view/ui/-

componentToolBar.js.

6.4.1 Query Selectors

Create a reference field inside the ComponentToolBar object with the button ID used in the

modified HTML (both tool and params).

1 export default class ComponentToolBar{

2 constructor(viewmanagerdelegate){

3 ...

4 this.__newComponentButton =

5 document.getElementById("newComponent_button");

6 ...

7 this.__newComponentParams =

8 document.getElementById("newComponent_params_button");

9 ...

10

11 this.buttons = {

12 ...

13 "NewComponent" = this.__newComponentButton,

14 ...

15 }

16 }

17

18 ...

19 }

6.4.2 Event Handlers

Now set up the ’click’ event handlers.

Supplementary Material Page 20 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

1 __setupEventHandlers() {

2 this.__newComponentButton.onclick = function() {

3 Registry.viewManager.activateTool("NewComponent");

4

5 ref.setActiveButton("NewComponent");

6 ref.__viewManagerDelegate.switchTo2D();

7 };

8 }

9

10 __setupParamButtonEventHandlers() {

11 this.__newComponentParams.onclick =

12 ComponentToolBar.getParamsWindowCallbackFunction("NewComponent",

13 "Basic");

14 }

6.4.3 Tool Association

Now that the event handlers are set up we need to link the event handler to the UX tool

that performs the placement; this is done by modifying the /src/app/viewManager.js where

we instantiate the placement tool for each type of component that is selected. This can

be of the type MultilayerPositionTool or ComponentPositionTool or CellPositionTool or a

user-defined positioning tool.

1 setupTools() {

2 ...

3 this.tools["NewComponent"] = new MultilayerPositionTool();

4 ...

5 }

Supplementary Material Page 21 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

7 Interchange Format

7.1 Overview

Figure 4: This figure is a representation of the overall schema used for describing the

microfluidic devices.

One of the primary hurdles in technology transfer and research repeatability has been the

standard for information exchange of microfluidics designs, especially in academic literature.

Most works only include photographs of the microfluidic device with colored fluids and

schematics have missing feature dimensions that are usually critical in order to replicate the

design functionality. Even in cases where CAD designs are available, it takes manual effort to

separate individual geometries and strokes that constitute a drawing from the CAD design,

and the designs are not easily modifiable for reuse. As a part of this paper, we are also

implementing a standard interchange format for displaying devices on visual editing tools.

The interchange file is encoded in JSON4 format, making the files generated by 3DµF both

4JSON (Javascript Object Notation) is a plain-text notation for describing data structures. It has parsing

Supplementary Material Page 22 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

human readable and accessible to any other CAD tool that intends to utilize the microfluidic

design made using 3DµF.

The interchange format is specified in the JSON format and the major fields that con-

stitute the design are the Components, Connections, Layers and Features. These can be

further segregated by their intended function, i.e., for design automation or visualization.

Figure 4 is a visualization of how all of the fields can be organized.

The Features field contains a set of Layer Collections. In turn, each Layer Collection

contains a set of Feature objects. Each feature object contains the information necessary for

manufacturing the geometries that need to be rendered on the artwork file. It is the artwork

file (e.g., SVG) that would be used in the subsequent manufacturing process.

7.2 Feature Object

The feature object encapsulates the geometries that are manufactured. They contain vital

information that is necessary for tools to generate artwork files for each of the layers that

would be manufactured. Each object contains attributes that are necessary for describing

the geometry and helping the rendering and artwork generation tool realize the design.

Figure 5: This figure shows the minimal definition of the Feature object. Each of the

attributes that are a part of this definition is vital to render the feature correctly.

The attributes shown in Figure 5 is the specified minimal definitions that are necessary

for rendering the feature both in the artwork file and for visual tools such as 3DµF. The id

attribute contains the unique identifier for each of the feature that can be used to identify in-

dividual features that need to be modified when automated design rule checks are performed.

The macro is a string that tells the software tool how to draw the geometry from the params

provided with the feature. Finally, the type attribute contains one of the following values:

EDGE, XY, XYZ, Z (described in table 16). Each of the different values signifies how

the tool would group the features to generate the artwork files.

libraries available in all major programming languages

Supplementary Material Page 23 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

8 Parametric Design Engineering

When designing analog integrated circuits, engineers first design the architecture of the

circuit where they determine the different components and the connection topologies that

perform the desired function. After completing the design of the architecture, they then

adjust the electronic parameters of each of these components by adjusting their physical

dimensions5. Since the functionality of a microfluidic component is dependent on its geome-

try, it is possible to parameterize the geometry of the microfluidic components. Automated

design tools allow the engineer to tweak the functionality, the operation and the performance

of the microfluidic design by varying each of the parameters. By composing the entire design

with parametric components and connections, it is possible to design and test large complex

design spaces by implementing the design of experiments methods used in [19].

Parameters capture the intent of the component designer, who considers how the varia-

tions of the parameters would continue to produce the intended effect. The capture of the

’intent’ is fundamentally important when designing a standardized components library. The

process of constructing device designs with parameters require the designer to incorporate

individual parameters to each geometry that is drawn on the canvas. As the size of the

design increases and the geometries are joined, all the parameters on individual geometries

become interdependent. Typical designs require the designer to revisit how the parameters

on the individual geometric feature are defined to ensure that the design does not become

overconstrained. This also increases the burden on component designers to carefully pick the

component parameters that would minimize the risk of over-definition. 3DµF eliminates the

sources of most of these issues by atomically generating the individual component geometries

based on the parameters used to define the component’s functionality and dimensions.

8.1 Effort Metrics

In order to formally evaluate the effort of the engineer designing the microfluidic device, we

introduce and utilize a quantitative measurement to quantify the effort involved with the

design process called Effort (measured in actions). Since each microfluidic device design

might vary vastly, we first break down the process of designing each type of component. The

various steps involved with designing components can be assigned to two broad categories.

Namely, Design Effort and Parameterization Effort. The total effort involved in creating

each component is defined in Equation (1).

EPrimitive = EDesign + EParameterization (1)

The Effort metrics are a heuristic metric that approximate the effort involved in designing

a device. They are not an exact quantification of the design process. By tuning the values

used in Table 5 and Table 4 one can increase the accuracy of the quantification. We selected

5The electronic properties of integrated circuit components are determined by their material properties

which in turn depend on the dimensions of the features on the semiconductor substrate.

Supplementary Material Page 24 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

each of the costs for this study from user experiences drawing geometries with CAD tools

and examining the complexity of the drawing routines in the 3DµF code. Readers are

encouraged to utilize the spreadsheet provided in the SI and generate the Effort metrics

with different cost values.

8.1.1 Design Effort

Design Effort - CAD Tools The Design Effort encapsulates all steps typically involved

with generating designs. The steps and the associated variables used to quantify the effort

can be seen in Table 2.

Step Description Design Effort Variable Symbol

1. Creating the base design6 Base Cost CBase

2. Replicating the base design Procedural Scaling Formula fProcedural(X)

3. Scaling the design Scale Factor X

Table 2: Design Effort - CAD Tools

EDesign = CBase × fProcedural(X) (2)

Design Effort - 3DµF Since 3DµF is built with tools that automatically create the

component geometry with a single action. Hence it can be seen that EDesign = 1.

8.1.2 Parameterization Effort

Parameterization Effort - CAD Tools The Parameterization Effort encapsulates all the

steps typically involved with making the geometry parametric. The steps and the associated

variables used to quantify the effort can be in Table 3.

Step Description Design Effort Variable Symbol

– Geometric Parameters Defining the Geometry Number of Parameters NParams

1. Identification of Orthogonal Parameters Identification Cost CIdentification

2. Setting Geometry Constraints in Tool Setting Constraint Cost CConstraint

3. Setting Parameter Values Set Value Cost CV alue

Table 3: Parameterization Effort - CAD Tools

EParameterization = CIdentification +NParams(CConstraint + CV alue) (3)

6This is usually equivalent to the number of vertices or the total number polygons in the geometry

Supplementary Material Page 25 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

Parameterization Effort - 3DµF Since 3DµF is built with tools that procedurally

generate the component geometry, the geometries are inherently parameterized, and the

user is only burdened with the task of setting the values as seen in Equation (4).

EParameterization = NParams × (CIdentification(Simple) + CV alue) (4)

8.1.3 Constants and Assumptions

Base Drawing Cost (CBase The Base Drawing Cost is the cost (# of actions) required

to draw the basic geometry on the design canvas, this is especially useful when dealing with

geometries that have repeating geometry, since we calculate the total cost by multiplying

the CBase by the scaling factor fProcedural. The base costs used for the different components

in this manuscript are given in Table 6. Since there might be variations in how a designer

might construct the design, we took approximated the number of actions to be the number

of vertices/base polygons the user would have to create and merge to create the geometry.

Note: This is an approximation.

Value Setting Cost (CV alue) The Value Setting Cost is the cost (# of actions) involved

in setting the correct numerical value of the parameter to the geometric constraint. The

value chosen for CV alue in this manuscript is given in Table 4. The value 1 was chosen

because it would take the user approximately 1 action to select and set the numerical value

of the constraint.

Constraint Creation Cost (CConstraint) The Constraint Creation Cost is the cost (# of

actions) involved in setting the geometric constraint to a given set of vertices/lines/polygon

in the drawing canvas. The value chosen for CConstraint in this manuscript is given in Table 4.

The value 4 was chosen because it would take the user approximately 4 actions to set a

geometric constraint, namely: Activate the tool, Identify and Select 2 vertices/edges, setting

the initial value/parametric variable.

Cost Symbol Value

Value Setting Cost CV alue 1

Constraint Creation Cost CConstraint 4

Table 4: Parameteric Design Costs

Identification Cost (CIdentification) The variable Identification Cost (CIdentification) which

involves the designer to identify orthogonal parameters that do not get disturbed by design

operations that are typically performed by the designer. Since the process of identification is

subject to vary for each, conservative estimates were determined for components of different

Supplementary Material Page 26 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

complexity, and their respective classification in design and parametrization geometry is

shown in Table 5 and Table 6 respectively.

Description of Complexity Class CIdentification

Predefined parameter Simple 1

Geometries consisting of a single closed shape Nominal 10

Geometries consisting of multiple closed shapes Composite 20

Geometry that repeats geometries Linear 20

Geometry that procedurally repeats geometries Polynomial 40

Table 5: Identification Costs used for CIdentification

Component CIdentification Class fProcedural Formula Base Cost NParams

Mixer 20 n 6 4

Rotary Mixer 20 – 15 5

Gradient Generator 40 n2 6 5

Valve 1 – 2 2

Valve3D 10 – 3 5

Transposer 20 – 25 5

Mux 40 n2/2 8 7

Reaction Chamber 1 – 1 2

Diamond Chamber 10 – 6 3

Long Cell Trap 20 n 2 5

Square Cell Trap 10 – 6 3

Port 1 – 1 1

Channel 1 – 1 1

Tree 40 n2/2 4 4

Droplet Generator 10 – 8 6

Table 6: Drawing, Parameterization Complexity and Base Drawing Costs

Supplementary Material Page 27 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

Figure 6: Screenshot of the Design Effort Excel Sheet (part of the supporting data)

Supplementary Material Page 28 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

8.2 Design Effort of a MIXER

In order to compute the component Effort required for drawing the mixer, we compute the

EDesign defined by Equation (2) and the EParameterization defined by Equation (4) separately

and then compute the total Effort (EPrimitive) defined by Equation (1).

8.2.1 Design Effort (EDesign)

The steps shown below follow the procedure followed in Table 2

Step 1. In order to compute the effort required to design the device, we first compute the

effort required to create the base of the design which we need to replicate. This value is

captured in the term CBase. We can get the value 6 actions for CBase from Table 6.

Step 2. Now that have computed the CBase, we now compute the scaling factor fProcedural

for a MIXER of 8 bends. The term fProcedural captures how many times the base geometry

is repeated and hence would have to be recreated by the user. Since different kinds of

components have different levels of complexity in replication, fProcedural is defined a function

f(X) where X = replicates. Since the complexity of the MIXER is linear, we set f(X) = X

as given in Table 6. For the given value of X = 8, the scaling factor can be computed to be

8.

Subtotal: Hence, we can compute the EDesign defined by Equation (2) to be 48 actions.

8.2.2 Parameterization Effort (EParameterization)

Step 1. The first step in parameterization is the identification of the parameters and

understanding which dimensions should be constrained. In order to capture the identification

costs for a mixer we take the value given in Table 6 for the MIXER which is 20 actions .

Step 2. The second step in parameterization is the Effort required to add the geometric

constraints in a CAD tool. We compute this by multiplying the number of parameters

NParams (Table 6) with the constraint cost CConstraint given in Table 4. This gives us the

value of 16 actions.

Step 3. The third step in the parameterization is to set the actual value of the parameter,

since the CV alue = 1 action (Table 4, the cost for this step would be 4 actions.

Subtotal: Hence the subtotal of EParameterization is 40 actions

Total: Hence the subtotal of EPrimitive is 88 actions (defined by Equation (1)).

Supplementary Material Page 29 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

9 Case Study 1 - Devices from Literature

In order to show the capability of 3DµF , nine designs from the literature were chosen

to be replicated and fabricated using 3DµF. This section contains a more detailed look at

the designs that were fabricated and the associated analysis that was done using ImageJ to

demonstrate the veracity of the designs specified in 3DµF. All of the design files are available

at https://cidarlab.github.io/3DuF-Paper-Designs/.

Comprehensive Component Library Most system designers typically use a standard

set of components when designing devices because it allows them to leverage their experience

with specific geometries when dealing with unexpected behaviors. As can be seen in Figure 7,

devices used for vastly different LoC applications along with their control infrastructure could

be recreated using the standard set of components in 3DµF.

Custom Component Features In scenarios where specific custom geometries were re-

quired (single cell trap in Figure 7 F), the custom geometries were imported as custom

components via the DXF import feature present in 3DµF. In order to address the issue

where some of the designs are usually composed of just channels (Figure 7 D), 3DµF was

modified to be able to create ad-hoc custom components out of a selection of FEATUREs,

CONNECTIONs, and COMPONENTs. However, the most significant benefit of using the

component library was the availability of components whose geometries are procedurally

generated like those in MIXER (Figure 7 B, C) and TREE (Figure 7 I).

Supplementary Material Page 30 of 84

https://cidarlab.github.io/3DuF-Paper-Designs/

3DµF- Interactive Design Environment for Microfluidic Devices

9.1 Device Descriptions

Figure 7: This figure contains recreations of the microfluidic chips from literature. They are :

A) Quake Droplet Generator [25] B) Kobayashi Hydrogenation Chip [10] C) Nozzle Droplet

Generator Chip [11] D) A single microchemostat unit [1] E) Dynamic Signaling Chip [27]

F) Daridon Single Cell Trap [28] G) Kinase Radioassay Chip[5] H) Cell-Microenvironment

Chip [15] I) Oligonucleotide Synthesis Chip[13]

Device 1.1 - Quake Droplet Generator This design as seen in Figure 7 (A) was

referenced from the paper by Thorsen et. al. [25]. The design consists of a single droplet

generator that was constructed by intersecting two perpendicular channels, in practice, many

different droplet generators can be arrayed in a line to generate samples from multiple

reagents. Engineers can modify the rate of droplet generation and the droplet size by varying

the widths and heights of both the channels that constitute the droplet generator.

Device 1.2 - Kobayashi Hydrogenation Chip The Kobayashi Hydrogenation chip as

seen in Figure 7 (B) is an example of a device that from literature [10] that is used for organic

compound synthesis and shows the potential of 3DµF to create the devices using a set of the

curved mixers. The user can modify the reaction area and volumes for specific reactions by

Supplementary Material Page 31 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

just modifying the parameters of the component. However one of the drawbacks of design

is that the specialized surface used for the reaction cannot be specified in the tool.

Device 1.3 - Nozzle Droplet Generator Chip The Nozzle Droplet Generator [11] as

seen in Figure 7 (C) is an example of a device that generates droplet at different sizes and

frequency based on the geometry of the nozzle that initiates the droplet generation process.

Users can easily vary the frequency and rates of droplet generation by changing geometric

parameters.

Device 1.4 - Microchemostat Unit This device, as seen in Figure 7 (D) is a reproduction

of a single functional unit as seen in the paper by Balagadde et al. [1]. This design is

also a good example that shows the difficulty in designing devices that require replicated

subunits that need to be automatically parameterized when tuning the performance of the

device. Currently, 3DµF does not support the automated parameterization of these subunits,

future versions of 3DµF would introduce algorithms that will compute parameters for both

imported geometries and selected microfluidic subunits.

Device 1.5 - Dynamic Signaling Chip The Dynamic Signaling chip as seen in Figure 7

(E) is a reproduction of the device published by Wang et al. [27]. Since 3DµF stores, the

internal connections and the valving between reaction chambers, future control automation

algorithms can leverage the availability of this information along with the detailed geometric

parameters that are used to generate valve control and timing sequences that can be used

in executing complex protocols.

Device 1.6 - Daridon Single Cell Trap This device as seen in Figure 7 (F) is a

reproduction of the device published in the paper by Wheeler et al. [28]. Since the single cell

trap utilized by this device is unique the functioning of the corresponding assay, the single

cell trap is implemented by importing the DXF design of the trapping chamber. Many of the

devices in the literature that works with cells have unique geometries and designs that take

advantage of both fluid mechanics and particle motion when subjected to unique operating

conditions; hence the user can take advantage of the DXF import functionality for unique

components that are impractical to implement into 3DµF.

Device 1.7 - Kinase Radioassay Chip The device seen in Figure 7 (G) was designed for

performing the Kinase Radioassay [5] the device was one of the harder devices to reproduce

since it uses channels of different widths throughout rather than take advantage of reaction

chamber components, since some of the valves as sieve and pump valves which are currently

not a part of the standard component library. This design is but one of the examples that

is representative of the lack of standardization of the parts, formalization of the components

and their functionalities. By standardizing these components, the debugging and integration

Supplementary Material Page 32 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

challenges associated with incorporating these functions into a device can be mitigated

systematically.

Device 1.8 - Cell-Microenvironment Chip The Cell-Microenvironment chip as seen

in Figure 7 (H) was easily reproduced using 3DµF since the design only consists of Ports,

Channels, Valves, and reaction chambers. While the network was tedious to build using

3DµF, future algorithmic extensions would help engineers to scale the complexity of device

with minimal effort quickly.

Device 1.9 - Oligonucleotide Synthesis Chip The device represented in Figure 7 (I),

though it seems complicated is easy to reproduce using Trees. The entire design can be

scaled to accommodate a more significant number of synthesis chambers by just changing a

single parameter on the Tree component.

Supplementary Material Page 33 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

9.2 Milled Devices

Figure 8: Quake Droplet Generator - Top: 3DµF Design Bottom: Milled Device

Supplementary Material Page 34 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

Figure 9: Kobayashi Hydrogenation Chip - Top: 3DµF Design Bottom: Milled Device

Supplementary Material Page 35 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

Figure 10: Nozzle Droplet Generator - Top: 3DµF Design Bottom: Milled Device

Supplementary Material Page 36 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

Figure 11: Daridon Single Cell Chip - Top: 3DµF Design Bottom: Milled Device

Supplementary Material Page 37 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

Figure 12: Dynamic Signaling Chip - Top: 3DµF Design Bottom: Milled Designs

Supplementary Material Page 38 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

Figure 13: Cell Microenvironment Chip - Top: 3DµF Design Bottom: Milled Device

Supplementary Material Page 39 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

Figure 14: Oligonucliotide Synthesis Chip - Top: 3DµF Design Bottom: Milled Device

Supplementary Material Page 40 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

9.3 Designs Website

Each of the design presented in the paper is available for editing via https://cidarlab.

github.io/3DuF-Paper-Designs/

Figure 15: Preview of the website

9.4 Effort Calculation Script

The script used for calculating the efforts for the benchmark is available at https://github.

com/CIDARLAB/3DuF-Paper-Designs/blob/master/characterize/benchmarkefforts.py

Supplementary Material Page 41 of 84

https://cidarlab.github.io/3DuF-Paper-Designs/
https://cidarlab.github.io/3DuF-Paper-Designs/
https://github.com/CIDARLAB/3DuF-Paper-Designs/blob/master/characterize/benchmarkefforts.py
https://github.com/CIDARLAB/3DuF-Paper-Designs/blob/master/characterize/benchmarkefforts.py

3DµF- Interactive Design Environment for Microfluidic Devices

10 Case Study 2 - Modular System Design

Figure 16: Overview of the different devices created using 3DµF for the MARS project.

Each of the devices shown in the paper can be found online on the paper’s associated website,

https://cidarlab.github.io/3DuF-Paper-Designs/. Additional information along with the

artwork files, 3DµF designs, and the demonstration videos can be seen on the 2017 Boston

University iGEM Hardware team http://2017.igem.org/Team:BostonU_HW/Demonstrate.

The links to the specific pages for each of the devices is given in Table 7.

Name Info Video

1 Cell Sorting http://2017.igem.org/Team:BostonU_HW/Isolation Yes

2 Antibiotic Resistance http://2017.igem.org/Team:BostonU_HW/Antibiotic No

3 Cell Ligation http://2017.igem.org/Team:BostonU_HW/Ligation No

4 DNA Digestion http://2017.igem.org/Team:BostonU_HW/Digestion No

5 Cell Lysis http://2017.igem.org/Team:BostonU_HW/Lysis Yes

6 Fluorescence http://2017.igem.org/Team:BostonU_HW/Fluorescence No

7 Cell Transformation http://2017.igem.org/Team:BostonU_HW/Transformation Yes

Table 7: MARS Devices

10.1 Discussion

All 9 MARS modular microfluidic chips were fabricated using the Makerfluidics [20] pro-

tocol. In brief, SVG design files are generated using 3DµF. Using the CNC mill and its

accompanying software, the designs are etched onto polycarbonate pieces, creating the flow

and control layers. A thin piece of PDMS (Polydimethylsiloxane) is inserted between the

Supplementary Material Page 42 of 84

https://cidarlab.github.io/3DuF-Paper-Designs/
http://2017.igem.org/Team:BostonU_HW/Demonstrate
http://2017.igem.org/Team:BostonU_HW/Isolation
http://2017.igem.org/Team:BostonU_HW/Antibiotic
http://2017.igem.org/Team:BostonU_HW/Ligation
http://2017.igem.org/Team:BostonU_HW/Digestion
http://2017.igem.org/Team:BostonU_HW/Lysis
http://2017.igem.org/Team:BostonU_HW/Fluorescence
http://2017.igem.org/Team:BostonU_HW/Transformation

3DµF- Interactive Design Environment for Microfluidic Devices

properly-aligned layers. The edges of the device are clamped together using binder clips,

and the assembled chip is then desiccated. Once desiccated, the chip can be tested.

While useful for rapid and inexpensive iteration, Makerfluidics [20] has design and man-

ufacturing limitations. Chip feature sizes and depths are limited by available end mills. The

lack of permanent bonding of PDMS and polycarbonate means that chips have a vulnerable

seal that can be prone to leakage. This is most often seen in chips containing valves, as

PDMS is being stretched, leaving small areas for the liquid to penetrate during valve manip-

ulation. Overcoming and adapting to these limitations is integral to the microfluidic design

process. Furthermore, in practice, the manufacturing protocols vary between manufacturers

and research labs. Hence, adapting microfluidic concepts to new manufacturing protocols is

part of the standard design process.

The MARS Transformation Chip, as seen in Figure 16 went through 2 significant concep-

tual design changes. The initial design was a modified reproduction of the device published

by Hui et al. [16] which utilizes metering and a peristaltic pump to measure and mix exact

proportions of liquids. The metering functionality was isolated and replicated, as transfor-

mation requires accurate proportions of plasmid to cells. However, there were difficulties

in replicating the original design. Since 3DµF was not capable of replicating the original

devices circular design, a modified square design was used instead. The distance between

valves created air gaps in the liquid, decreasing the accuracy of the measurements. Sealing

limitations meant that the devices clustered valves, integral to the metering functionality,

were also accompanied by leakage issues.

The second major design attempted to improve and build upon the metering functionality

and to overcome manufacturing limitations. Instead of a circular/square shape, the metering

section was redesigned to be linear. Valves were relocated to reduce air gaps. Smaller ports

were used to reduce leaking. A time-dependent-mixer was added to perform heat-shock

transformation for precisely 30 seconds. Pressure drops caused by square mixers required

them to be replaced by curved mixers. In total, the device would measure the correct volumes

of plasmid and cells, mix them, then perform heat-shock based transformation. However,

the manufacturing process created the additional design and testing limitations. Feature

size limitations meant that valves could not be as small as desired. Sealing limitations

meant that the clustered valves continued to experience significant leakage. The design

underwent continuous iteration regarding valve shape, size, depth, location, and distance.

Over 20 iterations were dedicated to modifying valves. While leakage persisted through

all iterations, the severity was able to be decreased. Leakage associated with valves also

rendered time-dependent-mixers unreliable.

The significant design challenge in this device was adapting an established microfluidic

concept to a new manufacturing protocol with different limitations. The final device is

tentatively functional. It can, in theory, perform metering and time-dependent-mixing, but

unreliable. Leakage is the primary issue still encountered limiting its functionality. Because

of this persistent issue, heating elements have also not been tested in this device.

Supplementary Material Page 43 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

10.2 Transformation

Bacterial transformation is a commonly used protocol in synthetic biology. It can be used

for a variety of functions, such as testing whether or not a genetic circuit is functional.

Transformation allows bacterial cells, such as Escherichia coli, to take in and express external

DNA fragments. Transformation consists of heat shock to damage cells and promote the

taking up of external plasmids, recovery to prevent cells from dying, and a final culturing.

From there, cells are analyzed.

This device underwent roughly four significant conceptual design changes, each with

multiple design iterations and varying component parameters. Itemize evolved throughout

four months. At each iteration, the designs were manufactured and tested for their functional

correctness. The first design was dropped when the team realized that the shared inputs in

the design allowed for contamination via diffusion and that the large chambers in the design

often trapped air bubbles. The second iteration tried to implement a continuous flow system

that addressed the issue of air bubbles.

Further testing showed that a significant impediment to the design was that it was difficult

to dispense the correct reagent quantities necessary for the assay. In order to address the

issue of metering the right amounts of fluids, we decided to adopt the metering system used

in [16]. The rectangular design was discarded after four design iterations and adapted into a

staged design to accommodate syringe pumps instead of the peristaltic pump design utilized

in the original paper.

10.2.1 Chip Design

This microfluidic chip is designed to perform transformation. Suspended cells and plasmid

are metered on the chip and are then mixed together. The solution then undergoes heat

Supplementary Material Page 44 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

shock in a time-dependent mixing element for exactly 30 seconds. The solution can then be

pipetted out from the chip into a recovery tube on ice.

10.2.2 Design Layers

Supplementary Material Page 45 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

10.2.3 Inputs and Outputs

Name Liquid Flow Rate

A Mineral Oil
0.5 mL/hour (metering)

0.835 mL/hour (pushing)

B
Plasmid

Represented by black colored water
0.5 mL/hour

C
Cell Suspension

Represented by red colored water
0.5 mL/hour

Table 8: Inputs

Name Liquid

A Excess Mineral Oil

B Excess Plasmid

C Excess Cell Suspension

D Final Output

Table 9: Outputs

Supplementary Material Page 46 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

10.2.4 Protocol

Setup

1. Prepare 7 syringes

(a) 1 filled with black colored water

(b) 1 filled with red colored water

(c) 1 filled with mineral oil

(d) 3 empty 3 mL control syringes

2. Attach your syringe containing mineral oil to Input A

3. Attach your syringe containing black colored water to Input B

4. Attach your syringe containing red colored water to Input C

5. Attach your waste output tubing to Outputs a, b, and c; this liquid will be excess fluid

6. Attach your output tubing to Output d; this tube should connect to an eppendorf or

other small collection receptacle located in a cold water bath

7. Attach three separate control syringes to Control 1, Control 2, and Control 3

8. If a heating element is being utilized, ensure this element is turned on and at the

correct temperature

Supplementary Material Page 47 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

Figure 17: Left - Liquids filling up the metering section Right; Right - Pushing & Mixing of

metered liquids

Execution

1. Open Control 1, then Control 2; you should feel significant resistance while you open

these control valves

2. Begin flowing your mineral oil, black colored water, and red colored water at flow rates

of 0.5 mL/hour each

3. Once the mineral oil, red colored water, and blue colored water have filled their meter-

ing sections and have begun filling the output port, ensure all of their syringe pumps

have been turned off

4. Close Control 1, pause, then close Control 2

5. Open Control 3

6. Flow the mineral oil again at 0.835 mL/hour

7. The oil will push and mix the two colored waters

Supplementary Material Page 48 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

Figure 18: Sketch annotating the component names used for the device

Sequential Instructions All time units are in s.

1 SET va1 OPEN

2 SET vb1 OPEN

3 SET vb2 OPEN

4 SET va2 OPEN

5 SET vc OPEN

6 WAIT 150

7 SET va1 CLOSE

8 SET vb1 CLOSE

9 WAIT 2

10 SET va2 CLOSE

11 SET vb2 CLOSE

12 SET vc CLOSE

13 WAIT 2

Supplementary Material Page 49 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

14 SET vp1 OPEN

15 SET vp2 OPEN

16 SET vp3 OPEN

17 WAIT 200

18 SET vp1 CLOSE

19 WAIT 2

20 SET vp2 CLOSE

21 WAIT 2

22 SET vp3 CLOSE

Supplementary Material Page 50 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

10.3 Ligation

Ligation is a commonly used protocol in synthetic biology. In molecular cloning ligation is

the process by which external DNA is inserted into a vector DNA, often a plasmid, using the

enzyme DNA ligase. The newly formed DNA, or recombinant DNA, can then be analyzed

or transformed.

Molecular cloning ligation is the process by which external DNA is inserted into a vector

DNA, often a plasmid, using the enzyme DNA ligase. The newly formed DNA, or recombi-

nant DNA, can then be analyzed or transformed. In this device, the T4 DNA Ligase Buffer,

vector DNA, insert DNA, water, and T4 DNA Ligase are metered on the chip and are then

mixed. The solution then undergoes incubation, after which the recombinant DNA solution

can be pipetted out from the chip and used in further molecular cloning procedures

10.3.1 Chip Design

This microfluidic chip is designed to perform ligation. T4 DNA Ligase Buffer, vector DNA,

insert DNA, water, and T4 DNA Ligase are metered on the chip and are then mixed together.

The solution then undergoes incubation, after which the recombinant DNA solution can

pipetted out from the chip and used in further molecular cloning procedures.

Supplementary Material Page 51 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

10.3.2 Design Layers

10.3.3 Inputs and Outputs

Supplementary Material Page 52 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

Name Liquid Flow Rate

A Mineral Oil 0.5 mL/hour

B T4 DNA Ligase Buffer 0.5 mL/hour

C Vector DNA 0.5 mL/hour

D Insert DNA 0.5 mL/hour

E Nuclease-free water 0.5 mL/hour

F T4 DNA Ligase 0.5 mL/hour

Table 10: Inputs

Name Liquid

A Excess Mineral Oil

B Excess T4 DNA Ligase Buffer

C Excess Vector DNA

D Excess Insert DNA

E Excess Nuclease-free water

F Excess T4 DNA Ligase

G Final Output

Table 11: Outputs

10.3.4 Protocol

Setup

1. Prepare 10 syringes

(a) 5 filled with different colored water

(b) 1 filled with mineral oil

(c) 3 empty 10 mL control syringes

2. Attach your syringe containing mineral oil to Input A

3. Attach the remaining colored water syringes to inputs B-F

4. Attach your waste output tubing to Outputs a-f; this liquid will be excess fluid

5. Attach your output tubing to Output g; this tube should connect to an Eppendorf or

other small collection receptacle

6. Attach three separate control syringes to Control 1, Control 2, and Control 3

7. If a heating element is being utilized, ensure this element is turned on and at the

correct temperature

Supplementary Material Page 53 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

Execution

1. Open Control 1, then Control 2; you should feel significant resistance while you open

these control valves

2. Begin flowing your mineral oil and all colored waters at flow rates of 0.5 mL/hour each

3. Once the mineral oil and colored waters have filled their metering sections and have

begun filling the output port, ensure all of their syringe pumps have been turned off

4. Close Control 1, pause, then close Control 2

5. Open Control 3

6. Flow the mineral oil again at 0.5 mL/hour

7. The oil will push and mix the two colored waters

8. When the colored water has moved into the mixer and has begun crossing the final

valve, turn off the mineral oil syringe pump

9. Close Control 3

10. Incubate for the required amount of time, depending on the specific protocol

11. Open Control 3

12. Flow the mineral oil again at 0.5 mL/hour until all the colored liquid has been pushed

out

13. Collect all of the output colored liquid in your designated receptacle

Supplementary Material Page 54 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

Sequential Instructions All time units are in s.

Figure 19: Sketch annotating the component names used for the device

1 SET va1 OPEN

2 SET vb1 OPEN

3 SET vc1 OPEN

4 SET vd1 OPEN

5 SET ve1 OPEN

6 SET va2 OPEN

7 SET vb2 OPEN

8 SET vc2 OPEN

9 SET vd2 OPEN

10 SET ve2 OPEN

11 WAIT 100

12 SET va1 CLOSE

13 SET vb1 CLOSE

14 SET vc1 CLOSE

15 SET vd1 CLOSE

16 SET ve1 CLOSE

17 WAIT 2

18 SET va2 CLOSE

19 SET vb2 CLOSE

20 SET vc2 CLOSE

21 SET vd2 CLOSE

Supplementary Material Page 55 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

22 SET ve2 CLOSE

23 WAIT 2

24 SET vp1 OPEN

25 SET vp2 OPEN

26 SET vp3 OPEN

27 SET vp4 OPEN

28 SET vp5 OPEN

29 SET vp6 OPEN

30 SET vp7 OPEN

31 SET vp8 OPEN

32 WAIT 250

33 SET vp1 CLOSE

34 SET vp2 CLOSE

35 SET vp3 CLOSE

36 SET vp4 CLOSE

37 SET vp5 CLOSE

38 SET vp6 CLOSE

39 SET vp7 CLOSE

40 SET vp8 CLOSE

41 WAIT 3600

42 SET vp1 OPEN

43 SET vp2 OPEN

44 SET vp3 OPEN

45 SET vp4 OPEN

46 SET vp5 OPEN

47 SET vp6 OPEN

48 SET vp7 OPEN

49 SET vp8 OPEN

50 WAIT 120

51 SET vp1 CLOSE

52 SET vp2 CLOSE

53 SET vp3 CLOSE

54 SET vp4 CLOSE

55 SET vp5 CLOSE

56 SET vp6 CLOSE

57 SET vp7 CLOSE

58 SET vp8 CLOSE

Supplementary Material Page 56 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

10.4 DNA Digest

DNA digestion, or DNA fragmentation, is typically performed before analysis of the DNA

sequence, or in order to perform further protocols. Restriction enzymes are mixed and then

incubated with DNA in a buffer solution. This yields DNA fragments cleaved at specific

sites according to the enzymes used.

10.4.1 Chip Design

This microfluidic chip is designed to perform ligation. T4 DNA Ligase Buffer, vector DNA,

insert DNA, water, and T4 DNA Ligase are metered on the chip and are then mixed together.

The solution then undergoes incubation, after which the recombinant DNA solution can

pipetted out from the chip and used in further molecular cloning procedures.

Supplementary Material Page 57 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

10.4.2 Design Layers

10.4.3 Inputs and Outputs

Supplementary Material Page 58 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

A Mineral Oil 0.5 mL/hour

B DNA Suspension 0.5 mL/hour

C Buffer and Enzyme Solution 0.5 mL/hour

D Water 0.5 mL/hour

Table 12: Inputs

Name Liquid

A DNA Fragments in Suspension

Table 13: Outputs

10.4.4 Protocol

Setup

1. Prepare 8 syringes

(a) 3 containing coloured water

(b) 1 filled with mineral oil

(c) 4 control syringes

2. Attach the syringes containing colored water to inputs B,C and D

3. Attach your output tubing to Output a; this tube should connect to an eppendorf or

other small collection receptacle

4. Attach two separate control syringes to Control 1 and Control 2

Execution

1. Open Control 1, Control 2, Control 3 and Control 4

2. Begin flowing inputs A, B, C and D at 0.5 mL/hour

3. Halt each flow when its respective metered channel on the chip is filled, then close its

corresponding Control line

4. Open Control 5 and begin flowing input A at 0.5 mL/hour again

5. When the oil is 1 cm away from crossing the final valve, halt the flow of input A

6. After 20 seconds, close Control 5

7. Leave the mixture to incubate for 1 hour

8. Use a pipette tip to break the seal over the incubation chamber and transfer the DNA

digest

Supplementary Material Page 59 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

Sequential Instructions All time units are in s.

Figure 20: Sketch annotating the component names used for the device

1 SET Va1 OPEN

2 SET Va2 OPEN

3 SET Vb1 OPEN

4 SET Vb2 OPEN

5 SET Vc1 OPEN

6 SET Vc2 OPEN

7 SET Vd1 OPEN

8 WAIT 70

9 SET Va1 CLOSE

10 SET Vb1 CLOSE

11 WAIT 20

12 SET Va2 CLOSE

13 SET Vb2 CLOSE

14 WAIT 30

15 SET Vd1 CLOSE

16 WAIT 20

17 SET Vc1 CLOSE

18 SET Vc2 CLOSE

19 WAIT 3

20 SET Vp1 OPEN

21 SET Vp2 OPEN

Supplementary Material Page 60 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

22 SET Vp3 OPEN

23 WAIT 180

24 SET Vp1 CLOSE

25 WAIT 2

26 SET Vp2 CLOSE

27 WAIT 2

28 SET Vp3 CLOSE

Supplementary Material Page 61 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

10.5 Cell Lysis

The ability to sort cells by type or physical properties is a valuable tool in many synthetic

biology labs. Prior to analysis or in order to perform specialised protocols, creating homoge-

nous cell suspensions from a mixture is necessary. In addition to sorting cells, the removal of

cell fragments, activated magnetic particles or unwanted debris through sorting also makes

up a key part of purification protocols.

This device was created from the ground up by converting the chemical lysis protocol

from the paper by Junkyu et al. [9]. First, the lysis buffer and the suspended cell are

mixed using the micromixer which then is mixed with the neutralization, elution buffers

and forwarded into the second mixer stage. Finally, the lysis mixture is separated using

a magnetic separator stage as before the final product is extracted from the outlet on the

bottom right of the chip.

10.5.1 Chip Design

This microfluidic chip design carries out cell sorting as a cell suspension is passed through

it. Cells are sorted based on size and pushed to the periphery of the channel. These cells

are then carried away from the main solution through the two periphery outputs, and the

cell-free solution can be collected from the central output.

Supplementary Material Page 62 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

10.5.2 Design Layers

Supplementary Material Page 63 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

10.5.3 Inputs and Outputs

A Lysing Buffer 3.0 mL/hour

B Suspended Cells 3.0 mL/hour

C Neutralization Buffer 6.0 mL/hour

D Elution Buffer 3.0 mL/hour

Table 14: Inputs

Name Liquid

A Excess Buffer/Cells and DNA

Table 15: Outputs

10.5.4 Protocol

Setup

1. Prepare 4 syringes

(a) 1 filled with yellow colored water

Supplementary Material Page 64 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

(b) 1 filled with blue colored water

(c) 1 filled with purple colored water

(d) 1 filled with black colored water

2. Attach your syringe containing yellow colored water to Input A

3. Attach your syringe containing blue colored water to Input B

4. Attach your syringe containing purple colored water to Input C

5. Attach your syringe containing black colored water to Input D

6. Attach your waste output tubing to Outputs a; this liquid will be excess fluid or fluid

containing DNA

Execution

1. Begin flowing the cell suspension into the chip at a rate of 0.3 mL/hour

2. Allow the fluid to completely fill the channels and flow out of the three outputs

3. Continue to flow liquid through the channels for thirty seconds, pause the syringe pump

and dispose of the original eppendorf tubes

4. Attach new eppendorf tubes to the outputs and restart the fluid flow

Supplementary Material Page 65 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

Sequential Instructions Since device has no valves on the design, the sequential instruc-

tions set the flow rates at different ports rather than set the valves to OPEN/CLOSE. All

the flow rate units shown here are in µL/hr. All time units are in s.

Figure 21: Sketch annotating the component names used for the device

1 SET va1 3000

2 SET ve1 3000

3 WAIT 40

4 SET vc1 6000

5 WAIT 120

6 SET Va1 0

7 SET Ve1 0

8 SET Vc1 0

9 WAIT 2

10 SET Vb1 3000

11 WAIT 120

12 SET Vb1 0

Supplementary Material Page 66 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

11 Platform Extensibility Demonstrations

11.1 Overview

Figure 22: Overview of how the different stages of microfluidic design can be extended using

3DµF as platform. The figure also highlights the different demonstration tools developed

to demonstrate the capability designed for each one of these applications.

11.2 Specify - Support for High-Level Device Descriptions

Figure 23: Designs created in MINT can be compiled to the same JSON format representing

both the unfinished and finished layouts of the microfluidic device.

Supplementary Material Page 67 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

11.2.1 Explanation of MINT Syntax

MINT is a microfluidic hardware description language used for describing microfluidic circuits

and devices. Just like any other Hardware Description Language like Verilog or VHDL,

MINT aims to help microfluidic designers leverage the use of CAD tools by allowing them to

describe complex architectures in a human and machine-readable format. By using MINT

descriptions of the hardware. The designers can easily share and tweak the circuit and

component parameters and speed up the entire experimental process. The MINT/netlist file

is a plain text file that has the extension ’.uf’ (eg. device.uf).

The basic structure of the netlist as follows:

1. Instantiate the type of device and the device name.

2. Declare each layer present in the device.

3. Within each layer declare the components and channels on that layer.

Figure 24: Example of a simple device described using MINT and how it relates to the

rest of the design. NOTE: This the example shown here corresponds to a design that is

completely laid out. Currently 3DµF does not automatically generate the layout of the

device description.

Example of the minimal MINT device A step-by-step tutorial for creating MINT de-

vices is available at https://github.com/CIDARLAB/mint/wiki/Netlist-Rules-and-Examples.

Supplementary Material Page 68 of 84

https://github.com/CIDARLAB/mint/wiki/Netlist-Rules-and-Examples

3DµF- Interactive Design Environment for Microfluidic Devices

11.2.2 Demonstration

(a) MINT example used to demonstrate Specify.

(b) A Rat’s Nest visualization used to represent the unrouted connections in the designs.

Figure 25: MINT example used to demonstrate the 3DµF’s ability to understand designs

created using a hardware description language and the visualization that can represent the

device design.

Supplementary Material Page 69 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

Here we have an example of the tool being able to import designs described using the language

MINT, a hardware description language. In order to understand the devices specified in

MINT[7], we first compile the MINT design using the MINT compiler generate a JSON file

which can then be imported by 3DµF. By leveraging both the MINT standard component

library and standard interchange format defined by Parchmint[2] 3DµF can allow the user

to generate the layout of the device abstractly specified in hardware description languages

as seen in Figure 25.

11.2.3 Resources

• MINT Wiki - https://github.com/CIDARLAB/MINT/wiki

• MINT Technology Files - https://github.com/CIDARLAB/MINT/tree/REFRESH

• MINT Compiler Github Repository - https://github.com/CIDARLAB/miniFluigi

Supplementary Material Page 70 of 84

https://github.com/CIDARLAB/MINT/wiki
https://github.com/CIDARLAB/MINT/tree/REFRESH
https://github.com/CIDARLAB/miniFluigi

3DµF- Interactive Design Environment for Microfluidic Devices

11.3 Design - Support for Design of Experiments

Figure 26: This figure illustrates how the design process takes place.

11.3.1 Example - DOE to improve Mixer Efficiency

The mixing of two fluids is something that can often be qualitatively observed, however in

order to properly execute an experiment, specific degrees of mixing must be achieved. In

order to evaluate the degree of which fluids are being mixed in a mixer primitive a mixer

efficiency test is needed to be performed. This quantitative test is broken down into a

two-part process where the first step is Image Processing and Efficiency Calculation.

Image Processing After running fluid through the mixer, pictures need to be taken at the

regions before entering the primitive and after it exits the primitive. In order to obtain RGB

data from these images, image processing software such as ImageJ need to be implemented.

Using ImageJ a 1-pixel box is created that spans the length of the channel. The two crucial

pieces of data that need to be obtained using this box are the average RGB value over that

area and the RGB value at the outer edge of the channel. After collecting this data, we can

move on to calculate the mixing efficiency.

Efficiency Calculation The efficiency of the mixing itself can be measured using Equa-

tion (5). Once this value is obtained, the channel primitive can be measured to see if it is

Supplementary Material Page 71 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

suitable to perform the needed function.

γ = 1− 2

[∫
(RGB −RGBavg)dL∫

dL

]
(5)

11.3.2 Generate Orthogonal Array

In order to perform design of experiments, the user first has to use statistical software

such as Minitab www.minitab.com to generate the orthogonal array and to process the data

generated during the experiment. Figure 27 shows how an orthogonal array can be generated

and save subsequently saved as a .csv/.xlsx file.

Figure 27: Minitab is a statistical tool that can be used to generate the orthogonal design

array that will be used to generate the design of experiments.

11.3.3 Demonstration

Since the DOE designer is still experimental, the user needs to execute a command in the

browser’s developer console to activate the UI necessary to generate the DOE variations.

Supplementary Material Page 72 of 84

www.minitab.com

3DµF- Interactive Design Environment for Microfluidic Devices

The command that needs to be entered into the console is as follows:

Registry.viewManager.taguchiDesigner.openDialog("ComponentName");

Figure 28: Screenshot of the Taguchi Designer UI Concept built into 3DµF.

First, the user has to select the orthogonal array file in order to populate the tables with

the parameter and level options as seen in Figure 28. The user can download the design

variations by clicking the DOWNLOAD DESIGNS button.

11.3.4 Resources

• Minitab - www.minitab.com

• Demonstration files and Video - Supporting Materials

Supplementary Material Page 73 of 84

www.minitab.com

3DµF- Interactive Design Environment for Microfluidic Devices

11.4 Simulate - Support for Network Characterization

Figure 29: Diagram that shows an example demonstration of the simulate workflow.

11.4.1 Demonstration

The demonstration for the analysis tool only supports MIXERs and 1-1 CONNECTIONS

currently. The tool ingests the design file and converts the microfluidic network into an

equivalent electrical model, which is then solved by constructing a series of pressure, flow-

rate equations[17].

The solver can be run by executing the following command on the command line.

python tool.py designFile.json -i config.txt

Each line in the config file consists of 3 parameters, component name, input/output state

and pressure/flowrate value. An example is given below:

port_in1, IN, 1

port_in2, IN, 1

port_out, OUT, 101325

11.4.2 Resources

• Github Repository for SS-Analyzer - https://github.com/CIDARLAB/SS-Analyzer

Supplementary Material Page 74 of 84

https://github.com/CIDARLAB/SS-Analyzer

3DµF- Interactive Design Environment for Microfluidic Devices

11.5 Build - Support for Fabrication

Figure 30: Every design created in 3DµF can be automatically separated into individual

layers that can be manufactured easily.

11.5.1 Design For Manufacturing Classes

The use of Design For Manufacturing (DFM) classes to annotate each of the features gener-

ated by 3DµF helps ensure that the automation of the manufacturing ready outputs of the

tool. Each of the DFM classes is described in Table 16.

DFM Class Description MFG Process Generated Output

XY 2D Profile Lithography, Micromilling, SVG

XYZ 3D Solid Object 3D Printing, Micromilling STL

Z 2D Drill Profile 3D Printing, Micromilling SVG

EDGE Outline Profile Any SVG

Table 16: Description of the Design for Manufacturing classes used in 3DµF.

11.5.2 Manufacturing Output Generation

In order to generate outputs for manufacturing, 3DµF processes each feature based on the

Z-Axis depth and the associated DFM class to generate the required design output described

Supplementary Material Page 75 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

by table 16. The algorithm used to process the Feature objects is described in Algorithm 1.
Data: List of Geometric Features - F

Result: Manufacturing Outputs - M

intialize depthMap, solidObjectList, drillList, bordersList , M ;

for feature f in F do

if f .DFMClass = ”XY” then

featureList;

depth ← f .depth;

if depthMap.keyexists(depth) then

featureList ← depthMap.value(depth);

end

else

initialize featureList;

depthMap[depth] ← featureList;

end

featureList.append(f);

end

else if f .DFMClass = ”XYZ” then

solidObjectList.append(f);

end

else if f .DFMClass = ”Z” then

drillList.append(f);

end

else if f .DFMClass = ”EDGE” then

bordersList.append(f);

end

M .layers ← depthMap.values;

M .borders ← bordersList;

M .3Dobjects ← solidObjectList;

M .drills ← drillList;

end
Algorithm 1: Manufacturing Output Generation

11.5.3 Demonstration

The demonstration available by pressing the CNC output download button on the tool at

http://3duf.org

11.5.4 Resources

• OtherMill Micromilling Tool Library for Polycarbonate - https://github.com/CIDARLAB/

Makerfluidics/

Supplementary Material Page 76 of 84

http://3duf.org
https://github.com/CIDARLAB/Makerfluidics/
https://github.com/CIDARLAB/Makerfluidics/

3DµF- Interactive Design Environment for Microfluidic Devices

11.6 Execute - Support for Valve Control Programability

Figure 31: Screenshot of the Control Software UI that can execute instructions to actuate

valves on the microfluidic device.

One of the challenges in deploying microfluidics into the research environment is realizing

the execution of the microfluidic devices. Different vendors, labs usually opt for different

hardware, programming languages to program the microfluidic devices. This becomes far

more problematic because there is no automated mechanism to bind functionality to the

microfluidic design. Designs created using 3DµF can be read by control automation tools

where each of the components seen in the canvas are identified and can be mapped back

to the code that describes the behavior of the device. The following demonstration shows

an environment that can execute instructions for a simple device that directs the fluids

to two different ports as seen in Figure 32. The demo software is available at https:

//cidarlab.github.com/CC.

Supplementary Material Page 77 of 84

https://cidarlab.github.com/CC
https://cidarlab.github.com/CC

3DµF- Interactive Design Environment for Microfluidic Devices

11.6.1 Demonstration

Figure 32: Demonstration software for the control UI that can be used to visualize execution

of the microfluidic device.

The demonstration software utilizes 3DµF as the visualization engine for displaying the

device. The software additionally has the ability to map each of the components to hardware

identifiers and send messages to the hardware from the browser using Peripheral Manager

as a communication middleware that establishes a channel between the browser and the

hardware connected to the computer. NOTE: CC is active research project and is currently

under development.

11.6.2 Sequential Command Examples

In order to demonstrate what valve sequences would look like for devices implementing real

life protocols, we include example valve sequences for each of the devices in Case Study 2 of

the manuscript, these programs can be found in 10.5.4, 10.4.4, 10.2.4, 10.5.4.

11.6.3 Resources

• Control software Github repository - https://github.com/CIDARLAB/CC

• Browser-Hardware Communication Bridge Github repository - https://github.com/

CIDARLAB/Peripheral-Manager

• Control software demo website - https://cidarlab.github.io/CC/

Supplementary Material Page 78 of 84

https://github.com/CIDARLAB/CC
https://github.com/CIDARLAB/Peripheral-Manager
https://github.com/CIDARLAB/Peripheral-Manager
https://cidarlab.github.io/CC/

3DµF- Interactive Design Environment for Microfluidic Devices

12 Makerfluidics Protocol - SVG Manipulation

In order to rapidly validate the functionality of the devices developed using 3DµF, a low cost

a low-cost, rapid prototyping protocol called Makerfluidics [20] was used to fabricate and test

all the devices shown in the paper. This manufacturing protocol uses polycarbonate as the

primary substrate and takes advantage of commercially available, low-cost CNC mills[12]

as the primary equipment to pattern the features into the substrate. The application of

this manufacturing protocol reduces the cost of fabrication to approximately $6 per chip

and reduces the time to 3 hours. 3DµF takes advantage of the layers, feature types and

parameters of the geometries in the design to generate the SVG files, thus simplifying the

fabrication process. We utilize the Othermill http://bantamtool.com and the packaged

automated SVG-CAM generation tools to machine the microfluidic onto the substrate. Once

the design is milled onto the polycarbonate substrate, the patterned substrates are then

cleaned with ethanol and DI water. Finally, the polycarbonate layers are then assembled

with a flexible PDMS (Polydimethylsiloxane) membrane sandwiched between them to act

as the valve actuation membrane which is held together using binder clips and the device is

vacuum sealed in a desiccator.

3DµF supports the automatic generation of the SVG files required for micro-milling a

device using the Makerfluidics protocol. However, if the user wants to generate or understand

the SVG requirements for micro-milling manually, this chapter provides a short overview of

the procedure involved in preparing the SVG for the Othermill software.

12.1 Preparing the SVG

In order to fabricate the microfluidic design using the Othermill, the SVGs generated by

3DµF (unseparated)7 need to be manually edited using a vector editing tool like Inkscape.

The following steps need to be performed on each of the files in Inkscape:

1. Flip the CONTROL layer horizontally but leave the FLOW layer as is

2. Create new layers in the SVG file: ports, cutout and design.

3. Ungroup all the SVG objects.

4. Select all the borders and move them to the cutout layer.

5. Select all the ports and move them to the ports layer.

6. Toggle visibility for each of the layers and save separate SVGs for the design, cut out

and ports.

7When generating the CNC mill outputs from 3DµF , the user can skip the preparation step and directly

use the SVG generated by the tool without any preprocessing in inkscape

Supplementary Material Page 79 of 84

http://bantamtool.com
https://inkscape.org/en/

3DµF- Interactive Design Environment for Microfluidic Devices

Figure 33: The ports, borders and the remainder of the design is separated into 3 different

SVG files.

By following the above steps, we obtain 3 SVGs as seen in the fig. 33. The 3 SVGs can

then be used to fabricate the ports, design and the cutout separately with different depth

settings.

12.2 Tool Settings

In order to fabricate the chips in polycarbonate, we created a tool library that can be im-

ported by the mill’s CAM package. The tool library is available for download at Makerfluidics

Github Repo. The designs provided with this paper will require the user to have the 1/8′′,

1/16′′, 1/64′′ and 1/100′′ flat endmills to be used during the fabrication process.

12.3 Tool-path Generation

We use the CAM package bundled with the mill’s free control software Bantam Tools Soft-

ware8 to generate the tools paths. In order to generate the correct tools paths, the users

need to follow the checklist given below:

8Formerly known as Otherplan

Supplementary Material Page 80 of 84

https://github.com/CIDARLAB/Makerfluidics/tree/master/Othermill%20Tool%20Library
https://github.com/CIDARLAB/Makerfluidics/tree/master/Othermill%20Tool%20Library
http://resources.bantamtools.com/software-download
http://resources.bantamtools.com/software-download

3DµF- Interactive Design Environment for Microfluidic Devices

Figure 34: A) The document settings page where the tools and the primary fabrication

details are set B) The advanced settings pane.

� Ensure that the device is scaled to 100% as show in fig. 34 - A

� Ensure that the device is scaled form Document Bounds as show in fig. 34 - B

� Ensure that the height of the stock is accurate9

� Deselect the “Cutout” option for each tool-path under Document Settings as seen in

fig. 34 - A

� Set the desired Engraving Depth and End Mills for each layer under Documents Set-

tings as shown in fig. 34 - A

On changing any of the settings, the tool automatically generates the new tool path

that the mill will follow to fabricate the design. The areas highlighted in red on the design

preview window are locations the tool cannot reach. These are typically sharp corners and

features smaller than the tool’s effective diameter. Once these areas, as in Figure 34, are

either small enough not to be a concern or no longer highlighted in RED, the user should

be able to fabricate the design by hitting the Start Milling ... button and following the

instructions to on the screen.

NOTE: Additional resources on fabricating the devices using a CNC mill are available

at MARS Video Tutorials.

9This can be done by placing a sheet of paper on the stock and lowering the endmill onto the paper until

the paper feels some resistance from the endmill.

Supplementary Material Page 81 of 84

http://2017.igem.org/Team:BostonU_HW/IntrouF#Videos

3DµF- Interactive Design Environment for Microfluidic Devices

References

[1] Frederick K. Balagadde, Lingchong You, Carl L. Hansen, Frances H. Arnold, and

Stephen R. Quake. Long-Term Monitoring of Bacteria Undergoing Programmed Popu-

lation Control in a Microchemostat. Science, 309(5731):137–140, July 2005.

[2] B. Crites, R. Sanka, J. Lippai, J. McDaniel, P. Brisk, and D. Densmore. ParchMint: A

Microfluidics Benchmark Suite. In 2018 IEEE International Symposium on Workload

Characterization (IISWC), pages 78–79, September 2018.

[3] Tal Danino, Octavio Mondragon-Palomino, Lev Tsimring, and Jeff Hasty. A synchro-

nized quorum of genetic clocks. Nature, 463(7279):326–330, January 2010.

[4] Stephan K. W. Dertinger, Daniel T. Chiu, Noo Li Jeon, and George M. Whitesides.

Generation of Gradients Having Complex Shapes Using Microfluidic Networks. Analyt-

ical Chemistry, 73(6):1240–1246, March 2001.

[5] Cong Fang, Yanju Wang, Nam T. Vu, Wei-Yu Lin, Yao-Te Hsieh, Liudmilla Rubbi,

Michael E. Phelps, Markus Mschen, Yong-Mi Kim, Arion F. Chatziioannou, Hsian-

Rong Tseng, and Thomas G. Graeber. Integrated Microfluidic and Imaging Platform

for a Kinase Activity Radioassay to Analyze Minute Patient Cancer Samples. Cancer

Research, 70(21):8299–8308, November 2010.

[6] William H Grover, Alison M Skelley, Chung N Liu, Eric T Lagally, and Richard A Math-

ies. Monolithic membrane valves and diaphragm pumps for practical large-scale integra-

tion into glass microfluidic devices. Sensors and Actuators B: Chemical, 89(3):315–323,

April 2003.

[7] Haiyao Huang. Fluigi: An end-to-end Software Workflow for Microfluidic Design. PhD

thesis, Boston University, 2015.

[8] Haiyao Huang and Douglas Densmore. Fluigi: Microfluidic Device Synthesis for Syn-

thetic Biology. J. Emerg. Technol. Comput. Syst., 11(3):26:1–26:19, December 2014.

[9] Jungkyu Kim, Michael Johnson, Parker Hill, and Bruce K. Gale. Microfluidic sample

preparation: cell lysis and nucleic acidpurification. Integrative Biology, 1(10):574–586,

September 2009.

[10] Juta Kobayashi, Yuichiro Mori, Kuniaki Okamoto, Ryo Akiyama, Masaharu Ueno,

Takehiko Kitamori, and Sh Kobayashi. A Microfluidic Device for Conducting Gas-

Liquid-Solid Hydrogenation Reactions. Science, 304(5675):1305–1308, May 2004.

[11] Ali Lashkaripour, Ali Abouei Mehrizi, Mohamadreza Rasouli, and Masoud Gohari-

manesh. Numerical Study of Droplet Generation Process in a Microfluidic Flow Focus-

ing. Journal of Computational Applied Mechanics, 46(2):167–175, July 2015.

Supplementary Material Page 82 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

[12] Ali Lashkaripour, Ryan Silva, and Douglas Densmore. Desktop micromilled microflu-

idics. Microfluidics and Nanofluidics, 22(3):31, February 2018.

[13] Cheng-Chung Lee, Thomas M Snyder, and Stephen R Quake. A microfluidic oligonu-

cleotide synthesizer. Nucleic acids research, 38(8):2514–2521, 2010.

[14] Y. C. Lim, A. Z. Kouzani, and W. Duan. Lab-on-a-chip: a component view. Microsystem

Technologies, 16(12):1995–2015, December 2010.

[15] Wenming Liu, Li Li, Xuming Wang, Li Ren, Xueqin Wang, Jianchun Wang, Qin

Tu, Xiaowen Huang, and Jinyi Wang. An integrated microfluidic system for study-

ing cell-microenvironmental interactions versatilely and dynamically. Lab on a Chip,

10(13):1717–1724, July 2010.

[16] Transon V. Nguyen, Philip N. Duncan, Siavash Ahrar, and Elliot E. Hui. Semi-

autonomous liquid handling via on-chip pneumatic digital logic. Lab on a Chip,

12(20):3991–3994, September 2012.

[17] Kwang W. Oh, Kangsun Lee, Byungwook Ahn, and Edward P. Furlani. Design of

pressure-driven microfluidic networks using electric circuit analogy. Lab on a Chip,

12(3):515–545, January 2012.

[18] Arthur Prindle, Phillip Samayoa, Ivan Razinkov, Tal Danino, Lev S. Tsimring, and Jeff

Hasty. A sensing array of radically coupled genetic /‘biopixels/’. Nature, 481(7379):39–

44, January 2012.

[19] R. Silva, P. Dow, R. Dubay, C. Lissandrello, J. Holder, D. Densmore, and J. Fiering.

Rapid prototyping and parametric optimization of plastic acoustofluidic devices for

blood–bacteria separation. Biomedical Microdevices, 19(3):70, Aug 2017.

[20] Ryan Silva. Makerfluidics: Low Cost Microfluidics for Synthetic Biology. PhD thesis,

Boston University, 2017.

[21] Ryan Silva, Swapnil Bhatia, and Douglas Densmore. A reconfigurable continuous-flow

fluidic routing fabric using a modular, scalable primitive. Lab on a Chip, 16(14):2730–

2741, July 2016.

[22] Todd M. Squires and Stephen R. Quake. Microfluidics: Fluid physics at the nanoliter

scale. Reviews of Modern Physics, 77(3):977–1026, October 2005.

[23] Shia-Yen Teh, Robert Lin, Lung-Hsin Hung, and Abraham P. Lee. Droplet microfluidics.

Lab on a Chip, 8(2):198–220, January 2008.

[24] Todd Thorsen, Sebastian J. Maerkl, and Stephen R. Quake. Microfluidic Large-Scale

Integration. Science, 298(5593):580–584, October 2002.

Supplementary Material Page 83 of 84

3DµF- Interactive Design Environment for Microfluidic Devices

[25] Todd Thorsen, Richard W. Roberts, Frances H. Arnold, and Stephen R. Quake. Dy-

namic Pattern Formation in a Vesicle-Generating Microfluidic Device. Physical Review

Letters, 86(18):4163–4166, April 2001.

[26] John Paul Urbanski, William Thies, Christopher Rhodes, Saman Amarasinghe, and

Todd Thorsen. Digital microfluidics using soft lithography. Lab on a Chip, 6(1):96–104,

December 2006.

[27] C. Joanne Wang, Adriel Bergmann, Benjamin Lin, Kyuri Kim, and Andre Levchenko.

Diverse Sensitivity Thresholds in Dynamic Signaling Responses by Social Amoebae. Sci.

Signal., 5(213):ra17–ra17, February 2012.

[28] Aaron R. Wheeler, William R. Throndset, Rebecca J. Whelan, Andrew M. Leach,

Richard N. Zare, Yish Hann Liao, Kevin Farrell, Ian D. Manger, and Antoine Daridon.

Microfluidic Device for Single-Cell Analysis. Analytical Chemistry, 75(14):3581–3586,

July 2003.

Supplementary Material Page 84 of 84

	Software
	Parametric Component Library
	Design Environment
	Design Canvas
	Primary Toolbar
	Context Menu
	Tool Windows

	Semi-Automated Design Features
	Design Primitives
	Parametric Design

	Mechanical Design Features
	Position and Pattern Tools
	DXF Support
	DXF Import Examples
	Import Modes

	Extending the Component Library
	Creating the Definition
	Registering the Definition
	Create UI Element
	Registering the Event Handlers
	Query Selectors
	Event Handlers
	Tool Association

	Interchange Format
	Overview
	Feature Object

	Parametric Design Engineering
	Effort Metrics
	Design Effort
	Parameterization Effort
	Constants and Assumptions

	Design Effort of a MIXER
	Design Effort (EDesign)
	Parameterization Effort (EParameterization)

	Case Study 1 - Devices from Literature
	Device Descriptions
	Milled Devices
	Designs Website
	Effort Calculation Script

	Case Study 2 - Modular System Design
	Discussion
	Transformation
	Chip Design
	Design Layers
	Inputs and Outputs
	Protocol

	Ligation
	Chip Design
	Design Layers
	Inputs and Outputs
	Protocol

	DNA Digest
	Chip Design
	Design Layers
	Inputs and Outputs
	Protocol

	Cell Lysis
	Chip Design
	Design Layers
	Inputs and Outputs
	Protocol

	Platform Extensibility Demonstrations
	Overview
	Specify - Support for High-Level Device Descriptions
	Explanation of MINT Syntax
	Demonstration
	Resources

	Design - Support for Design of Experiments
	Example - DOE to improve Mixer Efficiency
	Generate Orthogonal Array
	Demonstration
	Resources

	Simulate - Support for Network Characterization
	Demonstration
	Resources

	Build - Support for Fabrication
	Design For Manufacturing Classes
	Manufacturing Output Generation
	Demonstration
	Resources

	Execute - Support for Valve Control Programability
	Demonstration
	Sequential Command Examples
	Resources

	Makerfluidics Protocol - SVG Manipulation
	Preparing the SVG
	Tool Settings
	Tool-path Generation

