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A: COMPUTING
THE HESSIAN MATRIX

As we showed in the main text, the Hessian matrix of
our likelihood function is ‘minus’ the covariance matrix
of the constraints, i.e.

Hij =
∂2L (~θ)

∂θi∂θj
= −Cov[Ci, Cj ], i, j = 1 . . .M ; (1)

interestingly, a variety of alternative methods exists to
explicitly calculate the generic entry Hij , i.e. 1) taking
the second derivatives of the likelihood function charac-
terizing the method under analysis, 2) taking the first
derivatives of the expectation values of the constraints
characterizing the method under analysis, 3) calculating
the moments of the pair-specific probability distributions
characterizing each method.

UBCM: binary undirected graphs
with given degree sequence

The Hessian matrix for the UBCM is an N ×N sym-
metric table with entries reading

HUBCM =

Var[ki] =
∑N

j=1
(j 6=i)

pij(1− pij), ∀ i

Cov[ki, kj ] = pij(1− pij), ∀ i 6= j
(2)

where pij ≡ pUBCM
ij . Notice that Var[ki] =∑N

j=1
(j 6=i)

Cov[ki, kj ], ∀ i.

DBCM: binary directed graphs
with given in-degree and out-degree sequences

The Hessian matrix for the DBCM is a 2N × 2N sym-
metric table that can be further subdivided into four
N ×N blocks whose entries read

HDBCM =



Var[kouti ] =
∑N

j=1
(j 6=i)

pij(1− pij), ∀ i

Var[kini ] =
∑N

j=1
(j 6=i)

pji(1− pji), ∀ i

Cov[kouti , kinj ] = pij(1− pij), ∀ i 6= j

Cov[koutj , kini ] = pji(1− pji), ∀ i 6= j

(3)
while Cov[kouti , kini ] = Cov[kouti , koutj ] = Cov[kini , k

in
j ] =

0 and pij ≡ pDBCM
ij .

Notice that the Hessian matrix of the BiCM mimicks
the DBCM one, the only difference being that the prob-
ability coefficients are now indexed by i and α: for ex-
ample, in the BiCM case, one has that Cov[ki, dα] =
piα(1− piα), ∀ i, α.

UECM: weighted undirected graphs with given
strengths and degrees

The Hessian matrix for the UECM is a 2N × 2N sym-
metric table that can be further subdivided into four
blocks (each of which with dimensions N × N). In or-
der to save space, the expressions indexed by the single
subscript i will be assumed as being valid ∀ i, while the
ones indexed by a double subscript i, j will be assumed
as being valid ∀ i 6= j. The entries of the diagonal blocks
read

HUECM =


∂2LUECM

∂α2
i

= Var[ki] =
∑N

j=1
(j 6=i)

pij(1− pij)
∂2LUECM

∂αiαj
= Cov[ki, kj ] = pij(1− pij)

(4)
and
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HUECM =


∂2LUECM

∂β2
i

= Var[si] =
∑N

j=1
(j 6=i)

pij(1−pij+e−βi−βj )

(1−e−βi−βj )2

∂2LUECM

∂βiβj
= Cov[si, sj ] =

pij(1−pij+e−βi−βj )

(1−e−βi−βj )2

(5)
where pij ≡ pUECM

ij . On the other hand, the entries of
the off-diagonal blocks read

HUECM =


∂2LUECM

∂αi∂βi
= Cov[ki, si] =

∑N
j=1

(j 6=i)

pij(1−pij)
1−e−βi−βj

∂2LUECM

∂αi∂βj
= Cov[ki, sj ] =

pij(1−pij)
1−e−βi−βj

(6)
with pij ≡ pUECM

ij .

DECM: weighted directed graphs
with given strengths and degrees

The Hessian matrix for the DECM is a 4N × 4N sym-
metric table that can be further subdivided into four
blocks (each of which with dimensions N×N). As for the
UECM, in order to save space, the expressions indexed
by the single subscript i will be assumed as being valid
∀ i, while the ones indexed by a double subscript i, j will
be assumed as being valid ∀ i 6= j. The entries of the
diagonal blocks read

HDECM =


∂2LDECM

∂α2
i

= Var[kouti ] =
∑N

j=1
(j 6=i)

pij(1− pij)
∂2LDECM

∂αiαj
= Cov[kouti , koutj ] = 0

(7)
and

HDECM =


∂2LDECM

∂β2
i

= Var[kini ] =
∑N

j=1
(j 6=i)

pji(1− pji)
∂2LDECM

∂βiβj
= Cov[kini , k

in
j ] = 0

(8)
and

HDECM =


∂2LDECM

∂γ2
i

= Var[souti ] =
∑N

j=1
(j 6=i)

pij(1−pij+e−γi−δj )

(1−e−γi−δj )2

∂2LDECM

∂γiγj
= Cov[souti , soutj ] = 0

(9)
and

HDECM =


∂2LDECM

∂δ2i
= Var[sini ] =

∑N
j=1

(j 6=i)

pji(1−pji+e−γj−δi )
(1−e−γj−δi )2

∂2LDECM

∂δiδj
= Cov[sini , s

in
j ] = 0

(10)
where pij ≡ pDECM

ij . On the other hand, the entries of
the off-diagonal blocks read

HDECM =

{
∂2LDECM

∂αi∂βi
= Cov[kouti , kini ] = 0

∂2LDECM

∂αi∂βj
= Cov[kouti , kinj ] = pij(1− pij)

(11)
and

HDECM =


∂2LDECM

∂αi∂γi
= Cov[kouti , souti ] =

∑N
j=1

(j 6=i)

pij(1−pij)
1−e−γi−δj

∂2LDECM

∂αi∂γj
= Cov[kouti , soutj ] = 0

(12)
and

HDECM =

{
∂2LDECM

∂αi∂δi
= Cov[kouti , sini ] = 0

∂2LDECM

∂αi∂δj
= Cov[kouti , sinj ] =

pij(1−pij)
1−e−γi−δj

(13)
and

HDECM =

{
∂2LDECM

∂βi∂γi
= Cov[kini , s

out
i ] = 0

∂2LDECM

∂βi∂γj
= Cov[kini , s

out
j ] =

pji(1−pji)
1−e−γj−δi

(14)
and

HDECM =


∂2LDECM

∂βi∂δi
= Cov[kini , s

in
i ] =

∑N
j=1

(j 6=i)

pji(1−pji)
1−e−γj−δi

∂2LDECM

∂βi∂δj
= Cov[kini , s

in
j ] = 0

(15)
and

HDECM =


∂2LDECM

∂γi∂δi
= Cov[souti , sini ] = 0

∂2LDECM

∂γi∂δj
= Cov[souti , sinj ] =

pij(1−pij+e−γi−δj )

(1−e−γi−δj )2

(16)
with pij ≡ pDECM

ij .

Two-step models for
undirected and directed networks

The Hessian matrix for the undirected two-step model
considered here is an N ×N symmetric table reading

Hund
CReM =

Var[si] =
∑N

j=1
(j 6=i)

fij
(θi+θj)2

, ∀ i

Cov[si, sj ] =
fij

(θi+θj)2
, ∀ i 6= j

(17)

where fij is given. In the directed case, instead, the Hes-
sian matrix for the two-step model considered here is a
2N×2N symmetric table that can be further subdivided
into four N ×N blocks whose entries read
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Hdir
CReM


Var[souti ] =

∑N
j=1

(j 6=i)

fij
(αi+βj)2

, ∀ i

Var[sini ] =
∑N

j=1
(j 6=i)

fji
(αj+βi)2

, ∀ i

Cov[souti , sinj ] =
fij

(αi+βj)2
, ∀ i 6= j

(18)

while Cov[souti , sini ] = Cov[souti , soutj ] = Cov[sini , s
in
j ] = 0

and fij is given.

B: A NOTE ON
THE CHANGE OF VARIABLES

In all methods we will considered in the present work,
the variable θi appears in the optimality conditions only
through negative exponential functions: it is therefore
tempting to perform the change of variable xi ≡ e−θi .
Although this is often performed in the literature, one
cannot guarantee that the new optimization problem
remains convex: in fact, simple examples can be pro-
vided for which convexity is lost. This has several conse-
quences, e.g. 1) convergence to the global maximum is no
longer guaranteed (since the existence of a global max-
imum is no longer guaranteed as well), 2) extra-care is
needed to guarantee that the Hessian matrix H employed
in our algorithms is negative definite. While problem
2) introduces additional complexity only for Newton’s
method, problem 1) is more serious from a theoretical
point of view.

Let us now address problem 1) in more detail. First,
it is possible to prove that any stationary point for L (~x)

satisfies the optimality conditions for L (~θ) as well. In
fact, the application of the ‘chain rule’ leads to recover
the set of relationships

∂L (~θ)

∂θi
=
∂xi
∂θi

∂L (~x)

∂xi
= −xi

∂L (~x)

∂xi
, i = 1 . . .M ;

(19)

notice that requiring ∇θiL (~θ) = 0 leads to require that
either ∇xiL (~x) = 0 or xi = 0. As the second eventual-
ity precisely identifies isolated nodes (i.e. the nodes for
which the constraint Ci(G

∗), controlled by the multiplier
θi, is 0), one can get rid of it by explicitly removing the
corresponding addenda from the likelihood function.

For what concerns convexity, let us explicitly calculate
the Hessian matrix for the set of variables {xi}Mi=1. In
formulas,

∂2L (~x)

∂x2
i

= e2θi

(
∂2L (~θ)

∂θ2
i

+
∂L (~θ)

∂θi

)
, i = 1 . . .M,

∂2L (~x)

∂xi∂xj
= eθi+θj

(
∂2L (~θ)

∂θi∂θj

)
, ∀ i 6= j

(20)

according to the ‘chain rule’ for second-order derivatives.
More compactly,

HL (~x) = eΘ ◦
(
−Cov[Ci, Cj ] + I · ∇~θL (~θ)

)
(21)

where I is the identity matrix, the generic entry of the
matrix eΘ reads

[
eΘ
]
ij
≡ eθi+θj , ∀ i, j and the symbol

‘◦’ indicates the Hadamard (i.e. element-wise) product
of matrices. In general, the expression above defines an
indefinite matrix, i.e. a neither positive nor negative
(semi)definite one.

C: FIXED POINT METHOD
IN THE MULTIVARIATE CASE

We can rewrite equation (21) at page 4 of the main
article as:

θ
(n)
i = Gi(~θ

(n−1)), i = 1 . . . N ; (22)

for the sake of illustration, let us discuss it for the UBCM
case. In this particular case, the set of equations above
can be rewritten as

θ
(n)
i = − ln

 ki(A
∗)∑N

j=1
(j 6=i)

(
e
−θ(n−1)
j

1+e
−θ(n−1)
i

−θ(n−1)
j

)
 , i = 1 . . . N.

(23)
Since all components of the map G are continuous on

RN , the map itself is continuous on RN . Hence, a fixed
point exists. Let us now consider its Jacobian matrix and
check the magnitude of its elements. In the UBCM case,
one finds that

∂Gi
∂θi

=

∑N
j=1

(j 6=i)

e−θi−2θj

(1+e−θi−θj )
2∑N

j=1
(j 6=i)

(
e−θj

1+e−θi−θj

) =

∑N
j=1

(j 6=i)

(
e−θi−θj

1+e−θi−θj

)2

∑N
j=1

(j 6=i)

(
e−θi−θj

1+e−θi−θj

)
= 1− Var[ki]

〈ki〉
= 1−

∑
j 6=i Cov[ki, kj ]

〈ki〉
, ∀ i

(24)

and

∂Gi
∂θj

= −
e−θj

(1+e−θi−θj )
2∑N

j=1
(j 6=i)

(
e−θj

1+e−θi−θj

) = −
e−θi−θj

(1+e−θi−θj )
2∑N

j=1
(j 6=i)

(
e−θi−θj

1+e−θi−θj

)
= −Cov[ki, kj ]

〈ki〉
, ∀ i, j. (25)
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Let us notice that 1) each element of the Jacobian ma-
trix is a continuous function RN → R and that 2) the
following relationships hold

∣∣∣∣∂Gi∂θj

∣∣∣∣ ≤ 1, ∀ i, j; (26)

unfortunately, however, when multivariate functions are

considered, the set of conditions above is not enough to
ensure convergence to the fixed point for any choice of
the initial value of the parameters. What is needed to be
checked is the condition ||JG(~θ)|| < 1, with J indicating
the Jacobian of the map (i.e. the matrix of the first, par-
tial derivatives above) and ||.|| any natural matrix norm:
the validity of such a condition has been numerically ver-
ified case by case.
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