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Computational environment and data preparation 

We used a high-performance computing cluster with a theoretical CPU performance of 108 

Teraflops and made of computing nodes of Dell PowerEdge R430 with Intel Xeon E5-2680 

2.5 GHz processors (24 cores), 1.6 TB SSD local storage and 8 × 16 GB 2133 MT/s 

registered dual in-line memory module (RDIMM). We developed, tested and apply our codes 

using R programming language1. 

LiDAR TCH, Planet Dove spectral, GLCM textures and SRTM elevation were resampled at 1-

ha resolution, co-aligned to make sure the 1-ha pixels overlap perfectly and projected into 

WGS 84/UTM Zone 18S. To deal with the highly demanding computation of GLCM textures, 

we created tiles of 10 × 10 km with overlap, that were in the end stitched and resampled to 

1-ha. The ‘glcm’ R package2 was used to compute GLCM features. Other R packages used 

for computations include, but not limited to, ‘raster’3, ‘rgdal’4, and ‘randomForest’5. 

Planet imagery are commercial, and the costs vary according to many factors, like the area 

of interest, processing level or product type. The costs of airborne LiDAR data were 

approximately $0.01 per hectare over the entire Peru, much cheaper than traditional field-

plot inventory approaches6. We used free institutional high-performance computing, but 

users interested can also take advantage of other free computational resources, like Google 

Earth Engine7. 

Variables importance in RF regressions 

One important characteristic of an RF regression is that it gives information of variables 

importance, i.e. which variable had the most predictive power in estimating TCH. A robust 

and informative measure is the percentage increase in mean squared error (% IncMSE), 

which calculates the increase in MSE of predictions when a variable is being permuted (with 

values randomly shuffled). In our Peru-wide TCH estimations, we averaged these variables 

over multiple runs and resulted that the SRTM elevation had the highest importance 

(median 149 % IncMSE), followed by the near-infrared band (median 100) (Figure S3). Red 

band (median 46), green band (median 31) and GLCM textures derived from the green 

band (medians between 28 and 51) had lower % IncMSE due to their correlation. From the 

GLCM textures, Correlation (median 51 % IncMSE), Contrast (median 37) and Second 

Moment (median 36) had the highest predictive power (Figure S3). These measures seemed 

to be more sensitive to vegetation structure, with Correlation measuring the occurrence 

probability of pixel pair values (similar to autocorrelation), Contrast measuring local grey 

level variation, and Second Moment calculating the uniformity of the gray level distribution 

within the image. 

https://paperpile.com/c/CjgWcE/KUj7X
https://paperpile.com/c/CjgWcE/umIVU
https://paperpile.com/c/CjgWcE/YMvPw
https://paperpile.com/c/CjgWcE/vSKM2
https://paperpile.com/c/CjgWcE/VGpJ6
https://paperpile.com/c/CjgWcE/koru
https://paperpile.com/c/CjgWcE/Cqfd
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Figure S1. Mean Decrease Accuracy (% IncMSE) resulted from aggregating the results 

from all RF local models used for the Peru-wide TCH estimation. GLCM 1 to 8 stand for 

GLCM Mean (1), Variance (2), Homogeneity (3), Contrast (4), Dissimilarity (5), Entropy (6), 

Second Moment (7), and Correlation (8). Green, red, near-infrared band, and SRTM 

elevation layers complete the list of RF variables used. 

Local Random Forest regression models for TCH estimation 

Applying local RF models across the Peru resulted in variable results in terms of accuracy of 

TCH estimations for each tile, in accordance to a number of factors, like the heterogeneity 

of ecosystems overlapping the tile, altitudinal range, LiDAR coverage or vegetation structure 

(Figure S1). TCH estimates from individual tiles and their shifting (W, E, S, N) showed that 

RF results are sensitive to the tile location and its characteristics (Figure S2). However, the 

5 country-wide models constructed from combining these tiles showed relative agreement 

and less variability (Figure S2). Note that 5 country-wide models composed one of the 10 

Peru-wide models that were aggregated to obtain the final model. Aggregating thousands of 

RF models ensured the robustness of our RF approach by mitigating possible inconsistencies 

of one or more local RF models. 
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Figure S2. Boxplot of correlation values for the main tiles used in this study, between RF-

estimated TCH and LiDAR-derived TCH. The mean correlation was 0.80, within a range of 

0.50-0.88 and standard deviation of 0.08. 

 

 

Figure S3. RF results for TCH estimated for a tile and its shifts to W, E, S, and N (a-e) and 

for the corresponding country-wide RF results (f-j), which together form one of the 10 

national TCH estimates. While there was variability between tiles and their shifting, 

aggregating results to country-wide models reduced the variability of TCH estimations and 

increased the robustness of the proposed RF workflow (f-j). Note that the horizontal axis 

shows LiDAR-measured TCH and vertical axis the RF-estimated TCH. 
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