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Backtracking Search Algorithm 

 

Backtracking search algorithm (BSA) is a newly developed meta-heuristic population-based algorithm to solve 

the complex and non-linear optimization problems. BSA is capable to operate large dimensional problem for the 

optimum solutions using the historical population and map matrix concepts. With the help of historical 

population, BSA explores and exploits the better solution to address the local minima trap. On the contrary, map 

matrix does the necessary correction to change the search direction in order to confirm accurate movement 

during the exploitation search. BSA is easy to implement with few parameters that are fast, efficient and robust 

to control parameters. The execution process of BSA is conducted through a gradual process involving some 

steps namely Selection I, mutation, crossover and Selection II. The detail process of BSA is explained as 

follows
1
, 

  

Step 1: Initialization 

The BSA is initialized by generating the numerical values of the initial population and historical population 

from the uniform distribution of random numbers within the boundary constraints. Also, in this stage, the 

objective function is being calculated. 

𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑃𝑜𝑝𝑛,𝑑~ ∪ (𝑙𝑜𝑤𝑑 , 𝑢𝑝𝑑)       (1) 

The representation of the objective function of the primary population, 

𝑦𝑝𝑜𝑝 = 𝑓(𝑃𝑜𝑝)  (2) 

The historical population is represented as such,  

𝐻𝑖𝑠𝑃𝑜𝑝~ ∪ (𝑙𝑜𝑤𝑑 , 𝑢𝑝𝑑)   (3) 

The objective function of the historical population, 

𝑌𝐻𝑖𝑠𝑃𝑜𝑝 = 𝑓(𝐻𝑖𝑠𝑃𝑜𝑝)  (4) 

where, 𝑥 ∈ {1,2,3, … , 𝑁} and 𝑑 ∈ {1,2,3, … , 𝐷}. Here, the uniform distribution is ∪. Each individuals of the 

primary and historical population is denoted as 𝑃𝑜𝑝𝑛,𝑑 and 𝐻𝑖𝑠𝑃𝑜𝑝𝑛,𝑑 respectively. 𝑌𝑝𝑜𝑝 represents the objective 
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function of the total population size where 𝑙𝑜𝑤𝑑 and 𝑢𝑝𝑑  are the lower and upper limits of the dimension, 

respectively. 

Step 2: Selection-I 

The historical population is updated through the iteration process where the ‘if-then rule’ is utilized. The 

equation below represents the process of generating the historical population. 

𝑖𝑓𝑎 < 𝑏, 𝑡ℎ𝑒𝑛 𝐻𝑖𝑠𝑃𝑜𝑝 ∶= 𝑃𝑜𝑝|𝑎, 𝑏~ ∪ (0,1)        (5) 

where, ∶= represents the ‘update’ operation.  

In BSA algorithm, the population is chosen through random selection from the prior generation of the historical 

population. The historical population is saved until it is updated. After that, a random shuffling function is 

applied for revising the order of the individuals. 

𝐻𝑖𝑠𝑃𝑜𝑝 ≔ 𝑝𝑒𝑟𝑚𝑢𝑡𝑖𝑛𝑔(𝐻𝑖𝑠𝑃𝑜𝑝)  (6) 

Step 3: Mutation 

In this stage, mutants are generated through the mutation process which involves a process of generating an 

initial trial population. The formation of the initial trial population is expressed as follows, 

𝑀𝑢𝑡𝑎𝑛𝑡 = 𝑃𝑜𝑝 + 𝐹. (𝐻𝑖𝑠𝑃𝑜𝑝 − 𝑃𝑜𝑝)  (7) 

where, F denotes the control parameter, which is used to change the amplitude of the search direction matrix 

and can be represented by a mathematical representation as follows. 

𝐹 =  3. 𝑟𝑎𝑛𝑑𝑛     (8) 

where 𝑟𝑎𝑛𝑑𝑛 is a function which generates normal distribution number (0~1). 

Step 4: Crossover 

In this stage, the final trial population is generated through the mutation process within the boundary condition. 

Typically, this stage comprises two steps as follows. 

Step 4(a): Part-I 

Firstly, a map matrix comprising the same size of Pop is generated in order to find the mutants which are 

involved in the mutation process. Thus, the target of the map matrix is to find the mutants through governing the 

individuals which are updated through the process of mutation. The equations (9)-(12) below represent the map 

matrix generation process. 

𝑀𝑎𝑝 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛,𝑚𝑎𝑝(1:𝑁,1:𝐷) = 1     (9) 

𝐼𝑓 𝑎 < 𝑏| 𝑎, 𝑏~ ∪ (0,1), 𝑡ℎ𝑒𝑛 

𝑓𝑜𝑟 𝑛 𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑁 𝑑𝑜 

𝑀𝑎𝑝 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛,𝑚𝑎𝑝(1:𝑁,1:𝐷) = 1     (10) 

                                                                           𝑒𝑛𝑑 

                                                                   𝑒𝑙𝑠𝑒 

𝑓𝑜𝑟 𝑛 𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑁 𝑑𝑜,  𝑚𝑎𝑝𝑛,𝑟𝑎𝑛𝑑𝑖(𝐷) = 0   

                                                                 𝑒𝑛𝑑 
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                                                                      𝑒𝑛𝑑 

Final trial population,  

𝑇𝑟𝑖𝑎𝑙𝑃𝑜𝑝𝑛,𝑑 ∶= {
𝑃𝑜𝑝𝑛,𝑑                  𝑖𝑓       𝑚𝑎𝑝𝑛,𝑑 = 1

𝑀𝑢𝑡𝑎𝑛𝑡𝑛,𝑑          𝑖𝑓        𝑚𝑎𝑝𝑛,𝑑 = 0
     

        (11) 

  

Step 4 (a): Part-II 

The final trial population is checked based on the boundary range 

𝑇𝑟𝑖𝑎𝑙𝑃𝑜𝑝𝑛,𝑑 = 𝑙𝑜𝑤𝑑 + 𝑟𝑎𝑛𝑑. (𝑢𝑝𝑑 − 𝑙𝑜𝑤𝑑)             (12) 

𝐼𝑓 𝑇𝑟𝑖𝑎𝑙𝑃𝑜𝑝 (𝑇𝑟𝑖𝑎𝑙𝑃𝑜𝑝𝑛,𝑑 < 𝑙𝑜𝑤𝑑)𝑜𝑟(𝑇𝑟𝑖𝑎𝑙𝑃𝑜𝑝𝑛,𝑑 > 𝑢𝑝𝑑)     

Step 5: Selection-II 

In this stage, the trial population generated in the crossover section is used to verify the objective function. 

Thereafter, the objective function is recalculated for each population using equation (13) and is compared with 

the previous population 𝑦𝑝𝑜𝑝 and consequently, the objective function is updated until the maximum iteration 

number is obtained. Finally, the optimal value of the hyper-parameter is selected using the minimum value of 

the objective function. 

Trial population objective function,  

𝑦𝑇𝑟𝑖𝑎𝑙𝑃𝑜𝑝 = 𝑓(𝑇𝑟𝑖𝑎𝑙)       (13) 

𝑃𝑜𝑝𝑛 = 𝑇𝑟𝑖𝑎𝑙𝑃𝑜𝑝𝑛  𝑖𝑓 𝑦𝑛,𝑇𝑟𝑖𝑎𝑙𝑃𝑜𝑝 > 𝑦𝑛,𝑃𝑂𝑝      (14) 

Gravitational Search Algorithm 

 
Rashedi et al. (2009) invented the gravitational search algorithm (GSA) method to achieve an optimal solution 

in any complex systems. He applied the concept of physics-based algorithms such as the law of gravity and 

mass interactions to develop GSA. GSA is based on the law of Newtonian gravity and laws of motion. The 

principle of GSA states that ‟every particle in the universe attracts every other particle with a force that is 

directly proportional to their masses and inversely proportional to the square of the distance between them” as 

expressed in the following equation
2
. 

𝐹 = 𝐺
𝑀1𝑀2

𝑅2
     

     (15) 

where 𝐹 denotes the magnitude of the gravitational force; 𝐺 represents the gravitational constant; M1 and 𝑀2 

characterize the mass of the first and second particles, respectively; and 𝑅 is the distance between the two 

particles. 

Newton’s second law states a relationship between acceleration, 𝑎, force, 𝐹,  and mass, 𝑚 of a particle which is 

expressed as follows; 

𝑎 =
𝐹

𝑚
     

(16) 

A new term named Gravitational constant, 𝐺(𝑡) was introduced which is assessed using the initial value of the 

gravitational constant, 𝐺(𝑡0) and the ratio of initial time 𝑡0 and actual time 𝑡 as follows; 

𝐺(𝑡) = 𝐺(𝑡0) × (
𝑡0
𝑡
)

𝛽

β < 1    
    (17) 
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The positions of the N number of the agents are initialized shown as follows: 

𝑋𝑖 = (𝑋𝑖
1, … … . 𝑋𝑖

𝑑 , …… 𝑋𝑖
𝑛),    𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁                          (18) 

 

where Xdi is the position of i-th agent in the d-th dimension and n is the space dimension. The mathematical 

equations for the best and worst value and the masses of each agent are presented as, 

𝑏𝑒𝑠𝑡(𝑡) = 𝑚𝑖𝑛𝑓𝑖𝑡𝑗(𝑡)       (19) 

𝑊𝑜𝑟𝑠𝑡(𝑡) = 𝑚𝑎𝑥𝑓𝑖𝑡𝑗(𝑡)   (20)  

𝑚𝑖(𝑡) =
𝑓𝑖𝑡𝑖(𝑡) − 𝑊𝑜𝑟𝑠𝑡 (𝑡)

𝑏𝑒𝑠𝑡 (𝑡) − 𝑊𝑜𝑟𝑠𝑡 (𝑡)
 

  (21)  

𝑀𝑖(𝑡) =
𝑚𝑖(𝑡)

∑ 𝑚𝑖(𝑡)
𝑁
𝑗=1

 
  (22)  

The total force F for the i-th agent is evaluated based on the gravitational constant, position, acceleration. Then, 

the velocity, 𝑣 and position, 𝑥 are updated. 

 

𝐺(𝑡) = 𝐺0𝑒
(−𝛼𝑡/𝑇)     (23) 

𝐹𝑖𝑗
𝑑(𝑡) = 𝐺(𝑡)

𝑀𝑝𝑖×𝑀𝛼𝑗

𝑅𝑖𝑗 + 𝜀
(𝑋𝑗

𝑑(𝑡) − 𝑋𝑖
𝑑(𝑡)) 

(24)  

𝐹𝑖
𝑑(𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑗

𝑗∈𝐾𝑏𝑒𝑠𝑡,𝑗≠𝑖

𝐹𝑖𝑗
𝑑(𝑡) 

(25)  

𝑎𝑖
𝑑(𝑡) =

𝐹𝑖
𝑑(𝑡)

𝑀𝑖(𝑡)
 

(26)  

𝑣𝑖
𝑑(𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖 × 𝑣𝑖

𝑑(𝑡) + 𝑎𝑖
𝑑(𝑡) (27)  

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑(𝑡) + 𝑣𝑖
𝑑(𝑡 + 1) (28)  

Particle Swarm Optimization 

 
Particle swarm optimization (PSO) is an evolutionary computation technique developed by Eberhart and 

Kennedey (1995), which is inspired by the social behavior of bird flocking. It is applied by numerous 

researchers because of its verified robustness, ease of implementation, and global exploration capability in the 

various application. PSO is a stochastic algorithm which is contingent on the population as a swarm and is used 

to iteratively find the best results of swam particle with optimal values. The particles in the PSO algorithm are 

travelling to two locations in the search space. The first location is the best point where the swarm finds the 

current iteration (local best). The second location is the best point achieved through all previous iterations 

(global best). The basic principles of the PSO algorithm can be defined in terms of two main factors i.e. velocity 

of the particle and partial’s position in the search space. The velocity of the particle can be expressed through 

the equation below
3
,  

 

𝑣𝑖,𝑗
(𝑡+1)

= 𝑤 𝑣𝑖
(𝑡)

+ 𝑐1 𝑟1[𝑝𝑏𝑒𝑠𝑡𝑖,𝑗 − 𝑋𝑖,𝑗
(𝑡)

] + 𝑐2𝑟2  [𝑔𝑏𝑒𝑠𝑡𝑖,𝑗 − 𝑋𝑖,𝑗
(𝑡)

]        (29)  

where 𝑣𝑖,𝑗
(𝑡+1)

 and 𝑣𝑖
(𝑡)

 represent the new velocity and present velocity of the particle, respectively.  𝑖 is particle 

number, represented as, 𝑖 =  [1,2,3, … . , 𝑁] and 𝑗  is the search space, represented as, 𝑗 = [1,2 … , 𝐷]. 

Acceleration co-efficients are denoted as 𝑐1 and 𝑐1. 𝑤 is the weight factor.  𝑟1 and 𝑟2 represent  the random 

interval between value (0,1). 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 denote the best point found through the current iteration (local 

best) and all previous iterations (global best), respectively.  

The positions of the particles in the search space 𝑗 can be defined as 
4
. 
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𝑥𝑖,𝑗
(𝑡+1)(𝑡 + 1) =  𝑥𝑖,𝑗

(𝑡)
+ 𝑣𝑖,𝑗

(𝑡+1)
     (30)  

where, 𝑥𝑖,𝑗
(𝑡+1)

and 𝑥𝑖,𝑗
(𝑡)

 represent the updated swarm position and present swarm 

position, respectively.  

Backpropagation Neural Network Algorithm 

A feedforward backpropagation neural network algorithm (BPNN) model consists of three layers; input layer, 

hidden layer, and output layer, as shown in Fig. 1. The first layer is the input layers to characterize the input 

variables, the second layer consists of one or more hidden layers and the third layer is the output layer to 

characterize the output variables. The detail explanation of each step is summarized in the following steps
5
. The 

flowchart of the BPNN structure is divided into four steps as shown in Fig. 2. 

(Input 1)

(Input 2)

(Input 3)

(Output)

X1

 X2

X3

h1

h2

hg-2

hg-1

Input Layer Hidden Layer Output Layer

xp

 

Fig 1. Structure of BPNN for SOC estimation 
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Start

Step 1 - Initialization: Set all the weights and biases of 

the network to random numbers within the boundary 

range. Set the number of iterations

Step 2 - Forward pass: Activate the network applying 

input and desired output. Calculate the outputs of 

neurons in hidden layer and output layer using sigmoid 

activation function

Step 4 - Weight training: Update weights and biases to 

reflect the propagating error associated with output 

neurons

Reach maximum iterations

Stop

No

Yes

Increase iteration by one

Step 3 - Backward pass: Error information of output 

layer and hidden layer is calculated

 

Fig 2. Flowchart of BPNN model 

Step  1: Initialize weight and bias to random variables. 

Step 2: For input pattern p, the i-th input layer node holds xp,i. Net input to j-th node in the hidden layer is 

𝑛𝑒𝑡𝑗 = ∑ 𝑤𝑖,𝑗𝑥𝑖 + 𝜃𝑖,𝑗

𝑗

 
  (31) 

where, 𝑤𝑖,𝑗  is the weight from the input layer to hidden layer, 𝜃𝑖,𝑗   represents the bias from the input layer to the 

hidden  layer. 

The output of j-th node in the hidden layer is 

𝑂𝑗 = 𝑓(𝑛𝑒𝑡𝑗) (32) 

The hidden layer uses the log-sigmoid function as a transfer function which is defined as  

𝑓(𝑛𝑒𝑡) =
1

1 + 𝑒(−𝑛𝑒𝑡)
 

(34) 

Net input to k-th node in the output layer is 

𝑛𝑒𝑡𝑘 = ∑ 𝑤𝑗,𝑘𝑂𝑗 + 𝜃𝑗,𝑘

𝑘

 
       (35) 
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𝑤𝑘,𝑗 , 𝜃𝑘,𝑗, are the weight and bias from the hidden layer to the output layer. Linear activation function is used in 

the output layer. Output of k-th node in output layer is, 

𝑂𝑘 = 𝑓(𝑛𝑒𝑡𝑘)             (36) 

Step 3: The error is estimated and propagates backward from the output layer to the hidden layer. The error in 

the output layer is computed as  

𝑒𝑘 = 𝑇𝑘 − 𝑂𝑘           (37) 

𝜕𝑘 = 𝑒𝑘  𝑓
′(𝑛𝑒𝑡𝑘)        (38) 

 

 𝑇𝑘  is the true output  

The error in the hidden layer is calculated as  

𝜕𝑗 = 𝑓′(𝑛𝑒𝑡𝑗) 𝜕𝑘𝑤𝑗,𝑘    (39) 

Step 4: In this stage, weights and biases are updated.  

Weights are updated using the following equations 

∆𝑤𝑗,𝑘 = 𝛼𝜕𝑘𝑂𝑗   (40) 

𝑤𝑗,𝑘 = 𝑤𝑗,𝑘 + ∆𝑤𝑗,𝑘   (41) 

∆𝑤𝑖,𝑗 = 𝛼𝜕𝑗𝑥𝑖   (42) 

𝑤𝑖,𝑗 = 𝑤𝑖,𝑗 + ∆𝑤𝑖,𝑗   (43) 

where 𝛼 is the learning rate. 

Biases are updated using the following equations, 

∆𝜃𝑗,𝑘 = 𝛼𝜕𝑘   (44) 

𝜃𝑗,𝑘 = 𝜃𝑗,𝑘 + ∆𝜃𝑗,𝑘   (45) 

∆𝜃𝑖,𝑗 = 𝛼𝜕𝑗   (46) 

𝜃𝑖,𝑗 = 𝜃𝑖,𝑗 + ∆𝜃𝑖,𝑗   (47) 

Radial Basis Function Neural Network Algorithm 

Radial basis function neural network (RBFNN) is a feed forward self-learning algorithm which consists of a 

non-linear function with a symmetrical organization. RBFNN has good global approximation performance 
6
. 
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The structure of RBFNN consists of three-layer including one input layer, one hidden layer and one output 

layer, as shown in Fig. 3. 

Input Layer
Hidden Layer

Output layer

x1

x2

xn

φ1

φ2

φm

w1

w2

wm

. 
 .

  
.

. 
 .

  .

y
Σ

 

Fig Error! No text of specified style in document.. The structure of RBFNN for SOC 

estimation 

In this research, the Gaussian distribution is used as an activation function to estimate SOC. RBFNN has hidden 

neurons in the hidden layer neurons which are called RBF units. The location of the Gaussian function is 

characterized by two key parameters of RBF units named center and width. The center and width terms of the j 

Gaussian distribution function are denoted by 𝜆𝑚  and 𝜎𝑚, respectively. The output of the mth hidden neuron of 

the RBFNN can be expressed by
6
, 

𝜙𝑚(𝑛) = 𝜙𝑚{𝑥(𝑛), 𝜆𝑚(𝑛), 𝜎𝑚(𝑛)}     (48) 

= 𝑒
−

‖𝑥(𝑛)−𝜆𝑚(𝑛)‖2

𝜎𝑚
2 (𝑛)

,𝑓𝑜𝑟 𝑚=1,2,…,𝑀
                                       

    (49) 

where, 𝑥 is the input vector in the input layer. The output of RBFNN comprises linear function and is calculated 

by multiplying the weight values with hidden nodes which is shown in the following equation,  

𝑦𝑘 = ∑ 𝑤𝑘𝑚𝜙𝑚(𝑛), 𝑓𝑜𝑟 𝑘 = 1,2, … ,

𝑀

𝑚=1

𝑚 

    (50) 

where, 𝑦𝑘  represents the output of the kth neuron in the output layer, 𝑤𝑘𝑚  denotes the weight, connecting the mth 

hidden neurons to the kth output layer neuron and 𝜙𝑚 is the hidden layer output for mth neurons.  

Extreme Learning Machine Algorithm   

Extreme learning machine algorithm (ELM) is appropriate for predicting outcomes in complex and nonlinear 

systems. ELM has a number of advantageous features such as better scalability, better generalization 

performance for regression and classification, better approximation of any target continuous function, lower 

computation complexity and faster learning speed which help to deliver better estimation results than other 

machine learning algorithms
7
. ELM is designed using three layers, one input layer, one hidden layer, and one 

output layer, as depicted in Fig. 4. The execution of ELM is performed by randomly assigning the input weights 

and hidden layers biases. The steps of ELM are described as follows
8
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Fig 4. Single layer ELM model structure 

i. At first, the parameters are assigned randomly. The input weight vector and hidden layer bias are 

represented as 𝑥𝑖 = [𝑥𝑖1,𝑥𝑖2, … …𝑥𝑖𝑁,]
𝑇
 and 𝑏𝑖 respectively where 𝑖 is the number of neurons in hidden 

layer. The hidden neurons are assigned as 𝑁. The value of 𝑁 can be changed in order to achieve 

reasonable accuracy. 

ii.  Calculate the output matrix of the output layer. The mathematical expression is represented by, 

∑𝛽𝑖𝑓𝑖(𝑥𝑖) =

𝑁̃

𝑖=1

∑𝛽𝑖𝑓(𝑎𝑖 . 𝑥𝑗 + 𝑏𝑗)

𝑁̃

𝑖=1

= 𝑡𝑗,   𝑗 = 1,… , 𝑁 

 

(51) 

Where 𝑎𝑖 = [𝑎𝑖1,𝑎𝑖2 , … , 𝑎𝑖𝑛]
𝑇
 represents the weight vector which connects the input nodes and i-th 

hidden nodes. 𝛽𝑖 = [𝛽𝑖1,𝛽𝑖2, … , 𝛽𝑖𝑛]
𝑇
represents the output weight which connect the i-th hidden layer 

neuron and output layer neuron. f () is the activation function which is determined before training. In this 

research, the most popular sigmoid function is used as the activation function 
9
. 

𝑓(𝑎𝑖 . 𝑥𝑗 + 𝑏𝑗) =
1

1+𝑒
−(𝑎𝑖.𝑥𝑗+𝑏𝑗)

−1
, 𝑖 = 1, … . , 𝐿, 𝑗 = 1,… . , 𝑁  

(52) 

 

 Equation (51) can be represented compactly as, 

𝐻𝛽 = 𝑇 (53) 

Where 𝐻(𝑎1, … , 𝑎𝑁,𝑏1, … , 𝑏𝑁,,𝑥1, … , 𝑥𝑁) 

𝐻 = [
𝑓(𝑎1. 𝑥1 + 𝑏1) … 𝑓(𝑎𝑁,. 𝑥1 + 𝑏𝑁̃,)

. . . … …
𝑓(𝑎1. 𝑥𝑁 + 𝑏1) … 𝑓(𝑎𝑁,. 𝑥𝑁 + 𝑏𝑁,)

]

𝑁×𝑁

 

𝛽 =

[
 
 
 
𝛽1

𝑇

.

..
𝛽𝑁

𝑇]
 
 
 

𝑁×𝑚

   𝑇 =

[
 
 
 
𝑡1
𝑇

.

..
𝑇𝑁

𝑇]
 
 
 

𝑁×𝑚

 

H is the matrix of the hidden layer of the ELM network.  

iii. The hidden layer output matrix H is determined by randomly allocated input weights and hidden layer 

biases. Hence, a linear equation 𝐻𝛽 = 𝑇 is obtained. 
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‖𝐻(𝑎1, … , 𝑎𝑁,𝑏1, … , 𝑏𝑁,)𝛽̂ − 𝑇‖ = min
𝛽

‖𝐻(𝑎1, … , 𝑎𝑁,𝑏1, … , 𝑏𝑁,)𝛽̂ − 𝑇‖  

(54) 

The least square solution is used to solve the above equation. The output weight 𝛽 is estimated by, 

𝛽̂ = 𝐻+𝑇 (55) 

where 𝐻+ is the Moore–Penrose generalized inverse of H. The optimal solution 𝛽̂ features the lower 

training error and optimal generalization performance. 

Deep Recurrent Neural Network Algorithm 

Deep recurrent neural network algorithm (DRNN) is predominantly well preferred for the prediction of complex 

time series problem due to its powerful computational tool. The DRNN is successfully implemented for 

parameter projecting in numerous application such as industries, image processing and forecasting 
10

. Moreover, 

DRNN comprises a unique dynamic memory, through which complex system can be addressed with the 

appropriate value of weights. The conventional recurrent neural network does not hold more than two non-linear 

functions in the hidden layer 
11

. With the facility of real-world data availability and enhancement of computing 

power and memory storage system, the deeper architecture of recurrent neural network has been explored in 

many application. The learning procedure of the DRNN is implemented through one of the two ways such as 

feed-forward connection and feedback connection 
12

. Although the training process of DRNN has some 

similarity with the feed forward neural network, there are some differences between the two processes. The 

output response is evaluated based on a repeated feedback process which contains the hidden output of that 

particular instance and hidden output from the previous instance. The information is stored on the feedback loop 

of the previous phase and final output is predicted based on the instantaneous output and the previous output. 

The basic structure of the DRNN is presented in Fig. 5. 

 

Fig. 5. Structure of DRNN for SOC estimation 

The DRNN is used to estimate SOC at time t with input series (𝐿 = 𝐿1, …𝐿𝑡), hidden vector series (𝑃 =
𝑃1, …𝑃𝑡) and output vector series (𝑦 = 𝑦1, …𝑦𝑡). The equations are shown below, 

𝑛𝑒𝑡𝑙 = (𝑊ℎ𝐿𝐿𝑡 + 𝑊𝑃𝑃𝑃𝑡−1 + 𝑏𝑃)    (56) 

𝑃𝑡 = 𝑓(𝑛𝑒𝑡𝑙)    (57) 

𝑛𝑒𝑡𝑡 = (𝑊𝑦ℎ𝑃𝑡 + 𝑏𝑦)    (58) 

𝑦𝑡 = 𝑓(𝑛𝑒𝑡𝑡)    (59) 

where 𝑊ℎ𝐿  is the weight between the input layer and the hidden layer, 𝑊𝑃𝑃  is the weight between a hidden layer 

and itself at adjacent time steps, 𝑊𝑦ℎ   is the weight between the hidden layer and output layer. The hidden layer 
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bias and output layer bias are represented by 𝑏𝑃  and 𝑏𝑦. f() denotes the sigmoid activation function. 𝑃𝑡   and 𝑦𝑡  

represent the output of hidden layer and output layer respectively.  

Random Forest Algorithm 

Breiman (2001) introduced an enhanced machine leaning algorithm named random forest (RF). RF does not 

overfit as a predictor, runs fast and efficiently when handling large datasets, thus leading to superior 

performance. RF is based on set on predictors which depend on trees in the forests through the random values of 

each tree. The RF is modeled by picking up a group of small input dataset and then splitting them in a random 

order. The procedures of RF begin with the formation of new dataset equal to the length of the original data. The 

bootstrapping technique is used to choose the data in a random way from the original data set. A sequence of 

binary splits is formed from the new dataset to create the decision trees. The responses to the estimated data are 

created using classification and regression. The response comes from the decision of each tree in the forest that 

generates from the root node and then transfers to a leaf node 
14

. The structure of RF algorithm is shown in Fig. 

6. 

 

Fig. 6. Flow diagram of random forest algorithm structure 

The RF regression is developed using the p dimension input vector of 𝑋 = 𝑥1, 𝑥2, … … , 𝑥𝑝 to build the forest. A 

set of K tress {𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝑘(𝑥)}  is used inside the forest. The actual output value is determined by each 

tree, represented as 𝑌̂1 =  𝑇1(𝑋), … , 𝑌̂𝑚 = 𝑇1(𝑋), where 𝑚 = 1,… , 𝐾. The outcome of RF is evaluated by 

estimating the average of all trees predictors, as expressed in the following equation, 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑅𝐹(𝑋) =
1

𝑘
∑ 𝑌𝑁̂(𝑋)

𝐾

𝑘=1

 

   (60) 

The training dataset 𝐷 = 𝐷1,𝐷2, … ,𝐷𝑛, = {(𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥𝑛, 𝑦𝑛)} is drawn independently from input and 

output where 𝑥𝑖,𝑖 = 1,… , 𝑛 denotes the input vector training dataset and 𝑦𝑖,𝑖 = 1,… , 𝑛 expresses the output 

vector training dataset. The training procedures for the growth of tree in the forest are explained as follows  

i. A bootstrap sample is drawn for each regression tree through the available training dataset. A 

bootstrap sample is a random sample conducted with replacement. A different subset of dataset is 

employed to improve the tree model for each bootstrap sample. The Out-of-bag (OBB) samples are 

formed by leaving one third of the dataset. A total of two third sample is available of the new training 

sample. OBB is the process of neglecting values from each bootstrap sample. OBB data plays a key 

part in tree development and is checked with the estimated values at each step. 



Page 12 of 12 
 

ii. At each node of the regression tree in the bootstrap sample, the best split is chosen among the 

randomly selected subset. The node in each tree plays a vital role in the correction of changing 

parameters of the algorithm. 

iii. Each tree is designed to the largest extended possible without pruning.  

iv. The predictions are evaluated by placing each OBB observations of the test data for each tree. The 

mean value of predictions of the total regression trees are calculated through equation (60). 

The accuracy and error rate of RF are evaluated though the minimization of the OBB. The OBB error is an 

important feature of RF. As mentioned earlier, each tree is developed based on the bootstrap sample that 

consists of roughly two thirds of the training data. The remaining one-third (OBB) of the training data is 

not included in the learning sample for this tree and can be used for testing. The MSE is employed to 

observe the OBB error which is found by assessing the deviation between predicted and reference values, 

as shown the following equation, 

𝑀𝑆𝐸 ≈ 𝑀𝑆𝐸𝑂𝐵𝐵 =
1

𝑛
∑(𝑌̂(𝑋𝑖) − 𝑌𝑖)

2
𝑛

𝑖=1

 
   (61) 

where 𝑌̂(𝑋𝑖)  represents the predicted output, 𝑌𝑖   represents the observed output and n is the total number of 

samples.  
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