Data-driven analysis using multiple self-report questionnaires to identify college students at high risk of depressive disorder

Bongjae Choi¹, Geumsook Shim², Bumseok Jeong^{2, 3, *}, and Sungho Jo^{1,*}

¹School of Computing, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea ²KAIST clinic Pappalardo center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea

³Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea

*Corresponding authors: B. J. (bs.jeong@kaist.ac.kr) and S. J. (shjo@kaist.ac.kr)

ABSTRACT

Depression diagnosis is one of the most important issues in psychiatry. Depression is a complicated mental illness that varies in symptoms and requires patient cooperation. In the present study, we demonstrated a novel data-driven attempt to diagnose depressive disorder based on clinical questionnaires. It includes deep learning, multi-modal representation, and interpretability to overcome the limitations of the data-driven approach in clinical application. We implemented a shared representation model between three different questionnaire forms to represent questionnaire responses in the same latent space. Based on this, we proposed two data-driven diagnostic methods; unsupervised and semi-supervised. We compared them with a cut-off screening method, which is a traditional diagnostic method for depression. The unsupervised method considered more items, relative to the screening method, but showed lower performance because it maximized the difference between groups. In contrast, the semi-supervised method adjusted for bias using information from the screening method and showed higher performance. In addition, we provided the interpretation of diagnosis and statistical analysis of information using local interpretable model-agnostic explanations and ordinal logistic regression. The proposed data-driven framework demonstrated the feasibility of analyzing depressed patients with items directly or indirectly related to depression.

Supplementary information

Domain	Notation	Description
Data	Ν	Number of responses
	N_L	Number of responses with label
	т	Mini-batch size
	c _i	Common items of <i>i</i> -th questionnaire response
	d_i	Different items of <i>i</i> -th questionnaire response
	k_i	Questionnaire form of <i>i</i> -th questionnaire response
	x_i	<i>i</i> -th questionnaire response (c_i, d_i) from questionnaire form k_i
	y_i	Diagnostic result of <i>i</i> -th questionnaire response
	t_i	Desired group for <i>i</i> -th questionnaire response
	9	Questionnaire form q
	С	Common items of all questionnaire responses
	D^q	Different items of questionnaire responses from questionnaire form q
	D	Different items of all questionnaire responses
	X	Questionnaire responses
	X_L	Questionnaire responses with label
	Y	Diagnostic results
	Q	Questionnaire forms
Model	f_C	Encoder network for common items from all questionnaire forms
	8C	Decoder network for common items from all questionnaire forms
	f_D^q	Encoder network for different items from questionnaire form q
	g_D^q	Decoder network for different items from questionnaire form q
	$f_C(C)$	Latent variables for common items from all questionnaire forms
	$f_D(D)$	Latent variables for different items from all questionnaire forms
	r	Deep canonical correlation network
	L	Output dimension of <i>r</i>
	U	CCA directions for common items
	V	CCA directions for different items
	M	Gaussian mixture for unsupervised clustering
	h	Classification network for semi-supervised classification
	α	Trade-off parameter for canonical correlation loss
	β	Trade-off parameter for unsupervised reconstruction loss
	γ	Trade-off parameter for supervised loss

 Table S1. Notation for multi-questionnaire representation learning

Algorithm S1: Unsupervised pre-training of autoencoder

<pre>1 Procedure PretrainAutoencoder(R)</pre>					
Input: Items R					
Output: Encoder <i>f</i> , decoder <i>g</i>					
Initialize f and g					
for each epoch do					
4 for each batch do					
5 Sample a mini-batch of <i>m</i> responses $\{r_1, \ldots, r_m\}$ from	R				
$6 \qquad \qquad \tilde{r_i} \leftarrow Dropout(r_i)$					
7 $h_i \leftarrow f(\tilde{r_i})$					
$\hat{r}_i \leftarrow g(h_i)$					
9 $L_R \leftarrow \frac{1}{m} \sum_{i=1}^m (\left\ r_i - \hat{r}_i \right\ ^2)$					
10 Calculate gradient of L_R w.r.t. parameters of f and g					
11 Update parameters by taking a gradient step					

Algo Inn	rithm S2: Unsupervised clustering of multi-questionnaire representations	
Ou	tput: Diagnostic results Y	
/*	Pre-train autoencoders	* /
$\begin{array}{c c} 1 & f_C, \\ 2 & \mathbf{for} \\ 3 & \ \end{array}$	$g_C \leftarrow \operatorname{PretrainAutoencoder}(C)$ each questionnaire form q do $f_D^q, g_D^q \leftarrow \operatorname{PretrainAutoencoder}(D^q)$	
/*	Fine-tune unsupervised approach	* /
4 Init 5 for	ialize correlation network <i>r</i> each epoch do	
6 7	for each batch do Sample a mini-batch of <i>m</i> responses $\{(c_1, d_1, k_1), \dots, (c_m, d_m, k_m)\}$ from X	
8	$\tilde{c}_i \leftarrow Dropout(c_i)$	
9	$\tilde{d_i} \leftarrow Dropout(d_i)$	
10	Calculate unsupervised reconstruction loss L_R	
11	$L_{R} \leftarrow \frac{1}{m} \sum_{i=1}^{m} \left(\left\ c_{i} - g_{C}\left(f_{C}\left(\tilde{c_{i}}\right)\right) \right\ ^{2} + \left\ d_{i} - g_{D}^{k_{i}}\left(f_{D}^{k_{i}}\left(\tilde{d}_{i}\right)\right) \right\ ^{2} \right)$	
12	Calculate canonical correlation loss L_C	
13	$\Sigma_{CC} \leftarrow \operatorname{Cov}\left(r\left(f_{C}\left(\tilde{C}\right)\right), r\left(f_{C}\left(\tilde{C}\right)\right)\right)$	
14	$\Sigma_{DD} \leftarrow \operatorname{Cov}\left(r\left(f_D\left(\tilde{D}\right)\right), r\left(f_D\left(\tilde{D}\right)\right)\right)$	
15	$\Sigma_{CD} \leftarrow \operatorname{Cov}\left(r\left(f_{C}\left(\tilde{C}\right)\right), r\left(f_{D}\left(\tilde{D}\right)\right)\right)$	
16	$L_C \leftarrow -\frac{1}{L} \operatorname{tr} \left(U^{T} \Sigma_{CD} V \right)$ subject to $U^{T} \Sigma_{CC} U = V^{T} \Sigma_{DD} V = I$	
17	$T \leftarrow \Sigma_{CC}^{-\frac{1}{2}} \Sigma_{CD} \Sigma_{DD}^{-\frac{1}{2}}$	
18	$L_C \leftarrow -\frac{1}{L} \sqrt{\operatorname{tr} \left(T^{T} T \right)}$	
19	Calculate joint loss <i>L</i> of reconstruction and correlation loss	
20	$L \leftarrow \alpha L_C + \beta L_R$	
21 22	Calculate gradient of L w.r.t. parameters of f , g and r Update parameters by taking a gradient step	
L		
/*	Unsupervised clustering based on multi-questionnaire representations	*/
23 Ext	ract shared representation $(r(f_C(c_i)), r(f_D^{\kappa_i}(d_i)))$ for all questionnaire responses x_i	
24 Init	ial centroids of Gaussian mixture M using k-means clustering	
25 ESU	Unsupervised diagnostic results	* /
26 for	each response x: do	71
27	$y_i \leftarrow M\left(r(f_C(c_i)), r(f_D^{k_i}(d_i))\right)$	
L		

Algorithm S3: Semi-supervised classification of multi-questionnaire representations					
Input: Questionnaire responses <i>X</i> , Questionnaire responses with label <i>X</i> _L Output: Diagnostic results <i>Y</i>					
/* Pre-train autoencoders		* /			
1 $f_C, g_C \leftarrow \operatorname{PretrainAutoencoder}(C)$ 2 for each questionnaire form q do 3 $\left[\int_D^q, g_D^q \leftarrow \operatorname{PretrainAutoencoder}(D^q) \right]$					
/*	/* Fine-tune semi-supervised approach */				
4 Ini 5 for 6	tialize correlation network <i>r</i> : each epoch do for each batch do				
7 8	Sample a mini-batch of <i>m</i> responses, $\{(c_1, a_1, \kappa_1), \dots, (c_m, a_m, \kappa_m)\}$ from X $\tilde{c_i} \leftarrow Dropout(c_i)$				
9	$\tilde{d_i} \leftarrow Dropout(d_i)$				
10	Calculate unsupervised reconstruction loss L_R				
11	$L_{R} \leftarrow \frac{1}{m} \sum_{i=1}^{m} \left(\left\ c_{i} - g_{C} \left(f_{C} \left(\tilde{c_{i}} \right) \right) \right\ ^{2} + \left\ d_{i} - g_{D}^{k_{i}} \left(f_{D}^{k_{i}} \left(\tilde{d}_{i} \right) \right) \right\ ^{2} \right)$				
12	Calculate canonical correlation loss L_C				
13	$\Sigma_{CC} \leftarrow \operatorname{Cov}\left(r\left(f_{C}\left(\tilde{C}\right)\right), r\left(f_{C}\left(\tilde{C}\right)\right)\right)$				
14	$\Sigma_{DD} \leftarrow \operatorname{Cov}(r(f_D(\tilde{D})), r(f_D(\tilde{D})))$				
15	$\Sigma_{CD} \leftarrow \operatorname{Cov}\left(r\left(f_{C}\left(\tilde{C}\right)\right), r\left(f_{D}\left(\tilde{D}\right)\right)\right)$				
16	$L_C \leftarrow -\frac{1}{L} \operatorname{tr} \left(U^{T} \Sigma_{CD} V \right)$ subject to $U^{T} \Sigma_{CC} U = V^{T} \Sigma_{DD} V = I$				
17	$T \leftarrow \Sigma_{CC}^{-\frac{1}{2}} \Sigma_{CD} \Sigma_{DD}^{-\frac{1}{2}}$				
18	$L_C \leftarrow -\frac{1}{L} \sqrt{\operatorname{tr} \left(T^{T} T \right)}$				
19	Calculate supervised loss L_S				
20	Take all responses $\{(c_1, d_1, k_1, t_1),, (c_{N_L}, d_{N_L}, k_{N_L}, t_{N_L})\}$ from X_L				
21	$\tilde{c_i} \leftarrow Dropout(c_i)$				
22	$d_i \leftarrow Dropout(d_i)$				
23	$L_{S} \leftarrow -\frac{1}{N_{L}} \sum_{i=1}^{N_{L}} \log P\left(h\left(r\left(f_{C}\left(\tilde{c}_{i}\right)\right), r\left(f_{D}^{\kappa_{i}}\left(d_{i}\right)\right)\right) = t_{i}\right)$				
24	Calculate joint loss L of reconstruction, correlation, and supervised loss				
25	$L \leftarrow \alpha L_C + \beta L_R + \gamma L_S$				
26 27	Calculate gradient of L w.r.t. parameters of f , g , r , and h Update parameters by taking a gradient step				
/*	/* Semi-supervised diagnostic results */				

28 **for** each response x_i **do** 29 $\downarrow y_i \leftarrow h(r(f_C(c_i)), r(f_D^{k_i}(d_i)))$

5/<mark>5</mark>