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ABSTRACT

Depression diagnosis is one of the most important issues in psychiatry. Depression is a complicated mental illness that

varies in symptoms and requires patient cooperation. In the present study, we demonstrated a novel data-driven attempt to

diagnose depressive disorder based on clinical questionnaires. It includes deep learning, multi-modal representation, and

interpretability to overcome the limitations of the data-driven approach in clinical application. We implemented a shared

representation model between three different questionnaire forms to represent questionnaire responses in the same latent

space. Based on this, we proposed two data-driven diagnostic methods; unsupervised and semi-supervised. We compared

them with a cut-off screening method, which is a traditional diagnostic method for depression. The unsupervised method

consideredmore items, relative to the screeningmethod, but showed lower performance because it maximized the difference
between groups. In contrast, the semi-supervisedmethod adjusted for bias using information from the screeningmethod and

showed higher performance. In addition, we provided the interpretation of diagnosis and statistical analysis of information

using local interpretable model-agnostic explanations and ordinal logistic regression. The proposed data-driven framework

demonstrated the feasibility of analyzing depressed patients with items directly or indirectly related to depression.



Supplementary information

Domain Notation Description
Data N Number of responses

NL Number of responses with label
m Mini-batch size
ci Common items of i-th questionnaire response
di Different items of i-th questionnaire response
ki Questionnaire form of i-th questionnaire response
xi i-th questionnaire response (ci ,di) from questionnaire form ki
yi Diagnostic result of i-th questionnaire response
ti Desired group for i-th questionnaire response
q Questionnaire form q
C Common items of all questionnaire responses
Dq Different items of questionnaire responses from questionnaire form q
D Different items of all questionnaire responses
X Questionnaire responses
XL Questionnaire responses with label
Y Diagnostic results
Q Questionnaire forms

Model fC Encoder network for common items from all questionnaire forms
gC Decoder network for common items from all questionnaire forms
f
q
D Encoder network for different items from questionnaire form q
g
q
D Decoder network for different items from questionnaire form q
fC(C) Latent variables for common items from all questionnaire forms
fD (D) Latent variables for different items from all questionnaire forms
r Deep canonical correlation network
L Output dimension of r
U CCA directions for common items
V CCA directions for different items
M Gaussian mixture for unsupervised clustering
h Classification network for semi-supervised classification
α Trade-off parameter for canonical correlation loss
β Trade-off parameter for unsupervised reconstruction loss
γ Trade-off parameter for supervised loss

Table S1. Notation for multi-questionnaire representation learning
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Algorithm S1: Unsupervised pre-training of autoencoder

1 Procedure PretrainAutoencoder(R)
Input: Items R
Output: Encoder f , decoder g

2 Initialize f and g
3 for each epoch do
4 for each batch do
5 Sample a mini-batch of m responses {r1, . . . , rm} from R
6 r̃i ←Dropout(ri)
7 hi ← f (r̃i)
8 r̂i ← g(hi)

9 LR← 1
m

∑m
i=1(

∥∥∥ri − r̂i∥∥∥2)
10 Calculate gradient of LR w.r.t. parameters of f and g
11 Update parameters by taking a gradient step
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Algorithm S2: Unsupervised clustering of multi-questionnaire representations
Input: Questionnaire responses X
Output: Diagnostic results Y

/* Pre-train autoencoders */

1 fC , gC ← PretrainAutoencoder(C)
2 for each questionnaire form q do
3 f

q
D , g

q
D ← PretrainAutoencoder(Dq)

/* Fine-tune unsupervised approach */

4 Initialize correlation network r
5 for each epoch do
6 for each batch do
7 Sample a mini-batch of m responses {(c1,d1, k1), . . . , (cm,dm, km)} from X
8 c̃i ←Dropout(ci)
9 d̃i ←Dropout(di)

10 Calculate unsupervised reconstruction loss LR

11 LR← 1
m

∑m
i=1

(∥∥∥∥ci − gC (fC (c̃i))
∥∥∥∥2 + ∥∥∥∥di − gkiD (

f ki
D

(
d̃i
))∥∥∥∥2)

12 Calculate canonical correlation loss LC

13 ΣCC ← Cov
(
r
(
fC

(
C̃
))
, r
(
fC

(
C̃
)))

14 ΣDD ← Cov
(
r
(
fD

(
D̃
))
, r
(
fD

(
D̃
)))

15 ΣCD ← Cov
(
r
(
fC

(
C̃
))
, r
(
fD

(
D̃
)))

16 LC ←− 1
L tr

(
U

T

ΣCDV
)

subject to U
T

ΣCCU = V
T

ΣDDV = I

17 T ← Σ
− 1
2

CCΣCDΣ
− 1
2

DD

18 LC ←− 1
L

√
tr
(
T TT

)
19 Calculate joint loss L of reconstruction and correlation loss

20 L← αLC + βLR

21 Calculate gradient of L w.r.t. parameters of f , g and r
22 Update parameters by taking a gradient step

/* Unsupervised clustering based on multi-questionnaire representations */

23 Extract shared representation
(
r(fC(ci)), r(f

ki
D (di)

)
for all questionnaire responses xi

24 Initial centroids of Gaussian mixture M using k-means clustering
25 Estimate centroids and full covariance of M with EM algorithm

/* Unsupervised diagnostic results */

26 for each response xi do
27 yi ←M

(
r(fC(ci)), r(f

ki
D (di)

)
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Algorithm S3: Semi-supervised classification of multi-questionnaire representations
Input: Questionnaire responses X, Questionnaire responses with label XL
Output: Diagnostic results Y

/* Pre-train autoencoders */

1 fC , gC ← PretrainAutoencoder(C)
2 for each questionnaire form q do
3 f

q
D , g

q
D ← PretrainAutoencoder(Dq)

/* Fine-tune semi-supervised approach */

4 Initialize correlation network r
5 for each epoch do
6 for each batch do
7 Sample a mini-batch of m responses, {(c1,d1, k1), . . . , (cm,dm, km)} from X
8 c̃i ←Dropout(ci)
9 d̃i ←Dropout(di)

10 Calculate unsupervised reconstruction loss LR

11 LR← 1
m

∑m
i=1

(∥∥∥∥ci − gC (fC (c̃i))
∥∥∥∥2 + ∥∥∥∥di − gkiD (

f ki
D

(
d̃i
))∥∥∥∥2)

12 Calculate canonical correlation loss LC

13 ΣCC ← Cov
(
r
(
fC

(
C̃
))
, r
(
fC

(
C̃
)))

14 ΣDD ← Cov
(
r
(
fD

(
D̃
))
, r
(
fD

(
D̃
)))

15 ΣCD ← Cov
(
r
(
fC

(
C̃
))
, r
(
fD

(
D̃
)))

16 LC ←− 1
L tr

(
U

T

ΣCDV
)

subject to U
T

ΣCCU = V
T

ΣDDV = I

17 T ← Σ
− 1
2

CCΣCDΣ
− 1
2

DD

18 LC ←− 1
L

√
tr
(
T TT

)
19 Calculate supervised loss LS

20 Take all responses
{
(c1,d1, k1, t1), . . . , (cNL

,dNL
, kNL

, tNL
)
}
from XL

21 c̃i ←Dropout(ci)
22 d̃i ←Dropout(di)

23 LS ←− 1
NL

∑NL
i=1 logP

(
h
(
r
(
fC (c̃i)

)
, r
(
f ki
D

(
d̃i
)))

= ti
)

24 Calculate joint loss L of reconstruction, correlation, and supervised loss

25 L← αLC + βLR +γLS

26 Calculate gradient of L w.r.t. parameters of f , g, r, and h
27 Update parameters by taking a gradient step

/* Semi-supervised diagnostic results */

28 for each response xi do
29 yi ← h

(
r(fC(ci)), r(f

ki
D (di)

)
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