Supplementary information on "High J_c and low anisotropy of hydrogen doped NdFeAsO superconducting thin film"

Kazumasa Iida^{1,6}, Jens Hänisch², Keisuke Kondo¹, Mingyu Chen¹, Takafumi Hatano^{1,6}, Chao Wang³, Hikaru Saito^{4,6}, Satoshi Hata^{3,5,6}, and Hiroshi Ikuta¹

1. The effect of microbridge processing on the superconducting transition temperature.

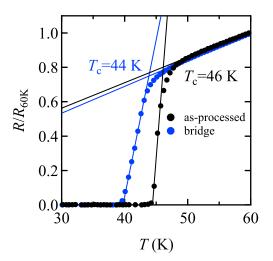


Figure S1. Normalised resistance as a function of temperature. The as-processed sample showed a T_c of 46 K. After fabrication, the bridge sample showed a T_c of 44 K.

¹Department of Materials Physics, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan

²Institute for Technical Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

³ The Ultramicroscopy Research Center, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan ⁴Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580, Japan

⁵Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan ⁶JST CREST, Kawaguchi, Saitama 332-0012, Japan

2. The pinning force analysis.

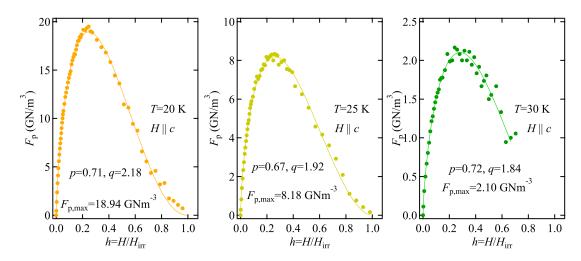


Figure S2. Pinning force density F_p as a function of reduced field for $H \parallel c$. Exponents p and q in $h^p(1-h)^q$ are evaluated for each temperature. The results are summarised in fig. 4e.

3. Determining the dimensional cross-over temperature $T_{\rm cr.}$

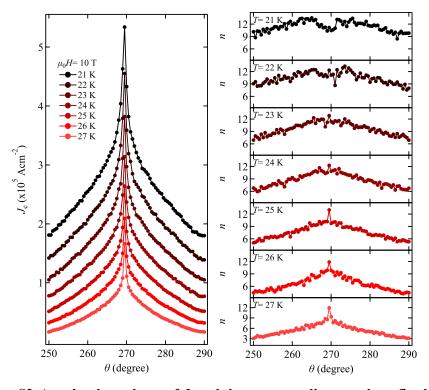


Figure S3. Angular dependence of J_c and the corresponding n under a fixed magnetic field of 10 T measured at various temperatures. As the temperature decreases from 27 K, the exponent n around θ -270° (i.e. $H \parallel ab$) starts showing shoulders at 24 K, followed by a dip formation.

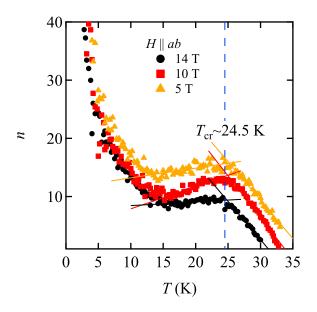
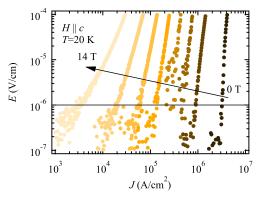



Figure S4. Temperature dependence of n for $H \parallel ab$ under several magnetic fields. The exponent n increases with decreasing T and stays constant around 24.5 K. Below 15 K, n starts to increase again with decreasing T.

4. E-J curves for determining J_c .

Figure S5. Representative *E-J* curves. *E-J* curves at 20 K for $H \parallel c$. Field increment was 2 T. J_c was determined as the intersection between $E=1 \mu V/cm$ and each curve.