
Page 1 of 12

Supplementary Material

Optimization Algorithms for Machine Learning

M. A. Hannan

1*
, M. S. Hossain Lipu

2*
, Aini Hussain

2
, Pin Jern Ker

1
, T. M. I. Mahlia

3
, M. Mansor

1
, Afida

Ayob
2
, Mohamad H. Saad

2
, Z. Y. Dong

4

1
Department of Electrical Power Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang

43000, Malaysia.
2
Centre for Integrated Systems Engineering and Advanced Technologies, FKAB, Universiti Kebangsaan

Malaysia, Bangi 43600, Malaysia.
3
School of Information, Systems and Modelling, University of Technology Sydney, Australia.

4
School of Electrical Engineering and Telecommunications, UNSW, Sydney, Australia.

*Corresponding author email (M. A. Hannan): hannan@uniten.edu.my; M. S. Hossain Lipu

(lipu@ukm.edu.my)

Backtracking Search Algorithm

Backtracking search algorithm (BSA) is a newly developed meta-heuristic population-based algorithm to solve

the complex and non-linear optimization problems. BSA is capable to operate large dimensional problem for the

optimum solutions using the historical population and map matrix concepts. With the help of historical

population, BSA explores and exploits the better solution to address the local minima trap. On the contrary, map

matrix does the necessary correction to change the search direction in order to confirm accurate movement

during the exploitation search. BSA is easy to implement with few parameters that are fast, efficient and robust

to control parameters. The execution process of BSA is conducted through a gradual process involving some

steps namely Selection I, mutation, crossover and Selection II. The detail process of BSA is explained as

follows
1
,

Step 1: Initialization

The BSA is initialized by generating the numerical values of the initial population and historical population

from the uniform distribution of random numbers within the boundary constraints. Also, in this stage, the

objective function is being calculated.

𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑃𝑜𝑝𝑛,𝑑~ ∪ (𝑙𝑜𝑤𝑑 , 𝑢𝑝𝑑) (1)

The representation of the objective function of the primary population,

𝑦𝑝𝑜𝑝 = 𝑓(𝑃𝑜𝑝) (2)

The historical population is represented as such,

𝐻𝑖𝑠𝑃𝑜𝑝~ ∪ (𝑙𝑜𝑤𝑑 , 𝑢𝑝𝑑) (3)

The objective function of the historical population,

𝑌𝐻𝑖𝑠𝑃𝑜𝑝 = 𝑓(𝐻𝑖𝑠𝑃𝑜𝑝) (4)

where, 𝑥 ∈ {1,2,3, … , 𝑁} and 𝑑 ∈ {1,2,3, … , 𝐷}. Here, the uniform distribution is ∪. Each individuals of the

primary and historical population is denoted as 𝑃𝑜𝑝𝑛,𝑑 and 𝐻𝑖𝑠𝑃𝑜𝑝𝑛,𝑑 respectively. 𝑌𝑝𝑜𝑝 represents the objective

Page 2 of 12

function of the total population size where 𝑙𝑜𝑤𝑑 and 𝑢𝑝𝑑 are the lower and upper limits of the dimension,

respectively.

Step 2: Selection-I

The historical population is updated through the iteration process where the ‘if-then rule’ is utilized. The

equation below represents the process of generating the historical population.

𝑖𝑓𝑎 < 𝑏, 𝑡ℎ𝑒𝑛 𝐻𝑖𝑠𝑃𝑜𝑝 ∶= 𝑃𝑜𝑝|𝑎, 𝑏~ ∪ (0,1) (5)

where, ∶= represents the ‘update’ operation.

In BSA algorithm, the population is chosen through random selection from the prior generation of the historical

population. The historical population is saved until it is updated. After that, a random shuffling function is

applied for revising the order of the individuals.

𝐻𝑖𝑠𝑃𝑜𝑝 ≔ 𝑝𝑒𝑟𝑚𝑢𝑡𝑖𝑛𝑔(𝐻𝑖𝑠𝑃𝑜𝑝) (6)

Step 3: Mutation

In this stage, mutants are generated through the mutation process which involves a process of generating an

initial trial population. The formation of the initial trial population is expressed as follows,

𝑀𝑢𝑡𝑎𝑛𝑡 = 𝑃𝑜𝑝 + 𝐹. (𝐻𝑖𝑠𝑃𝑜𝑝 − 𝑃𝑜𝑝) (7)

where, F denotes the control parameter, which is used to change the amplitude of the search direction matrix

and can be represented by a mathematical representation as follows.

𝐹 = 3. 𝑟𝑎𝑛𝑑𝑛 (8)

where 𝑟𝑎𝑛𝑑𝑛 is a function which generates normal distribution number (0~1).

Step 4: Crossover

In this stage, the final trial population is generated through the mutation process within the boundary condition.

Typically, this stage comprises two steps as follows.

Step 4(a): Part-I

Firstly, a map matrix comprising the same size of Pop is generated in order to find the mutants which are

involved in the mutation process. Thus, the target of the map matrix is to find the mutants through governing the

individuals which are updated through the process of mutation. The equations (9)-(12) below represent the map

matrix generation process.

𝑀𝑎𝑝 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛,𝑚𝑎𝑝(1:𝑁,1:𝐷) = 1 (9)

𝐼𝑓 𝑎 < 𝑏| 𝑎, 𝑏~ ∪ (0,1), 𝑡ℎ𝑒𝑛

𝑓𝑜𝑟 𝑛 𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑁 𝑑𝑜

𝑀𝑎𝑝 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛,𝑚𝑎𝑝(1:𝑁,1:𝐷) = 1 (10)

 𝑒𝑛𝑑

 𝑒𝑙𝑠𝑒

𝑓𝑜𝑟 𝑛 𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑁 𝑑𝑜, 𝑚𝑎𝑝𝑛,𝑟𝑎𝑛𝑑𝑖(𝐷) = 0

 𝑒𝑛𝑑

Page 3 of 12

 𝑒𝑛𝑑

Final trial population,

𝑇𝑟𝑖𝑎𝑙𝑃𝑜𝑝𝑛,𝑑 ∶= {
𝑃𝑜𝑝𝑛,𝑑 𝑖𝑓 𝑚𝑎𝑝𝑛,𝑑 = 1

𝑀𝑢𝑡𝑎𝑛𝑡𝑛,𝑑 𝑖𝑓 𝑚𝑎𝑝𝑛,𝑑 = 0

 (11)

Step 4 (a): Part-II

The final trial population is checked based on the boundary range

𝑇𝑟𝑖𝑎𝑙𝑃𝑜𝑝𝑛,𝑑 = 𝑙𝑜𝑤𝑑 + 𝑟𝑎𝑛𝑑. (𝑢𝑝𝑑 − 𝑙𝑜𝑤𝑑) (12)

𝐼𝑓 𝑇𝑟𝑖𝑎𝑙𝑃𝑜𝑝 (𝑇𝑟𝑖𝑎𝑙𝑃𝑜𝑝𝑛,𝑑 < 𝑙𝑜𝑤𝑑)𝑜𝑟(𝑇𝑟𝑖𝑎𝑙𝑃𝑜𝑝𝑛,𝑑 > 𝑢𝑝𝑑)

Step 5: Selection-II

In this stage, the trial population generated in the crossover section is used to verify the objective function.

Thereafter, the objective function is recalculated for each population using equation (13) and is compared with

the previous population 𝑦𝑝𝑜𝑝 and consequently, the objective function is updated until the maximum iteration

number is obtained. Finally, the optimal value of the hyper-parameter is selected using the minimum value of

the objective function.

Trial population objective function,

𝑦𝑇𝑟𝑖𝑎𝑙𝑃𝑜𝑝 = 𝑓(𝑇𝑟𝑖𝑎𝑙) (13)

𝑃𝑜𝑝𝑛 = 𝑇𝑟𝑖𝑎𝑙𝑃𝑜𝑝𝑛 𝑖𝑓 𝑦𝑛,𝑇𝑟𝑖𝑎𝑙𝑃𝑜𝑝 > 𝑦𝑛,𝑃𝑂𝑝 (14)

Gravitational Search Algorithm

Rashedi et al. (2009) invented the gravitational search algorithm (GSA) method to achieve an optimal solution

in any complex systems. He applied the concept of physics-based algorithms such as the law of gravity and

mass interactions to develop GSA. GSA is based on the law of Newtonian gravity and laws of motion. The

principle of GSA states that ‟every particle in the universe attracts every other particle with a force that is

directly proportional to their masses and inversely proportional to the square of the distance between them” as

expressed in the following equation
2
.

𝐹 = 𝐺
𝑀1𝑀2

𝑅2

 (15)

where 𝐹 denotes the magnitude of the gravitational force; 𝐺 represents the gravitational constant; M1 and 𝑀2

characterize the mass of the first and second particles, respectively; and 𝑅 is the distance between the two

particles.

Newton’s second law states a relationship between acceleration, 𝑎, force, 𝐹, and mass, 𝑚 of a particle which is

expressed as follows;

𝑎 =
𝐹

𝑚

(16)

A new term named Gravitational constant, 𝐺(𝑡) was introduced which is assessed using the initial value of the

gravitational constant, 𝐺(𝑡0) and the ratio of initial time 𝑡0 and actual time 𝑡 as follows;

𝐺(𝑡) = 𝐺(𝑡0) × (
𝑡0
𝑡
)

𝛽

β < 1
 (17)

Page 4 of 12

The positions of the N number of the agents are initialized shown as follows:

𝑋𝑖 = (𝑋𝑖
1, … … . 𝑋𝑖

𝑑 , …… 𝑋𝑖
𝑛), 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁 (18)

where Xdi is the position of i-th agent in the d-th dimension and n is the space dimension. The mathematical

equations for the best and worst value and the masses of each agent are presented as,

𝑏𝑒𝑠𝑡(𝑡) = 𝑚𝑖𝑛𝑓𝑖𝑡𝑗(𝑡) (19)

𝑊𝑜𝑟𝑠𝑡(𝑡) = 𝑚𝑎𝑥𝑓𝑖𝑡𝑗(𝑡) (20)

𝑚𝑖(𝑡) =
𝑓𝑖𝑡𝑖(𝑡) − 𝑊𝑜𝑟𝑠𝑡 (𝑡)

𝑏𝑒𝑠𝑡 (𝑡) − 𝑊𝑜𝑟𝑠𝑡 (𝑡)

 (21)

𝑀𝑖(𝑡) =
𝑚𝑖(𝑡)

∑ 𝑚𝑖(𝑡)
𝑁
𝑗=1

 (22)

The total force F for the i-th agent is evaluated based on the gravitational constant, position, acceleration. Then,

the velocity, 𝑣 and position, 𝑥 are updated.

𝐺(𝑡) = 𝐺0𝑒
(−𝛼𝑡/𝑇) (23)

𝐹𝑖𝑗
𝑑(𝑡) = 𝐺(𝑡)

𝑀𝑝𝑖×𝑀𝛼𝑗

𝑅𝑖𝑗 + 𝜀
(𝑋𝑗

𝑑(𝑡) − 𝑋𝑖
𝑑(𝑡))

(24)

𝐹𝑖
𝑑(𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑗

𝑗∈𝐾𝑏𝑒𝑠𝑡,𝑗≠𝑖

𝐹𝑖𝑗
𝑑(𝑡)

(25)

𝑎𝑖
𝑑(𝑡) =

𝐹𝑖
𝑑(𝑡)

𝑀𝑖(𝑡)

(26)

𝑣𝑖
𝑑(𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖 × 𝑣𝑖

𝑑(𝑡) + 𝑎𝑖
𝑑(𝑡) (27)

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑(𝑡) + 𝑣𝑖
𝑑(𝑡 + 1) (28)

Particle Swarm Optimization

Particle swarm optimization (PSO) is an evolutionary computation technique developed by Eberhart and

Kennedey (1995), which is inspired by the social behavior of bird flocking. It is applied by numerous

researchers because of its verified robustness, ease of implementation, and global exploration capability in the

various application. PSO is a stochastic algorithm which is contingent on the population as a swarm and is used

to iteratively find the best results of swam particle with optimal values. The particles in the PSO algorithm are

travelling to two locations in the search space. The first location is the best point where the swarm finds the

current iteration (local best). The second location is the best point achieved through all previous iterations

(global best). The basic principles of the PSO algorithm can be defined in terms of two main factors i.e. velocity

of the particle and partial’s position in the search space. The velocity of the particle can be expressed through

the equation below
3
,

𝑣𝑖,𝑗
(𝑡+1)

= 𝑤 𝑣𝑖
(𝑡)

+ 𝑐1 𝑟1[𝑝𝑏𝑒𝑠𝑡𝑖,𝑗 − 𝑋𝑖,𝑗
(𝑡)

] + 𝑐2𝑟2 [𝑔𝑏𝑒𝑠𝑡𝑖,𝑗 − 𝑋𝑖,𝑗
(𝑡)

] (29)

where 𝑣𝑖,𝑗
(𝑡+1)

 and 𝑣𝑖
(𝑡)

 represent the new velocity and present velocity of the particle, respectively. 𝑖 is particle

number, represented as, 𝑖 = [1,2,3, … . , 𝑁] and 𝑗 is the search space, represented as, 𝑗 = [1,2 … , 𝐷].

Acceleration co-efficients are denoted as 𝑐1 and 𝑐1. 𝑤 is the weight factor. 𝑟1 and 𝑟2 represent the random

interval between value (0,1). 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 denote the best point found through the current iteration (local

best) and all previous iterations (global best), respectively.

The positions of the particles in the search space 𝑗 can be defined as
4
.

Page 5 of 12

𝑥𝑖,𝑗
(𝑡+1)(𝑡 + 1) = 𝑥𝑖,𝑗

(𝑡)
+ 𝑣𝑖,𝑗

(𝑡+1)
 (30)

where, 𝑥𝑖,𝑗
(𝑡+1)

and 𝑥𝑖,𝑗
(𝑡)

 represent the updated swarm position and present swarm

position, respectively.

Backpropagation Neural Network Algorithm

A feedforward backpropagation neural network algorithm (BPNN) model consists of three layers; input layer,

hidden layer, and output layer, as shown in Fig. 1. The first layer is the input layers to characterize the input

variables, the second layer consists of one or more hidden layers and the third layer is the output layer to

characterize the output variables. The detail explanation of each step is summarized in the following steps
5
. The

flowchart of the BPNN structure is divided into four steps as shown in Fig. 2.

(Input 1)

(Input 2)

(Input 3)

(Output)

X1

 X2

X3

h1

h2

hg-2

hg-1

Input Layer Hidden Layer Output Layer

xp

Fig 1. Structure of BPNN for SOC estimation

Page 6 of 12

Start

Step 1 - Initialization: Set all the weights and biases of

the network to random numbers within the boundary

range. Set the number of iterations

Step 2 - Forward pass: Activate the network applying

input and desired output. Calculate the outputs of

neurons in hidden layer and output layer using sigmoid

activation function

Step 4 - Weight training: Update weights and biases to

reflect the propagating error associated with output

neurons

Reach maximum iterations

Stop

No

Yes

Increase iteration by one

Step 3 - Backward pass: Error information of output

layer and hidden layer is calculated

Fig 2. Flowchart of BPNN model

Step 1: Initialize weight and bias to random variables.

Step 2: For input pattern p, the i-th input layer node holds xp,i. Net input to j-th node in the hidden layer is

𝑛𝑒𝑡𝑗 = ∑ 𝑤𝑖,𝑗𝑥𝑖 + 𝜃𝑖,𝑗

𝑗

 (31)

where, 𝑤𝑖,𝑗 is the weight from the input layer to hidden layer, 𝜃𝑖,𝑗 represents the bias from the input layer to the

hidden layer.

The output of j-th node in the hidden layer is

𝑂𝑗 = 𝑓(𝑛𝑒𝑡𝑗) (32)

The hidden layer uses the log-sigmoid function as a transfer function which is defined as

𝑓(𝑛𝑒𝑡) =
1

1 + 𝑒(−𝑛𝑒𝑡)

(34)

Net input to k-th node in the output layer is

𝑛𝑒𝑡𝑘 = ∑ 𝑤𝑗,𝑘𝑂𝑗 + 𝜃𝑗,𝑘

𝑘

 (35)

Page 7 of 12

𝑤𝑘,𝑗 , 𝜃𝑘,𝑗, are the weight and bias from the hidden layer to the output layer. Linear activation function is used in

the output layer. Output of k-th node in output layer is,

𝑂𝑘 = 𝑓(𝑛𝑒𝑡𝑘) (36)

Step 3: The error is estimated and propagates backward from the output layer to the hidden layer. The error in

the output layer is computed as

𝑒𝑘 = 𝑇𝑘 − 𝑂𝑘 (37)

𝜕𝑘 = 𝑒𝑘 𝑓
′(𝑛𝑒𝑡𝑘) (38)

 𝑇𝑘 is the true output

The error in the hidden layer is calculated as

𝜕𝑗 = 𝑓′(𝑛𝑒𝑡𝑗) 𝜕𝑘𝑤𝑗,𝑘 (39)

Step 4: In this stage, weights and biases are updated.

Weights are updated using the following equations

∆𝑤𝑗,𝑘 = 𝛼𝜕𝑘𝑂𝑗 (40)

𝑤𝑗,𝑘 = 𝑤𝑗,𝑘 + ∆𝑤𝑗,𝑘 (41)

∆𝑤𝑖,𝑗 = 𝛼𝜕𝑗𝑥𝑖 (42)

𝑤𝑖,𝑗 = 𝑤𝑖,𝑗 + ∆𝑤𝑖,𝑗 (43)

where 𝛼 is the learning rate.

Biases are updated using the following equations,

∆𝜃𝑗,𝑘 = 𝛼𝜕𝑘 (44)

𝜃𝑗,𝑘 = 𝜃𝑗,𝑘 + ∆𝜃𝑗,𝑘 (45)

∆𝜃𝑖,𝑗 = 𝛼𝜕𝑗 (46)

𝜃𝑖,𝑗 = 𝜃𝑖,𝑗 + ∆𝜃𝑖,𝑗 (47)

Radial Basis Function Neural Network Algorithm

Radial basis function neural network (RBFNN) is a feed forward self-learning algorithm which consists of a

non-linear function with a symmetrical organization. RBFNN has good global approximation performance
6
.

Page 8 of 12

The structure of RBFNN consists of three-layer including one input layer, one hidden layer and one output

layer, as shown in Fig. 3.

Input Layer
Hidden Layer

Output layer

x1

x2

xn

φ1

φ2

φm

w1

w2

wm

.
 .

.

.
 .

 .

y
Σ

Fig Error! No text of specified style in document.. The structure of RBFNN for SOC

estimation

In this research, the Gaussian distribution is used as an activation function to estimate SOC. RBFNN has hidden

neurons in the hidden layer neurons which are called RBF units. The location of the Gaussian function is

characterized by two key parameters of RBF units named center and width. The center and width terms of the j

Gaussian distribution function are denoted by 𝜆𝑚 and 𝜎𝑚, respectively. The output of the mth hidden neuron of

the RBFNN can be expressed by
6
,

𝜙𝑚(𝑛) = 𝜙𝑚{𝑥(𝑛), 𝜆𝑚(𝑛), 𝜎𝑚(𝑛)} (48)

= 𝑒
−

‖𝑥(𝑛)−𝜆𝑚(𝑛)‖2

𝜎𝑚
2 (𝑛)

,𝑓𝑜𝑟 𝑚=1,2,…,𝑀

 (49)

where, 𝑥 is the input vector in the input layer. The output of RBFNN comprises linear function and is calculated

by multiplying the weight values with hidden nodes which is shown in the following equation,

𝑦𝑘 = ∑ 𝑤𝑘𝑚𝜙𝑚(𝑛), 𝑓𝑜𝑟 𝑘 = 1,2, … ,

𝑀

𝑚=1

𝑚

 (50)

where, 𝑦𝑘 represents the output of the kth neuron in the output layer, 𝑤𝑘𝑚 denotes the weight, connecting the mth

hidden neurons to the kth output layer neuron and 𝜙𝑚 is the hidden layer output for mth neurons.

Extreme Learning Machine Algorithm

Extreme learning machine algorithm (ELM) is appropriate for predicting outcomes in complex and nonlinear

systems. ELM has a number of advantageous features such as better scalability, better generalization

performance for regression and classification, better approximation of any target continuous function, lower

computation complexity and faster learning speed which help to deliver better estimation results than other

machine learning algorithms
7
. ELM is designed using three layers, one input layer, one hidden layer, and one

output layer, as depicted in Fig. 4. The execution of ELM is performed by randomly assigning the input weights

and hidden layers biases. The steps of ELM are described as follows
8

Page 9 of 12

Fig 4. Single layer ELM model structure

i. At first, the parameters are assigned randomly. The input weight vector and hidden layer bias are

represented as 𝑥𝑖 = [𝑥𝑖1,𝑥𝑖2, … …𝑥𝑖𝑁,]
𝑇
 and 𝑏𝑖 respectively where 𝑖 is the number of neurons in hidden

layer. The hidden neurons are assigned as 𝑁. The value of 𝑁 can be changed in order to achieve

reasonable accuracy.

ii. Calculate the output matrix of the output layer. The mathematical expression is represented by,

∑𝛽𝑖𝑓𝑖(𝑥𝑖) =

�̃�

𝑖=1

∑𝛽𝑖𝑓(𝑎𝑖 . 𝑥𝑗 + 𝑏𝑗)

�̃�

𝑖=1

= 𝑡𝑗, 𝑗 = 1,… , 𝑁

(51)

Where 𝑎𝑖 = [𝑎𝑖1,𝑎𝑖2 , … , 𝑎𝑖𝑛]
𝑇
 represents the weight vector which connects the input nodes and i-th

hidden nodes. 𝛽𝑖 = [𝛽𝑖1,𝛽𝑖2, … , 𝛽𝑖𝑛]
𝑇
represents the output weight which connect the i-th hidden layer

neuron and output layer neuron. f () is the activation function which is determined before training. In this

research, the most popular sigmoid function is used as the activation function
9
.

𝑓(𝑎𝑖 . 𝑥𝑗 + 𝑏𝑗) =
1

1+𝑒
−(𝑎𝑖.𝑥𝑗+𝑏𝑗)

−1
, 𝑖 = 1, … . , 𝐿, 𝑗 = 1,… . , 𝑁

(52)

 Equation (51) can be represented compactly as,

𝐻𝛽 = 𝑇 (53)

Where 𝐻(𝑎1, … , 𝑎𝑁,𝑏1, … , 𝑏𝑁,,𝑥1, … , 𝑥𝑁)

𝐻 = [
𝑓(𝑎1. 𝑥1 + 𝑏1) … 𝑓(𝑎𝑁,. 𝑥1 + 𝑏�̃�,)

. . . … …
𝑓(𝑎1. 𝑥𝑁 + 𝑏1) … 𝑓(𝑎𝑁,. 𝑥𝑁 + 𝑏𝑁,)

]

𝑁×𝑁

𝛽 =

[

𝛽1

𝑇

.

..
𝛽𝑁

𝑇]

𝑁×𝑚

 𝑇 =

[

𝑡1
𝑇

.

..
𝑇𝑁

𝑇]

𝑁×𝑚

H is the matrix of the hidden layer of the ELM network.

iii. The hidden layer output matrix H is determined by randomly allocated input weights and hidden layer

biases. Hence, a linear equation 𝐻𝛽 = 𝑇 is obtained.

Page 10 of 12

‖𝐻(𝑎1, … , 𝑎𝑁,𝑏1, … , 𝑏𝑁,)�̂� − 𝑇‖ = min
𝛽

‖𝐻(𝑎1, … , 𝑎𝑁,𝑏1, … , 𝑏𝑁,)�̂� − 𝑇‖

(54)

The least square solution is used to solve the above equation. The output weight 𝛽 is estimated by,

�̂� = 𝐻+𝑇 (55)

where 𝐻+ is the Moore–Penrose generalized inverse of H. The optimal solution �̂� features the lower

training error and optimal generalization performance.

Deep Recurrent Neural Network Algorithm

Deep recurrent neural network algorithm (DRNN) is predominantly well preferred for the prediction of complex

time series problem due to its powerful computational tool. The DRNN is successfully implemented for

parameter projecting in numerous application such as industries, image processing and forecasting
10

. Moreover,

DRNN comprises a unique dynamic memory, through which complex system can be addressed with the

appropriate value of weights. The conventional recurrent neural network does not hold more than two non-linear

functions in the hidden layer
11

. With the facility of real-world data availability and enhancement of computing

power and memory storage system, the deeper architecture of recurrent neural network has been explored in

many application. The learning procedure of the DRNN is implemented through one of the two ways such as

feed-forward connection and feedback connection
12

. Although the training process of DRNN has some

similarity with the feed forward neural network, there are some differences between the two processes. The

output response is evaluated based on a repeated feedback process which contains the hidden output of that

particular instance and hidden output from the previous instance. The information is stored on the feedback loop

of the previous phase and final output is predicted based on the instantaneous output and the previous output.

The basic structure of the DRNN is presented in Fig. 5.

Fig. 5. Structure of DRNN for SOC estimation

The DRNN is used to estimate SOC at time t with input series (𝐿 = 𝐿1, …𝐿𝑡), hidden vector series (𝑃 =
𝑃1, …𝑃𝑡) and output vector series (𝑦 = 𝑦1, …𝑦𝑡). The equations are shown below,

𝑛𝑒𝑡𝑙 = (𝑊ℎ𝐿𝐿𝑡 + 𝑊𝑃𝑃𝑃𝑡−1 + 𝑏𝑃) (56)

𝑃𝑡 = 𝑓(𝑛𝑒𝑡𝑙) (57)

𝑛𝑒𝑡𝑡 = (𝑊𝑦ℎ𝑃𝑡 + 𝑏𝑦) (58)

𝑦𝑡 = 𝑓(𝑛𝑒𝑡𝑡) (59)

where 𝑊ℎ𝐿 is the weight between the input layer and the hidden layer, 𝑊𝑃𝑃 is the weight between a hidden layer

and itself at adjacent time steps, 𝑊𝑦ℎ is the weight between the hidden layer and output layer. The hidden layer

Page 11 of 12

bias and output layer bias are represented by 𝑏𝑃 and 𝑏𝑦. f() denotes the sigmoid activation function. 𝑃𝑡 and 𝑦𝑡

represent the output of hidden layer and output layer respectively.

Random Forest Algorithm

Breiman (2001) introduced an enhanced machine leaning algorithm named random forest (RF). RF does not

overfit as a predictor, runs fast and efficiently when handling large datasets, thus leading to superior

performance. RF is based on set on predictors which depend on trees in the forests through the random values of

each tree. The RF is modeled by picking up a group of small input dataset and then splitting them in a random

order. The procedures of RF begin with the formation of new dataset equal to the length of the original data. The

bootstrapping technique is used to choose the data in a random way from the original data set. A sequence of

binary splits is formed from the new dataset to create the decision trees. The responses to the estimated data are

created using classification and regression. The response comes from the decision of each tree in the forest that

generates from the root node and then transfers to a leaf node
14

. The structure of RF algorithm is shown in Fig.

6.

Fig. 6. Flow diagram of random forest algorithm structure

The RF regression is developed using the p dimension input vector of 𝑋 = 𝑥1, 𝑥2, … … , 𝑥𝑝 to build the forest. A

set of K tress {𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝑘(𝑥)} is used inside the forest. The actual output value is determined by each

tree, represented as �̂�1 = 𝑇1(𝑋), … , �̂�𝑚 = 𝑇1(𝑋), where 𝑚 = 1,… , 𝐾. The outcome of RF is evaluated by

estimating the average of all trees predictors, as expressed in the following equation,

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑅𝐹(𝑋) =
1

𝑘
∑ 𝑌�̂�(𝑋)

𝐾

𝑘=1

 (60)

The training dataset 𝐷 = 𝐷1,𝐷2, … ,𝐷𝑛, = {(𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥𝑛, 𝑦𝑛)} is drawn independently from input and

output where 𝑥𝑖,𝑖 = 1,… , 𝑛 denotes the input vector training dataset and 𝑦𝑖,𝑖 = 1,… , 𝑛 expresses the output

vector training dataset. The training procedures for the growth of tree in the forest are explained as follows

i. A bootstrap sample is drawn for each regression tree through the available training dataset. A

bootstrap sample is a random sample conducted with replacement. A different subset of dataset is

employed to improve the tree model for each bootstrap sample. The Out-of-bag (OBB) samples are

formed by leaving one third of the dataset. A total of two third sample is available of the new training

sample. OBB is the process of neglecting values from each bootstrap sample. OBB data plays a key

part in tree development and is checked with the estimated values at each step.

Page 12 of 12

ii. At each node of the regression tree in the bootstrap sample, the best split is chosen among the

randomly selected subset. The node in each tree plays a vital role in the correction of changing

parameters of the algorithm.

iii. Each tree is designed to the largest extended possible without pruning.

iv. The predictions are evaluated by placing each OBB observations of the test data for each tree. The

mean value of predictions of the total regression trees are calculated through equation (60).

The accuracy and error rate of RF are evaluated though the minimization of the OBB. The OBB error is an

important feature of RF. As mentioned earlier, each tree is developed based on the bootstrap sample that

consists of roughly two thirds of the training data. The remaining one-third (OBB) of the training data is

not included in the learning sample for this tree and can be used for testing. The MSE is employed to

observe the OBB error which is found by assessing the deviation between predicted and reference values,

as shown the following equation,

𝑀𝑆𝐸 ≈ 𝑀𝑆𝐸𝑂𝐵𝐵 =
1

𝑛
∑(�̂�(𝑋𝑖) − 𝑌𝑖)

2
𝑛

𝑖=1

 (61)

where �̂�(𝑋𝑖) represents the predicted output, 𝑌𝑖 represents the observed output and n is the total number of

samples.

Reference

1. Civicioglu, P. Backtracking Search Optimization Algorithm for numerical optimization problems. Appl.

Math. Comput. 219, 8121–8144 (2013).

2. Rashedi, E., Nezamabadi-pour, H. & Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci.

(Ny). 179, 2232–2248 (2009).

3. Hossain Lipu, M. S., Hannan, M. A., Hussain, A. & Saad, M. H. M. Optimal BP neural network

algorithm for state of charge estimation of lithium-ion battery using PSO with PCA feature selection. J.

Renew. Sustain. Energy 9, (2017).

4. Latha, K., Rajinikanth, V. & Surekha, P. M. PSO-Based PID Controller Design for a Class of Stable and

Unstable Systems. ISRN Artif. Intell. 2013, 1–11 (2013).

5. Hannan, M. A., Lipu, M. S. H., Hussain, A., Saad, M. H. & Ayob, A. Neural Network Approach for

Estimating State of Charge of Lithium-ion Battery Using Backtracking Search Algorithm. IEEE Access

6, 10069–10079 (2018).

6. Chang, W.-Y. Estimation of the state of charge for a LFP battery using a hybrid method that combines a

RBF neural network, an OLS algorithm and AGA. Int. J. Electr. Power Energy Syst. 53, 603–611

(2013).

7. Hussain Lipu, M. S. et al. Extreme Learning Machine Model for State of Charge Estimation of Lithium-

ion battery Using Gravitational Search Algorithm. IEEE Trans. Ind. Appl. 55, 4225–4234 (2019).

8. Sattar, A. M. A., Ertuğrul, Ö. F., Gharabaghi, B., McBean, E. A. & Cao, J. Extreme learning machine

model for water network management. Neural Comput. Appl. 1–13 (2017).

9. Guang-Bin Huang, G. Bin. Learning capability and storage capacity of two-hidden-layer feedforward

networks. IEEE Trans. Neural Networks 14, 274–281 (2003).

10. Chuan-long, Y., Yue-fei, Z., Jin-long, F. & Xin-zheng, H. A Deep Learning Approach for Intrusion

Detection using Recurrent Neural Networks. IEEE Access 5, 21954–21961 (2017).

11. Chemali, E., Kollmeyer, P. J., Preindl, M. & Emadi, A. State-of-charge estimation of Li-ion batteries

using deep neural networks: A machine learning approach. J. Power Sources 400, 242–255 (2018).

12. Hinton, G. et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared

Views of Four Research Groups. IEEE Signal Process. Mag. 29, 82–97 (2012).

13. Breiman, L. Random Forests. Mach. Learn. 45, 5–32 (2001).

14. Ibrahim, I. A. & Khatib, T. A novel hybrid model for hourly global solar radiation prediction using

random forests technique and firefly algorithm. Energy Convers. Manag. 138, 413–425 (2017).

