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1Wigner Research Centre for Physics, Department of Computational Sciences, Budapest, H-1121, Hungary
2Semmelweis University, János Szentágothai Doctoral School of Neurosciences, Ullői road 26., Budapest, H-1085,
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ABSTRACT

In this supplementary, we summarise the workflow of the TOF computation, derive analytic results of the TOF values, provide
details to the simulations used for testing the detection methods, check the computational complexity of the TOF algorithm by
numerical experiments, evaluate the parameter dependence of the detection performance and provide hints on how to chose
the embedding parameters for real life data series.
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Figure S1. The worklow for TOF and LOF analysis for time series. A We start with a time series generated by a
dynamical system; orange and blue marks TOF and LOF detections respectively. B As a next step of our analysis we apply
time delay embedding, then kNN search in the reconstructed state space. C and D We calculate TOF and LOF scores and apply
thresholds on the outlier scores to detect anomalies.

TOF Analysis workflow
The main steps of the TOF analysis are recapitulated here for completeness:

1. Preprocessing and applicability check:

This step varies from case to case, and depends on the data or on the goals of analysis. Usually it is advisable to make
the data stationary. For example, in the case of oscillatory signals, the signal must contain many periods even from the
lowest frequency components. If this latter condition does not hold, then Fourier filtering can be applied to get rid of the
low frequency components of the signal.
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2. Time delay embedding:

We embed the scalar time series into an E dimensional space with even time delays τ (Fig. 1 A):

X(t) = [x(t),x(t + τ),x(t +2τ), . . .x(t +(E−1)τ)] (1)

The embedding parameters can be set with prior knowledge of the dynamics or by other optimization methods. Such
optimization methods include the first minimum or zerocrossing of the autocorrelation function (for delay selection), the
false nearest neighbor method1, 2 or the differential entropy based embedding optimizer that we applied3. Figs. S9-S12
illustrates our parameter hunting procedure, where the τ was chosen as the first zero point of the autocorrelation function
of the signal or as the first minima, if it does not reach the zero level. The embedding dimension was estimated by
finding the embedding dimension where the estimated dimension started to deviate from the embedding dimension. This
procedure worked well for dynamical systems (Fig, S9-S10) but not for the LIBOR which is more likely to be generated
by a stochastic process. Here, the estimated dimension increased with the embedding dimension without reaching a
plateau (Fig. S11). Thus in this case, the embedding dimension was estimated based on the differential entropy (Fig. S12).

3. kNN Neighbor search:

We search for k-neighborhoods around each datapoint in the statespace using the kDTree algorithm and save the distance
and temporal index of neighbors4.

4. Compute TOF score:

TOF(t) =

q
√

∑
k
i=1 |t− ti|q

k
. (2)

Where t is the time index of the sample point (X(t)) and ti is the time index of the i-th nearest neighbor in reconstructed
state-space. Where q ∈R+, in our case we use q = 2.

5. Apply a threshold θ on TOF score to detect unicorns (Fig. S1 C):

The threshold can be established by prior knowledge, by clustering techniques or supervised learning. The maximum
event length parameter (M) determines the level of threshold on TOF score:

θ =

√
∑

k−1
i=0 (M− i∆t)2

k

∣∣∣∣ k∆t
!
≤M (3)

We set the threshold according to prior knowledge about the longest possible occurence of the event. After thresholding,
we may apply a padding around detected points with symmetric window length w = k/2, since the k parameter sets the
minimal length of the detectable events.

We implemented these steps in the python programming language (python3), the software is available at
https://github.com/phrenico/uniqed.
The code builds on standard scientific python modules, i. e. the neighborhood search is established by the kd-tree algorithm

of the scipy package5. Embedding parameter optimization was carried out by custom python scripts.
Furthermore, we used the scikit-learn package6 to calculate LOF. We implemented the brute-force discord discovery

algorithm7 by custom python and scilab scripts and we used the R implementation of Rare Rule Anomaly (RRA)8, 9 (Senin)
discord discovery algorithm on all simulated datasets.

Mean and variance for q = 1
The mean and the variance of TOF can be computed for uncorrelated noise in the continuous-time limit, where the typical
properties of the metrics can be introduced. The expectation of the first neighbor is easy to compute (Eq. 4), if we take the
probability density function (p(τ)) as uniform; this is the assumption of white noise. Additionally, the pdf is independent of the
rank of the neighbor (k), and thus the mean is the same for all neighborhood sizes. By the previous assumptions, the mean is
simply a quadratic expression:

〈TOFq=1〉 =
∫ T

0 |t− τ| p(τ) dτ = 1
T
∫ T

0 |t− τ| dτ = t2

T − t + T
2

(4)
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with the method of moments, we calculate the variance for k = 1:

〈TOF2
q=1〉 =

∫ T
0 (t− τ)2 p(τ) dτ = 1

T
∫ T

0 (t− τ)2 dτ = t2− tT + T 2

3 (5)

σ2
q=1 = 〈TOF2

q=1〉−〈TOFq=1〉2 = − t4

T 2 +
2t3

T − t2 + T 2

12 (6)

if we have k neighbors, then the variance is reduced by a 1/k factor:

σ2
q=1,k = 〈TOF2

q=1〉−〈TOFq=1〉2 = 1
k

(
− t4

T 2 +
2t3

T − t2 + T 2

12

)
(7)

To test whether these theoretical arguments fit to data, we simulated random noise time series (n = 100,T = 1000) and
computed the mean TOF score and standard deviation (Fig. 2). We found, that theoretical formulas described the behaviour of
TOF perfectly.
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Figure S2. Properties of TOF for white noise data: theory and simulations. The expectation of TOF is computed as a
function of temporal position in the time series (q = 1, thick red line), also the standard deviation was calculated (dashed red
line). The average (thick black line) and standard deviation (thin black line) of n = 100 instances (grey shading). The minimal
and maximal possible TOF vales are also charted (blue lines).

Mean and variance for q = 2
The exact statistics is hard to calculate, when the value of the q exponent is not equal to one. Here we compute a vague
approximation for q = 2 (Fig. 3). By computing the mean and variance for TOF squared, and taking the squareroot of these
values can get a feeling about the properties of TOFq=2 respectively.〈

TOF2
noise,q=2

〉
=
∫ T

0 (t− τ)2 p(τ) dτ = 1
T
∫ T

0 (t− τ)2 dτ = t2− tT + T 2

3 (8)
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the second moment is as follows:

〈
TOF4

noise,q=2

〉
=
∫ T

0 (t− τ)4 p(τ) dτ = 1
T
∫ T

0 (t− τ)4 dτ = t5+(T−t)5

5T (9)

Thus using the method of moments we can get the variance of the TOF2
q=2:

Var
(

TOF2
noise,q=2

)
= t5+(T−t)5

5T −
(

t2− tT + T 2

3

)2
(10)
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Figure S3. Properties of TOF for white noise data 2: simulations. The baseline of TOF with q = 2. The average (thick
black line) and standard deviation (thin black line) of n = 100 instances (grey shading).

Generation of simulated datasets
Simulated logistic map and stochastical datasets
We simulated 4 systems: logistic map with linear tent map outlier segment, logistic map with linear outlier segment, simulated
ECG data with tachycardia outlier segment and random walk with linear outlier segment. The first three datasets stem from
deterministic dynamics, whereas the last simulated dataset has stochastic nature.

We generated 100 time series from each type, the length and the position of outlier segments were determined randomly in
each case.

Logistic map with tent-map anomaly
100 instances of logistic map data-series were simulated (N = 2000) with one randomly (uniform) inserted outlier period in
each dataset. The length of outlier periods was randomly chosen with length between 2−200. The basic dynamics in normal
conditions were governed by the update rule:

xt+1 = rxt(1− xt) (11)
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where r = 3.9. The equation was changed during anomaly periods:

xt+1 = 1.59−2.15×|xt −0.7|−0.9× xt (12)

To make sure that the time series was bounded in the I = [0,1] interval, reflective boundary condition is used, restricting the
time series to the desired interval I.

Logistic map with linear anomaly
The background generation process exhibited the logistic dynamics (Eq. 11), while the anomaly can be described by linear time
dependence:

xt+1 = a∗ xt + xt (13)

Here we used a =±0.001, where the sign of the slope is positive by default and changes when the border of the (0,1) domain
is reached ensuring reflective boundary condition.

Random walk data with linear anomaly
We simulated 100 instances of multiplicative random walks with 2-200 timestep long linear outlier-insets. The generation
procedure was as follows:

1. Generate wi random numbers from a normal distribution with µ = 0.001 and sigma = 0.01

2. Transform wi to get the multiplicative random walk data as follows: xi = ∏
i
j=1(1+w j)

3. Draw the length (L) and position of outlier-section from discrete uniform distributions between 2−200 and 1− (N−L)
respectively.

4. Use linear interpolation between the section-endpoint values.

Simulated ECG datasets with tachyarrhythmic segments
We generated artificial ECG data series according to the model of Ryzhii and Ryzhii10. The pacemakers of the heart: the
sinoatrial node (SA), the atroventricluar node (AV) and the His-Purkinje system (HP) are simulated by van der Pol equations:

SN


ẋ1 = y1

ẏ1 =−a1y1(x1−u11)(x1−u12)

− f1x1(x1 +d1)(x1 + e1)

(14)

AV


ẋ2 = y2

ẏ2 =−a2y2(x2−u21)(x2−u22)

− f2x2(x2 +d2)(x2 + e2)

+KSA−AV (y
τSA−AV
1 − y2)

(15)

HP


ẋ3 = y3

ẏ3 =−a3y3(x3−u31)(x1−u32)

− f3x3(x3 +d3)(x3 + e3)

+KAV−HP(y
τAV−HP
2 − y3)

(16)

where the parameters were set according to Ryzhii10: a1 = 40, a2 = a3 = 50, u11 = u21 = u31 = 0.83, u12 = u22 = u32 =−0.83,
f1 = 22, f2 = 8.4, f3 = 1.5, d1 = d2 = d3 = 3, e1 = 3.5, e2 = 5, e3 = 12 and KSA−AV = KAV−HP = f1.

The following FitzHugh-Nagumo equations describe the atrial and ventricular muscle depolarization and repolarization
responses to pacemaker activity:

P wave


ż1 = k1(−c1z1(z1−w11)(z1−w12)

−b1v1−d1v1z1 + IATDe)

v̇1 = k1h1(z1−g1v1)

(17)
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Ta wave


ż2 = k2(−c2z2(z2−w21)(z2−w22)

−b2v2−d2v2z2 + IATRe)

v̇2 = k2h2(z2−g2v2)

(18)

QRS


ż3 = k3(−c3z3(z3−w31)(z2−w32)

−b3v3−d3v3z3 + IVNDe)

v̇3 = k3h3(z3−g3v3)

(19)

T wave


ż4 = k4(−c4z4(z4−w41)(z4−w42)

−b4v4−d4v4z4 + IVNRe)

v̇4 = k4h4(z4−g4v4)

(20)

where k1 = 2×103, k2 = 4×102, k3 = 104, k4 = 2×103, c1 = c2 = 0.26, c3 = 0.12, c4 = 0.1 b1 = b2 = b4 = 0, b3 = 0.015,
d1 = d2 = 0.4, d3 = 0.09, d4 = 0.1, h1 = h2 = 0.004, h3 = h4 = 0.008, g1 = g2 = g3 = g4 = 1, w11 = 0.13, w12 == w22 = 1,
w21 = 0.19, w31 = 0.12, w32 = 0.11, w41 = 0.22, w42 = 0.8.

The input-currents (Ii) are caused by pacemaker centra.

IATDe =

{
0 for y1 ≤ 0
KATDey1 for y1 > 0

(21)

IATRe =

{
−KATRey1 for y1 ≤ 0
0 for y1 > 0

(22)

IVNDe =

{
0 for y3 ≤ 0
KVNDey3 for y3 > 0

(23)

IVNRe =

{
−KVNRey3 for y3 ≤ 0
0 for y3 > 0

(24)

where KATDe = 4×10−5, KATRe = 4×10−5, KVNDe = 9×10−5 and KVNRe = 6×10−5.
The net ECG signal is given by the weighted sum of muscle depolarization and repolarization responses:

ECG = z0 + z1− z2 + z3 + z4 (25)

where z0 = 0.2 is a constant offset.
We simulated 100 instances of t = 100 seconds long ECG data with base rate parameter chosen from a Gaussian distribution

( f1 ∼N (µ = 22,σ = 3)). We randomly inserted 2−20 seconds long fast heart-beat segments by adjusting the rate parameter
( f1∼N (µ = 82,σ = 3)). The simulations were carried out by the ddeint python package, with simulation time-step ∆t = 0.001
from random initial condition and warmup time of 2 seconds. Also, a 10× rolling-mean downsampling was applied on the data
series before analysis.

Generating non-unique anomalies dataset
To show the selectiveness of TOF for the detection of unicorns, we simulated logistic map data with two tent-map outlier
segments. The governing equations were the same as in the previous section, but instead of one, we randomly placed two
non-overlapping outlier segments into the time series during data generation, (N = 2000,L = 20−200).
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Analysis steps on simulations

We applied optional preprocessing, and ran TOF, LOF, brute-force discord discovery7 and Rare Rule Anomaly (RRA)8 discord
discovery algorithms on all simulated datasets.

We applied the same preprocessing on the datasets for all anomaly detection methods on the four datasets. For the logistic
map datasets no preprocessing was applied. For the simulated ECG data we applied a tenfold downsampling, the sampling
period became ∆t = 0.01 s. For the multiplicative random walk with linear anomaly dataset we applied a logarithmic difference
as a preprocessing step to get rid of nonstationarity in the time series (Eq. 26).

yt = log(xt)− log(xt−1) (26)

where x is the original time series, log is the natural logarithm and y is the preprocessed time series.
In the case of TOF and LOF, time delay embedding was applied on the scalar time series. For the logistic map - tent map

and - linear datasets the dynamics is well known and 1-dimensional, so E = 3 embedding dimension is enough to embed the
signal. Also, τ = 1 time-step was proper for an embedding delay. For the ECG dataset the dynamics naively seems to be
approximately 2-dimensional, so we set E = 3, which may be enough to reconstruct the dynamics, also τ = 0.01 s was set as
embedding delay.

After embedding, the ROC AUC score was computed to find optimal neighborhood sizes in the k ∈ {1, ..199} range with
the TOF and the LOF methods (Fig. 3 A).

As a next step of comparison, a screening over the anomaly-length parameter was performed and optimal F1 score was
registered for the TOF, LOF and brute force discord detection (Fig. 3 B)). More specifically, the F1-score metrics, precision
and recall were calculated on the simulated datasets in the function of event length parameter in the [1,300] integer range for
the discrete-time datsets and in the [1,3000] integer range on the simulated ECG dataset. The embedding dimension was set
to E = 3, and embedding delay tau = 1, the neighborhood size parameter was set to k = 4 in the case of TOF, and k = 28,
1, 99, 1 for LOF applied on the logistic map-tent map, logistic map-linear simulated ECG and random walk-linear datasets
respectively. We applied the brute force discord discovery on the simulated datasets, and calculated the F1 score in the function
of neighborhood size and window length parameters respectively. The window length parameter were varied the same way we
changed the event length parameter for TOF or the percentage of outliers for LOF.

We ran Senin’s RRA algorithm on the simulated datasets for discord discovery with automated event length selection8, 9.
We set the maximal sliding window size to 200 time-steps for the discrete time simulations and to 2000 time-steps for the
simulated ECG datasets. The paa = 4 was set according to the example script and the alphabet size was set to a=8.

To show that TOF finds unique events, we applied the algorithm on time series with multiple anomalies. We made no
preprocessing on the dataset and the embedding parameters were set to E = 3 and τ = 1. Also the neighborhood size was set to
kTOF = 4 and kLOF = 28 for TOF and LOF respectively. We calculated the ROC AUC values for each simulated instance and
plotted these values as the function of inter event interval (Fig. 4).
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Figure S4. Running time as a function of time series length. Single runs (blue dots) and datalength-wise means (black
stars) are shown along with the line fitted on the last two lengths (red line, (d = 3, τ = 1, k = 4)

Computational complexity and running time
The current implementation of the TOF algorithm contains a time delay embedding, a kNN search, the computation of TOF
score from the neighborhoods and threshold application. The time-limiting step is the neighbor-search, which uses the scipy
cKDTree implementation of the kDTree algorithm4. The most demanding task is to build the tree data-structure; its complexity
is O(kn logn)11 and the nearest neighbor search has O(logn) complexity.

We applied the TOF algorithm on random noise from 102−106 sample size, 15 instances each (d = 3, τ = 1, k = 4). The
running-time on the longest tested dataset containing 106 points was 15,144± 0.351 secs (Fig. 4) on a laptop powered by
Intel®Core™i5-8265U CPU.

We fit a line on the log-log plot where the data-lengths were n = 105 and n = 106. The following equation described the
fitting line:

log(t) = 1.292ln(n)−15.136 (27)

.
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Figure S5. F1 score in the function of embedding dimension and embedding delay for the simulated datasets
(N = 15). A Logistic map with tentmap anomaly (E∗ = 3, τ = 1, Fmax

1 = 0.818), B logistic map with linear anomaly (E∗ = 4,
τ = 1, Fmax

1 = 0.946), C simulated ECG with tachycardia (E∗ = 7, τ = 6, Fmax
1 = 0.942) and D random walk with linear

anomaly (E∗ = 3, τ = 1, Fmax
1 = 0.947).

Embedding-parameter dependence
We investigated the parameter-dependence of TOF detection perfomance by measuring the F1 score on a range of embedding
dimension (d ∈ {2, ..19}) and embedding delay (τ ∈ {1, ..19}) pairs, while keeping the threshold parameter fixed on the
simulated datasets (N = 15 each, Fig. 5). The threshold parameter was set to 110 for the discrete-time datasets, and 1100 for
the simulated ECG dataset.

We found that the performance was parameter-depedent, but near optimal parameters can be found in most cases with basic
knowledge about the investigated system.

It is worth mentioning that the optimal and near-optimal parameter combinations traced out a hyperbola in the search space
pointing a quazy-constant optimal embedding-window length specific to each dataset.
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Figure S6. Simulated Expectation of the upper limit F1 score for LOF and discord in the function of length
parameter on the simulated data. The figure shows the F1 scores of simulated time series (N = 10000) with randomly
varied anomaly length in the function of length parameter (L). The median (blue curve) and mean (yellow curve) of the F1
scores is also marked on the figure. The shortest anomaly has the length of l = 20 (red curve) time-steps and the longest one is
l = 200 time-steps long (green curve). These two curves mark the range of possible F1 score values measured on the dataset
(Blue shading) and to get some sense of the distribution, the inter-quartile range (strong shading) is also shown. The F1 score
strongly depends on the length parameter, the estimated maximum is at 114 timesteps, which is around the expected event
length (110) of the simulated outlier segments.

Maximum expected F1 score of the simulated dataset
When the event length is unknown, the maximal achievable F1 score may be limited by the event length parameter.

We computed the maximal possible F1 score given the length parameter of anomaly detection methods. We simulated
N=10000 realizations of true event lengths drawn from a discrete uniform distribution over the [20, 200] range, and computed
the maximum possible F1 score metric given the length parameter (L) in the (1, 300) range. We took the L-wise mean and
median of the sample and plotted the results (Fig. 6).
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Figure S7. TOF Results on the Gravity Spy blip dataset. A The mean F1 score, precision and recall metrics from the
training set are shown (N = 128) and the maximal precision place (M = 36) selected to test evaluation. B The test (N = 29) F1
score, precision,recall and block recall. The median precision is 1.00 and the block recall (hit rate) is 0.9.

Local Outlier Factor

The Local Outlier Factor12 compares local density around a point (X) with the density around its neighbors (Eq. 28).

LOFk(X) =
1

|Nk(X)| ∑
o∈Nk(X)

lrdk(o)
lrdk(X)

(28)

Where |Nk(X)| is the cardinality of the k-distance neighborhood of X , lrdk is the local reaching density for k-neighborhood (see
Breunig et al. 12 for details, Fig. S1).

Analysis of real-world data
Polysomnography dataset
We analysed a part of the first recording of the MIT-BIH polysomnographic database13 on Physionet14. The ECG data was
sampled at 250 Hz. A 160 s long segment was selected to be analysed, starting at 300 s of the recording. The embedding
parameters were set by a manual procedure to ETOF = 3 and τ = 0.02 s. The embedding delay was set according to the
first zero-crossing of the autocorrelation function, embedding dimension was determined by an iterative embedding process,
where the intrinsic dimensionality15 of the dataset was measured for various embedding dimensions (Fig S9). The embedding
dimension where the intrinsic dimensionality started to saturate was selected. For LOF, the embedding dimension was set higher
(ELOF = 7), because the results became more informative about the apnea event. The neihgborhood size was set according to
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simulation results; we used a smaller neighborhood for TOF (k = 11) and a large neighborhood for LOF (k = 200). Moreover
we set the event length to M = 5 s for TOF, corresponding to 3.125% for LOF, which turned out to be a too loose condition.
Therefore we used the more conservative 0.5% threshold for LOF to get more informative results.

Gravitational wave dataset
We analysed the 4096 Hz sampling rate strain data of the LIGO Hanford (H1) detector around the GW150914 merger event.
The analysed 12 s recording starts 10 s before the event. We investigated the q transform spectrogram of the time series around
the event at 5×10−4 s time resolution by using the gwpy python package16. Based on the spectrogram we applied 50-300 Hz
bandpass filtering on the time series as a preprocessing step. Embedding parameters were selected manually (Fig. S10), by
choosing the first minima of the autocorrelation function for the embedding delay (τ = 8 sampling periods ≈ 1.95 ms) and then
we selected the embedding dimension according to a manual procedure. Successive embedding of the time series into higher
and higher dimensional space showed, that the intrinsic dimensionality of the dataset starts to deviate from the embedding
dimension at E = 6. Thus, we set this latter value as embedding dimension for TOF. For LOF a higher embedding dimension
(E = 11) led to informative results. We set the neighborhood sizes based on our experiences with the simulated datasets: smaller
value was set for TOF (k = 12) and larger for LOF (k = 100). The event length was set to M = 146 ms for TOF as the visible
length of the chirp on the spectrogram and 0.5 % for LOF. Also, a w = 7 widening window was applied on TOF detections.

Gravity Spy blip dataset
Data acquisiton: We downloaded randomly chosen blip events registered in the Gravity Spy17 database from the GWOSC18

servers using the gwpy python package16. Time series length was randomly chosen (0.15-2sec) around the blip events. The start
time and duration of each event was acquired from the Gravity Spy metadata file, and a random-length pre and post segment
were added to the event. After downloading the data, the data-files containing missing values were removed. At the end of the
download and quality check steps, the training set contained N = 128 and the test set contained N = 29 blip time series.

Preprocessing and application of TOF: We bandpass-filtered the signals (100-300 Hz) with default parameters two times
(mne.filter/filter_data function) and cropped the time series to get rid of distorted edges (200 timesteps). We applied time delay
embedding (d = 3, τ = 1) and applied TOF to predict anomalies in the function of the event-threshold in the 1-500 time-step
range for the training data. We applied the TOF algorithm on the test set with optimal threshold parameter (see below).

Performance metrics: We calculated F1 score, precision and recall values for the threshold range and we optimized the
median precision value to select a threshold value (M = 36, precision= 0.94, Fig. S7). Furthermore, we computed the block
recall metric on the test set, which measures the ratio of datasets in which TOF found points of blip events.

Training and test results: The metrics showed high median precision, low median recall and low median F1 score for
the training set (Fig. S7 A). On the test set, we applied TOF with the optimized threshold (M = 36) and got very high median
precision (1.00, IQR:0.263) and high block recall (0.9) with low F1 score and recall (Fig. S7 B).

LIBOR dataset
The monthly LIBOR dataset was analysed to identify interesting periods. As a preprocessing step, the first difference was
applied for detrending purposes.

Optimal Embedding parameters were selected according to the minima of the relative entropy (E = 3, τ = 1 month,
Fig. S11-S12). The neighborhood size was set manually to kTOF = 5 and kTOF = 30 for TOF and LOF respectively. Also, the
event length was M = 30 for TOF and the threshold was set to 18.86 % for LOF. Also, a widening window w = 3 was applied
on TOF detections.

Additional Tables and Figures
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Figure S8. Precision and recall and its dependence on the expected length parameters of the three methods on four
different test datasets. Upper row mean precision, lower row mean recall and SD, over n=100 test dataseries for all four
dataset types. Orange line: TOF, Blue line: LOF, Red line: discord, black-dashed: mean maximal precision for LOF and
discord methods, green-dashed: mean maximal recall for LOF and discord. A Precision score reached by the methods on the
test data-sets. B Recall score reached by the methods on the test data-sets.

Table S1. State space densities and LOF values within normal and anomalous activity. Median and median absolute
difference of the density of the points and LOF values in the reconstructed state space are shown, calculated from the distance
of the 20 nearest neighbors. The density of the anomaly was significantly lower than the density generated by normal activity in
two cases: the tent map anomaly in logistic backgroud the tachycardia within the normal heart rhythm. These cases also
resulted in higher LOF values of anomalies. While the density of the linear anomaly segments was not significantly different
from the logistic background, the linear anomalies generated much higher density than the normal random walk time series
after detrending. Correspondingly, LOF values were not significantly higher in these two cases within the anomaly than in the
normal activity.

dataset Density LOF
Normal Anomaly Normal Anomaly

logmap tent 95.759±12.070 11.606±1.146 1.039±0.010 3.424±1.990
logmap linear 95.190±9.305 97.413±51.289 1.040±0.012 1.398±0.451
sim ECG tachy 10146±2227 168.370±38.699 1.106±0.022 1.264±0.227
randwalk linear 197.919±3.866 52590±61527 1.623±0.661 1.872±0.920
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Figure S9. Embedding parameter selection for the polysomnography data. A Embedding delay was selected (τ = 5
sampling period) according to the first zerocrossing of the autocorrelation function. The timeshift ensures the most linearly
independent axes in reconstructed state space. B The intrinsic dimensionality is measured as a function of embedding
dimension (E) for various neighborhood sizes. The dimension-estimates start to deviate from the diagonal at E = 3. C Intrinsic
dimensionality in the function of neighborhood size (k) for various embedding dimensions.
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Figure S10. Embedding parameter selection for the gravitational wave data. A Embedding delay was selected (τ = 8
sampling period) according to the first minima of the autocorrelation function. The first zeropoint was between 16 and 17
sampling periods. B The intrinsic dimensionality is measured as a function of embedding dimension (E) for various
neighborhood sizes. The dimension estimates start to deviate from the diagonal at E = 5. C Intrinsic dimensionality as a
function of neighborhood size (k) for various embedding dimensions.
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Figure S11. Autocorrelation and intrinsic dimension measurement of the preprocessed LIBOR time series.
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Figure S12. Preprocessing and embedding parameter selection for the LIBOR time series with differential entropy.
(left) The discrete time derivative of the original time series was calculated to detrend the data (right). The minima of the
entropy landscape marks the optimal embedding parameters (E = 3,τ = 1 timestep).

17/18



References
1. Rhodes, C. & Morari, M. The false nearest neighbors algorithm: An overview. Comput. & Chem. Eng. DOI: 10.1016/

S0098-1354(97)87657-0 (1997).
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