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A. DERIVATION OF THE RESERVOIR DYNAMICAL EQUATION

Here we derive Eq.(1) of the main text, which describes the time evolution of the probe at the output of the Drop
port of the resonator. The starting point is the equation governing the free carrier dynamics, which is given by [1]:

d∆N

dt
= −∆N

τfc
+ gtpaU

2, (1)

where gtpa is the free carrier generation rate per unit energy induced by TPA and U is the internal energy of the
resonator. Equation (1) has the formal solution:

∆N(t) = gtpa

∫ t

−∞
e
− t−ξτfc U2(ξ)dξ. (2)

The total energy is given by U = Up + Upr, i.e., the sum of the energies of the pump (Up) and probe (Upr) lasers.
Since the probe is weaker than the pump, we let U ∼ Up. From temporal coupled mode theory, the expression for Up
is given by Up = fpPp, where fp is defined as [2]:

fp =
γe

(ωp,0(1 + δω)− ωp)2
+ γ2

tot

, (3)

in which γtot is the total loss rate of photons from the cavity, γe the extrinsic loss in the bus waveguide, and
δω the normalized frequency shift imparted by thermal and free carrier dispersion. The latter is given by δω =
−Γ
n (σFCD∆N + σTOE∆T ), where Γ is the modal confinement factor, n the refractive index of the waveguide core

material, σFCD the FCD coefficient, σTOE the thermo optic coefficient and ∆T the differential temperature of the MR
with respect to the cold cavity condition. An similar expression holds for fpr, which defines Upr = fprPpr. Note that
Eq.(3) assumes that the MR internal energy adiabatically follows the input power variations Pp. In our case, this
holds since Pp varies on the timescale of the free carrier lifetime τfc = 45 ns, while the photon lifetime is 2

γtot
∼ 10 ps.

Moreover, in our experiment the pump power varies much faster than the thermal decay constant of the MR [3], so
that after an initial transient, the temperature reaches an equilibrium value ∆T . As discussed in Section 1.3 of the
main text, for our MR this approximation holds up to Pp = 6 dBm, after which thermal effects drive the cavity in an
unstable regime and have to be accounted for in the dynamics. We now expand f2

p to the first order in ∆N around

a reference value ∆N as f2
p ∼ f2

p +
df2
p

d∆N

(
∆N −∆N

)
, where:

df2
p

d∆N
=

4ΓσFCD

n ωp,0γ
2
e [(1 + δω)ωp,0 − ωp]2[

((1 + δω)ωp,0 − ωp)2
+ γ2

tot

]3 . (4)

In deriving Eq.(4), we neglected the dependence of γtot on both ∆N and U , which is due respectively to FCA and
TPA, since their contribution is small compared to FCD. If the pump power variations around the reference value
P p,0, giving the equilibrium condition ∆N = ∆N , are sufficiently small to justify the first order expansion of f2

p , we
can insert it into Eq.(2) to give:

∆N(t) = gtpa

∫ t

−∞
e
t−ξ
τfc P 2

p (ξ)

(
f2
p +

df2
p

d∆N

(
∆N(ξ)−∆N

))
dξ. (5)

Since the probe and the pump lasers have similar detunings and linewidth γ−1
tot with the corresponding MR resonances,

we can also expand fpr to the first order in ∆N . This allows to relate ∆N to the probe energy Upr as:

∆N −∆N =

(
Ppr

dfpr
d∆N

)−1 (
Upr − Upr

)
. (6)
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By substituting Eq.(6) into Eq.(5) and rearranging terms, we obtain Eq.(1) of the main text, with the definitions:

c0 = γe

(
Upr −

dfpr
d∆N

∆NPpr

)
, (7)

c1 =
dfpr
d∆N

gtpaγef2
pPpr

(
1− 1

f2
p

(
df2
p

d∆N

)(
dfpr
d∆N

)−1
Upr
Ppr

)
, (8)

c2 = gtpaγe
df2
p

d∆N
. (9)

By taking the values of the varius coefficients from [3], and by using Ppr = 0.5 mW, one finds c1 ∼ 2430 fJ−1 and

c2Upr ∼ −c1.

B. RELATIVE MAGNITUDE BETWEEN KERR AND FREE CARRIER EFFECTS

Using the same notation of the Supplementary material Section A, the normalized resonance shift δω imparted by

Kerr and FCD are given respectively by δωFCD = −Γ
nσFCD∆N and δωKerr = − cn2Up

n2V [4], where n2 is the nonlinear
refractive index of silicon, c the speed of light and V the volume of the MR. We can calculate ∆N as the steady state
solution of Eq.(1) as ∆N = τfcgtpaU

2
p , that combined to Eq.(3) yields the following expression for δωfc:

δωfc = −
σFCDτfcgtpaq

2(ωp, ωp,0)Q2P 2
p

16ω2
pn

, (10)

where q(ωp, ωp,0) is defined as:

q(ωp, ωp,0) =

((
ωp,0
γtot

(
1 + δω − ωp

ωp,0

))2

+ 1

)−1

. (11)

For simplicity, we assumed γtot ∼ 2γe, which in our case is justified by the fact that Qi = ω
γi
� Qe (see Section 1 of

the main text). Similarly, the expression for δωKerr is given by:

δωKerr = −cn2q(ωp, ωp,0)QPp
4ωpn2V

. (12)

We can now calculate the ratio between the FCD and the Kerr frequency shift as:

δωfc

δωKerr
=
σFCDτfcgtpaq(ωp, ωp,0)nV QPp

4ωpcn2
. (13)

By inserting the values of the parameters in [3], and using σFCD = −4×10−27m3 [5], Pp = 5 mW and q = 0.95 (which

corresponds to the experimental pump detuning of −7.5 GHz) we obtain δωfc

δωKerr
∼ 200. We expect the actual ratio to

be slightly lower due to the degradation of the quality factor caused by TPA and FCA, which however does not alter
the claim that FCD imparts a resonance shift which is two orders of magnitude higher than the one of the Kerr.

C. CALCULATION OF THE SIGNAL TO NOISE RATIO

In the following, we detail how the Signal to Noise Ratio (SNR) is estimated in case of the Iris flower classification
task. The procedure, shown in Fig.1(a), can be divided in the following steps:

1. Step 1: The probe signal intensity is detected by a photodiode and recorded by an oscilloscope. Each flower
sample is made by 50 virtual nodes of temporal duration 1/B, where B is the bitrate. The deadtime between
different flower samples is set to 100 ns, and is discarded in the SNR analysis. The oscilloscope sampling
frequency is 5 GHz, which corresponds to 250 sample points for each virtual node. In a preliminary stage, the
data is smoothed using a moving average filter involving SP adjacent points. We collected 150 flower samples
and stacked all the virtual nodes into the same dataset.
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FIG. 1. (a) The four sequential steps involved in the calculation of the SNR in case of the task of Iris flower classification. (b)
OSNR as a function of the input pump power and the number of smoothing points SP implemented in the moving average
filter.

2. Step 2: Each virtual node is further divided into several disjoint sets made by 30 sampling points each.

3. Step 3: A linear fit is executed for each set. The slope and the intercept are determined by minimizing the sum
of the residuals.

4. Step 4: A local SNR is evaluated for each set using the formula SNR = 10 log 〈V
2〉

〈N2〉 where V are the voltage

levels within each set and N the residuals. The average optical SNR (OSNR) is calculated among all the sets
to yield the value reported in the main manuscript. We define the OSNR as SNR/2, since the SNR is referred
to the electrical power (∝ V 2), while the OSNR is referred to the optical power (∝ V ).

Steps from 1 to 4 are repeated for different values of SP = {10, 20, 30, 40}, and for different values of the optical pump
power. A summary of the obtained OSNR is reported in Fig.1(b). The calculation of the SNR for the XOR task
follows the very same steps.
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