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ABSTRACT

Pairwise input correlations

Here we show how the covariance Cin
kl between the input fields of two units k and l receiving inputs from a pool of sources can

be decomposed into a part arising from shared inputs and another from activity correlations. The input field for a single unit is
given by Eq. 2 in the main manuscript and hence:
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We introduced the auto- and crosscovariances Ai =
〈
s2
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of the activities si and s j of
presynaptic neurons i and j, respectively. If Dale’s law is respected and the sign of all outgoing connections of a sources is
unique, i.e. sign(wki) = sign(wli), ∀k, l, i, the first term is always positive (Cin

shared,kl > 0). For a pool of independently active
presynaptic neurons, Ci j = 0 by definition and the second term in the input correlations hence vanishes (Cin

corr,kl = 0 ∀k, l). The
total input correlation is therefore always positive and determined by the number of shared sources. If the presynaptic sources
are units in a recurrently connected network, their pairwise correlation is in general non-zero (Ci j 6= 0). In particular, in sparsely
connected networks with sufficient inhibition, correlations arrange such that Cin

corr,kl ≈−Cin
shared,kl , leading to small remaining

pairwise input correlations, Cin
kl ≈ 01, 2.

Sampling error depends on number of noise inputs per sampling unit
To closely approximate the effect of Gaussian noise on the input field, one needs a large number K of background inputs per
sampling unit. Here, we scale the number of noise sources K per sampling unit, while also scaling the total number N of noise
sources to keep their ratio constant. This allows us to investigate the impact of K without altering the amount of shared-input
correlations. In addition to the three cases considered in main manuscript (private, shared, network noise), we additionally
consider the case of a separate pool of noise sources for each sampling unit (“discrete”), where shared-input correlations are
absent.
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Figure 1. Sampling error DKL(p, p∗) as a function of the number of background inputs K per sampling unit. Error bands
indicate mean ± SEM over 5 random network realizations. Magenta (“discrete”) uses K separate sources for each sampling
unit. Sampling duration T = 105 ms. Connectivity constant K/N = 0.9. Remaining parameters as in Fig. 2 in the main
manuscript.
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Figure 2. Same as Fig. 7 in the main manuscript, but with constant average weight in sampling networks: µBM =−0.15.

For small K, the input distribution is strongly discretized and does not approximate Gaussian well, reflected in a large
sampling error for very small K for the discrete and shared case (Fig. 1). As we increase K, the sampling error decreases rapidly
for the discrete case, and drops to the same level as Gaussian noise at about 50 inputs. For the shared case, the error decreases
as well as we increase K, but is limited from below by sampling error introduced by shared-input correlations. For the network
case, the sampling error is very large for small K as the network dynamics lock into a fixed point. However, for K > 130, the
sampling error for the network case drops almost to the level of Gaussian noise.

Small, recurrent networks can supply large sampling networks with noise – no weight
scaling
In Fig. 7 in the main manuscript we scaled the weights in the sampling network with the size M of the sampling network as
1/
√

M. Ignoring the influence of cross-correlations, this scaling keeps the variances of the input distribution arising from
recurrent connections in the sampling network constant. Effectively this leads to approximately constant entropy for a large
range of sampling network sizes.

If we do not scale the weights as above when increasing the size of the sampling network, the input variance increases and
the relative noise strength hence decreases, leading to an effectively stronger coupled sampling network. This strongly decreases
the entropy of the sampled distribution (Fig. 2, inset). Despite the decrease in entropy, the sampling errors for the private
and network cases stay approximately constant (Fig. 2). For the shared case, the sampling error initially decreases due to the
strengthened effective feedback that suppresses shared-input correlations arising from the limited pool of background sources
(cf. Small, recurrent networks can supply large sampling networks with noise). As the size of the sampling network
increases the sampling error increases again from about M = 40. This is most likely caused by the decrease in the relative noise
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Figure 3. Example activity of sampling units (id 0−9) and noise sources (id 10−19) for different number N of noise sources.
Top row: shared noise, bottom row: network noise.

strength and the sampling dynamics hence becoming too slow to approximate the target distribution in the finite sampling
duration considered here.

Synchronization of noise networks for small network sizes
Fig. 3 illustrates the activity in the noise pool for network and shared noise for different number of noise sources N. If the
network becomes too densely connected, the activity of the noise network gets stuck in a fixed point which also leads to a fixed
state in the sampling units. This generally causes the large errors for small noise networks.

Simulation details
Tab. 1, 2, 3, 4, 5 summarize the binary network model and parameters.

Tab. 6, 7, 8, 9 summarize the spiking network model and parameters. Simulations carried out with NEST 2.103.
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A Model summary
Populations One
Topology —
Connectivity All-to-all
Neuron model Stochastic binary units
Channel models —
Synapse model —
Plasticity —
External input —
Measurements Binary states of m units
B Populations

Name Elements Size
Sampling network Stoch. binary units M
C Connectivity

Source Target Pattern
Sampling network Sampling network All-to-all, random weights drawn from Beta distribution, wi j ∼

Beta(a,b), symmetric connections wi j =w ji, no self connections wii = 0
D Neuron model

Type Stochastic binary units
Dynamics Transition into state 1 according to probability determined by the activation function Fi(hi) =

1
1+e−βhi

with input field hi = ∑ j wi js j +bi.

Table 1. Description of the sampling network model with intrinsic noise (according to4).

A Model summary
Populations One
Topology —
Connectivity All-to-all
Neuron model Stochastic binary units
Channel models —
Synapse model —
Plasticity —
External input —
Measurements Binary states of m units
B Populations

Name Elements Size
Sampling network Stoch. binary units M
C Connectivity

Source Target Pattern
Sampling network Sampling network All-to-all, random weights drawn from Beta distribution, wi j ∼

Beta(a,b), symmetric connections wi j =w ji, no self connections wii = 0
D Neuron model

Type Stochastic binary units
Dynamics Transition into state 1 according to probability determined by the activation function Fi(hi) =

1
2 erfc

(
hi+µi√

2σ2

)
with input field hi = ∑ j wi js j +bi.

Table 2. Description of sampling network model with private noise (according to4).

4/11



A Model summary
Populations Three
Topology —
Connectivity All-to-all; sparse random with fixed indegree
Neuron model Stochastic binary units, deterministic binary units
Channel models —
Synapse model —
Plasticity —
External input —
Measurements Binary states
B Populations

Name Elements Size
Sampling network Det. binary units M
Background pop. (E) Stoch. binary units γN
Background pop. (I) Stoch. binary units (1− γ)N
C Connectivity

Source Target Pattern
Sampling network Sampling network All-to-all, random weights drawn from Beta distribution, wi j ∼

Beta(a,b), symmetric connections wi j =w ji, no self connections wii = 0
Background pop. (E) Sampling network Random convergent γK→ 1, weight w
Background pop. (I) Sampling network Random convergent (1− γ)K→ 1, weight −gw
D Neuron model

Type Stochastic binary units
Dynamics Transition into state 1 according to probability determined by the activation function Fi(hi) =

1
1+e−βhi

with input field hi = ∑ j wi js j +bi.
Type Deterministic binary units
Dynamics Transition into state 1 according to the activation function Fi(hi) = Θ(hi) with input field hi =

∑ j wi js j +bi.
E Measurements

Binary states of m units from sampling network

Table 3. Description of sampling network model with shared noise (according to4).
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A Model summary
Populations Three
Topology —
Connectivity All-to-all; sparse random with fixed indegree
Neuron model Deterministic binary units
Channel models —
Synapse model —
Plasticity —
External input —
Measurements Binary states
B Populations

Name Elements Size
Sampling network Det. binary units M
Background pop. (E) Det. binary units γN
Background pop. (I) Det. binary units (1− γ)N
C Connectivity

Source Target Pattern
Sampling network Sampling network All-to-all, random weights drawn from Beta distribution, wi j ∼

Beta(a,b), symmetric connections wi j =w ji, no self connections wii = 0
Background pop. (E) Sampling network Random convergent γK→ 1, weight w
Background pop. (I) Sampling network Random convergent (1− γ)K→ 1, weight −gw
Background pop. (E) Background pop. (E) Random convergent γK→ 1, weight w
Background pop. (E) Background pop. (I) Random convergent γK→ 1, weight w
Background pop. (I) Background pop. (E) Random convergent (1− γ)K→ 1, weight −gw
Background pop. (I) Background pop. (I) Random convergent (1− γ)K→ 1, weight −gw
D Neuron model

Type Deterministic binary units
Dynamics Transition into state 1 according to the activation function Fi(hi) = Θ(hi) with input field hi =

∑ j wi js j +bi.
E Measurements

Binary states of m units from sampling network

Table 4. Description of sampling network model with network noise (according to4).
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B Populations
Name Values
M 100∗

N 222∗

γ 0.3
C Connectivity

Name Values
a 2
b 2
µBM 0.0
K 200
w 0.3
g 8
D Neuron model

Name Values
β 1∗

µ 0
σ from β via Eq. 10
E Measurements

Name Values
m 6

Miscellaneous
Name Values Description
s̄ 0.4 Average activity in sampling networks
z̄ 0.3 Average activity in background population
Tsim 105 ms∗ Simulation time
Twarmup 500ms Warmup time (ignored during analysis)
τ 10ms Average inter-update interval

Table 5. Parameters for binary network simulations (according to4). Stars indicate default values.
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A Model summary
Populations One
Topology —
Connectivity All-to-all
Neuron model Leaky integrate-and-fire (LIF)
Channel models —
Synapse model Exponentially decaying currents, fixed delays
Plasticity —
External input Poisson-distributed spike trains
Measurements Spikes
B Populations

Name Elements Size
Sampling network LIF neuron M
C Connectivity

Source Target Pattern
Sampling network Sampling network All-to-all, random weights drawn from Beta distribution, wi j ∼

Beta(a,b), symmetric connections wi j =w ji, no self connections wii = 0,
translation from binary-unit domain to spiking neurons via constant cal-
ibration factors (see Sec. in the main manuscript)

D Neuron and synapse model
Type Leaky integrate-and-fire, exponential currents
Subthreshold dynam-
ics

Subthreshold dynamics (t 6∈ (t∗, t∗+ τref)):
Cm

d
dt V (t) =−gL(V (t)−Vrest)+ Isyn(t)

Reset and refractoriness (t ∈ (t∗, t∗+ τref)):
V (t) =Vreset

Current dynamics τsyn
d
dt Isyn(t) =−Isyn(t)+∑i,k Jδ (t− tk

i −d)
Here the sum over i runs over all presynaptic neurons and the sum over k over all spike times of
the respective neuron i

Spiking If V (t∗−)<Vth∧V (t∗+)≥Vth:
emit spike with time stamp t∗

E Measurements
Spike trains recorded from m neurons from the sampling network
F External input

Per neuron, one private excitatory and one inhibitory Poisson source with rate νex and νin, respectively.

Table 6. Description of spiking sampling network model with private noise (according to4).
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A Model summary
Populations One
Topology —
Connectivity All-to-all; sparse random with fixed indegree
Neuron model Leaky integrate-and-fire (LIF)
Channel models —
Synapse model Exponentially decaying currents, fixed delays
Plasticity —
External input Poisson-distributed spike trains
Measurements Spikes
B Populations

Name Elements Size
Sampling network LIF neuron M
C Connectivity

Source Target Pattern
Sampling network Sampling network All-to-all, random weights drawn from Beta distribution, wi j ∼

Beta(a,b), symmetric connections wi j =w ji, no self connections wii = 0,
translation from binary-unit domain to spiking neurons via constant cal-
ibration factors (see Sec. in the main manuscript)

D Neuron and synapse model
See Tab. 6.
E Measurements

See Tab. 6.
F External input
Per neuron, γK excitatory and (1− γ)K inhibitory Poisson sources with weight J, rate ν̃ex and weight −gJ, rate ν̃in,
respectively. Excitatory and inhibitory inputs randomly chosen from a common pool of γN and (1− γ)N units, respectively.

Table 7. Description of spiking sampling network model with shared noise (according to4).
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A Model summary
Populations Three
Topology —
Connectivity All-to-all; sparse random with fixed indegree
Neuron model Leaky integrate-and-fire (LIF)
Channel models —
Synapse model Exponentially decaying currents, fixed delays
Plasticity —
External input Resting potential above firing threshold in background populations
Measurements Spikes
B Populations

Name Elements Size
Sampling network LIF neuron M
Background pop. (E) LIF neuron γN
Background pop. (I) LIF neuron (1− γ)N
C Connectivity

Source Target Pattern
Sampling network Sampling network All-to-all, random weights drawn from Beta distribution, wi j ∼

Beta(a,b), symmetric connections wi j =w ji, no self connections wii = 0,
translation from binary-unit domain to spiking neurons via constant cal-
ibration factors (see Sec. in the main manuscript)

Background pop. (E) Sampling network Random convergent, γK→ 1, weight w, delay d
Background pop. (I) Sampling network Random convergent, (1− γ)K→ 1, weight −gw, delay d
Background pop. (E) Background pop. (E) Random convergent, γK→ 1, weight w, delay d
Background pop. (E) Background pop. (I) Random convergent, γK→ 1, weight w, delay d
Background pop. (I) Background pop. (E) Random convergent, (1− γ)K→ 1, weight −gw, delay d
Background pop. (I) Background pop. (I) Random convergent, (1− γ)K→ 1, weight −gw, delay d
D Neuron and synapse model

See Tab. 6.
E Measurements

See Tab. 6.

Table 8. Description of spiking sampling network model with network noise (according to4).
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B Populations
See Tab. 5.

C Connectivity
Name Values
a 2
b 2
K 1000
J 0.002nA (0.0635nA)
g 2
d 0.1ms (1.0ms)
D Neuron model

Name Values
τref 10.0ms (0.1ms)
τsyn 10.0ms (5.0ms)
Cm 0.2nF (1.0nF)
gL 2.0µS (0.05µS)
Vrest −50.00mV (−40.00mV)
Vreset −50.01mV (−60.00mV)
Vth −50.00mV
E Measurements

Name Values
m 10

Miscellaneous
Name Values Description
Tsim 107 ms Simulation time
Twarmup 103 ms Warmup time (ignored during analysis)
F External input

Name Values
νex 10kHz
νin 10kHz
ν̃ex 4.4±0.1Hz
ν̃in 4.4±0.1Hz

Table 9. Table of parameters for spiking network simulations (according to4). Values without parantheses are for the sampling
network, values in parantheses for the noise network.
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