Supplementary Information

Decoding the essential interplay between central and peripheral control in adaptive locomotion of amphibious centipedes

Kotaro Yasui^{1,2,*}, Takeshi Kano¹, Emily M. Standen³, Hitoshi Aonuma⁴, Auke J. Ijspeert⁵ and Akio Ishiguro¹

¹Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-Ward, Sendai 980-8577, Japan.

²Japan Society for the Promotion of Science (JSPS), 5-3-1 Kojimachi, Chiyoda-Ward, Tokyo 102-0083, Japan.

³Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada.

⁴Research Institute for Electronic Science, Hokkaido University, N12W7, Kita-Ward, Sapporo 060-0812, Japan.

⁵Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.

*Correspondence to k.yasui@riec.tohoku.ac.jp

	Leg tip		Body trunk	
	$0 \le \phi^L_{i,j} < \pi$	$\pi \leq \phi^L_{i,j} < 2\pi$	tangential	normal
On land	0	μ_g	0	0
In water	μ_w	μ_w	μ_t	μ_n
	$0 < \mu_w < \mu_g$		$0 < \mu_t < \mu_n$	

Supplementary Table S1 | Coefficients of viscous friction employed in simulations

Parameter	Value	Dimension
ω_L	18.0	[s ⁻¹]
ω_B	12.0	[s ⁻¹]
σ_1	50.0	[s ⁻¹]
σ_2	10.0	[s ⁻¹]
σ_3	45.0	[s ⁻¹]
$\psi_{\scriptscriptstyle L}^{ipsi}$	$\pi/2.7$	
$\psi^{contra}_{\scriptscriptstyle L}$	π	
ψ_B	$\pi/11$	
<i>C</i> ₀	$\pi/2$	
CL	0.75	
C _B	$\pi/18$	
$ au_M$	0.055	[s]
$ au_S$	0.14	[s]
c _s	1.0×10^{3}	
F _{th}	1.0×10^{1}	
μ_g	1.4×10^{-1}	$[kgs^{-1}]$
μ_w	7.1×10^{-5}	$[kgs^{-1}]$
μ_t	$7.1 imes 10^{-5}$	$[kgs^{-1}]$
μ_n	2.4×10^{-3}	$[kgs^{-1}]$
k^L	$6.0 imes 10^{-4}$	$[m^2s^{-2}kg]$
d^L	1.5×10^{-6}	[m ² s ⁻¹ kg]
k ^B	2.1×10^{-3}	[m ² s ⁻² kg]
d ^B	3.0×10^{-6}	$[m^2s^{-1}kg]$
Spring constant of leg link	70.6	$[kgs^{-2}]$
Damping coefficient of leg link	2.4×10^{-1}	[kgs ⁻¹]

Supplementary Table S2 | Parameter values employed in simulations

[Legends for Supplementary Movies]

Supplementary Movie S1 | Walking of the centipede Scolopendra subspinipes mutilans.
Supplementary Movie S2 | Swimming of the centipede Scolopendra subspinipes mutilans.
Supplementary Movie S3 | Centipede locomotion during transition from land to water.
Supplementary Movie S4 | Centipede locomotion during transition from water to land.
Supplementary Movie S5 | Walking of a nerve cord transected centipede.
Supplementary Movie S6 | Swimming of a nerve cord transected centipede.
Supplementary Movie S7 | Simulated centipede locomotion during transition from land to water.
Supplementary Movie S8 | Simulated centipede locomotion during transition from water to land.
Supplementary Movie S8 | Simulated centipede locomotion during transition from water to land.
Supplementary Movie S8 | Simulated centipede locomotion during transition from water to land.
Supplementary Movie S9 | Simulated locomotion of a nerve cord transected centipede.
Supplementary Movie S10 | Locomotion of a nerve cord transected centipede during transition from water to land.

Supplementary Movie S11 | Locomotion of a nerve cord transected centipede during transition from land to water.

Supplementary Movie S12 | Simulated centipede locomotion during transition from water to land, driven by a control mechanism different from our proposed model. Locomotor mode of each segment is determined by Eq. (12).

Supplementary Movie S13 | Simulated centipede walking when a part of the terrain was removed. Grey area denotes the gap appeared between the land area (white-colored).

Supplementary Movie S14 | Simulated centipede walking when three pairs of leg in the middle segments were amputated.

Supplementary Movie S15 | Locomotion of the centipede *Scolopendra subspinipes mutilans* on a slippery upslope surface. The movie was taken from the top. The ground made of plastic plate was inclined 12° with respect to the horizontal.