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Here we present details of the conjugate gradients (CG) algorithm and
its Matlab implementation, based on the Wikipedia lemma (https://en.
wikipedia.org/wiki/Conjugate_gradient_method). We start with the one-dimensional
case. The PSF is represented by the m-by-n matrix S and the observed
“image" is the m-vectory. We have to solve the system of penalized least
squares equations (S′S + κ I + λD′D)x = S′y for the n-vector x. For effi-
ciency, it is re-written as Gx = u.

Listing 1: Code for standard conjugate gradients algorithm.
1 % Set up ridge regression

2 n = size(S, 2);

3 kappa = 0.001;

4 D = diff(eye , n);

5 lambda = 1;

6 G = S’ * S + kappa * eye(n) + lambda * D’ * D;

7 u = S’ * y;

8
9 % Initialize for conjugate gradients

10 x = zeros(n, 1);

11 r = u - G * x;

12 p = r;

13
14 % Iterate CG

15 for it = 1:50

16
17 % Update p and r
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18 q = G * p;

19 alpha = (r’ * r) / (p’ * q);

20 x = x + alpha * p;

21 rnew = r - alpha * q;

22 beta = (rnew ’ * rnew) / (r’ * r);

23 r = rnew;

24 p = r + beta * p;

25
26 % Monitor convergence

27 err = sqrt(mean((u - G * x) .^ 2 ));

28 disp([it log10(err)])

29 if err < 1e-3

30 break

31 end

32 end

The core of the algorithm takes only seven lines. One operation is a
matrix-vector product (q = G * p), all others work on only vectors.

Listing 2: Code for two-dimensional conjugate gradients algorithm.
1 % Prepare components of linear system

2 U = S1’ * Y * S2;

3 G1 = S1’ * S1;

4 G2 = S2’ * S2;

5 kappa = 1;

6 lambda = 1;

7 D1 = diff(eye(n1));

8 D2 = diff(eye(n2));

9 V1 = lambda * D1’ * D1;

10 V2 = lambda * D2’ * D2;

11
12 % Initialize for conjugate gradients

13 R = U;

14 P = R;

15 n1 = size(G1, 2);

16 n2 = size(G2, 2);

17 X = zeros(n1, n2);

18
19 for it = 1:100

20
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21 % Update P and R

22 Q = G1 * P * G2 + kappa * P + V1 * P + P * V2 ’;

23 alpha = sum(R(:) .^ 2) / sum(P(:) .* Q(:));

24 X = X + alpha * P;

25 Rnew = R - alpha * Q;

26 rs1 = sum(R(:) .^ 2);

27 rs2 = sum(Rnew (:) .^ 2);

28 beta = rs2 / rs1;

29 P = Rnew + beta * P;

30 R = Rnew;

31
32 % Monitor convergence

33 rms = sqrt(rs1 / (n1 * n2));

34 disp([it log10(rms)])

35 if rms < 1e-3

36 break

37 end

38 end
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