
Supplementary Information for
Fast and Simple Super-resolution with Single

Images

Paul H.C. Eilers Cyril Ruckebusch

May 23, 2022

Here we present details of the conjugate gradients (CG) algorithm and
its Matlab implementation, based on the Wikipedia lemma (https://en.
wikipedia.org/wiki/Conjugate_gradient_method). We start with the one-dimensional
case. The PSF is represented by the m-by-n matrix S and the observed
“image" is the m-vectory. We have to solve the system of penalized least
squares equations (S′S + κ I + λD′D)x = S′y for the n-vector x. For effi-
ciency, it is re-written as Gx = u.

Listing 1: Code for standard conjugate gradients algorithm.
1 % Set up ridge regression

2 n = size(S, 2);

3 kappa = 0.001;

4 D = diff(eye , n);

5 lambda = 1;

6 G = S’ * S + kappa * eye(n) + lambda * D’ * D;

7 u = S’ * y;

8
9 % Initialize for conjugate gradients

10 x = zeros(n, 1);

11 r = u - G * x;

12 p = r;

13
14 % Iterate CG

15 for it = 1:50

16
17 % Update p and r

1



18 q = G * p;

19 alpha = (r’ * r) / (p’ * q);

20 x = x + alpha * p;

21 rnew = r - alpha * q;

22 beta = (rnew ’ * rnew) / (r’ * r);

23 r = rnew;

24 p = r + beta * p;

25
26 % Monitor convergence

27 err = sqrt(mean((u - G * x) .^ 2 ));

28 disp([it log10(err)])

29 if err < 1e-3

30 break

31 end

32 end

The core of the algorithm takes only seven lines. One operation is a
matrix-vector product (q = G * p), all others work on only vectors.

Listing 2: Code for two-dimensional conjugate gradients algorithm.
1 % Prepare components of linear system

2 U = S1’ * Y * S2;

3 G1 = S1’ * S1;

4 G2 = S2’ * S2;

5 kappa = 1;

6 lambda = 1;

7 D1 = diff(eye(n1));

8 D2 = diff(eye(n2));

9 V1 = lambda * D1’ * D1;

10 V2 = lambda * D2’ * D2;

11
12 % Initialize for conjugate gradients

13 R = U;

14 P = R;

15 n1 = size(G1, 2);

16 n2 = size(G2, 2);

17 X = zeros(n1, n2);

18
19 for it = 1:100

20

2



21 % Update P and R

22 Q = G1 * P * G2 + kappa * P + V1 * P + P * V2 ’;

23 alpha = sum(R(:) .^ 2) / sum(P(:) .* Q(:));

24 X = X + alpha * P;

25 Rnew = R - alpha * Q;

26 rs1 = sum(R(:) .^ 2);

27 rs2 = sum(Rnew (:) .^ 2);

28 beta = rs2 / rs1;

29 P = Rnew + beta * P;

30 R = Rnew;

31
32 % Monitor convergence

33 rms = sqrt(rs1 / (n1 * n2));

34 disp([it log10(rms)])

35 if rms < 1e-3

36 break

37 end

38 end

3


