
A Implementation Details

The proposed SVDKL framework is constructed using the GPyTorch1 library.

A.1 SVDKL-AE Architecture
The input measurements are 84×84×3 RGB images. To allow the encoder to learn the angle of the pendulum and its angular
velocity, two consecutive frames are stacked together, making the input measurements of size 84×84×6. The SVDKL encoder
E is composed of 4 convolutional layers with 32 filters per layer. The convolutional filters are of size (3×3) and shifted across
the images with stride 1 (only the first convolutional layer has stride 2 to quickly reduce the input dimensionality). Batch
normalization is also used after the 2nd and 4th convolutional layers. A similar convolutional architecture is used in PlaNet2

and Dreamer3. The output features of the last convolutional layer are flattened and fed to two final fully connected layers
of dimensions 256 and 20, respectively, compressing the features to a 20-dimensional feature vector. Each layer has ELU
activations, except the last fully-connected layer with a linear activation.

The latent variables of the feature vector are fed to independent GPs with constant mean and ARD-SE kernel, which
produces a 20-dimensional latent state distribution p(zt |xt). From the latent state distribution p(zt |xt), we can sample the latent
state vectors zt using the reparametrization trick4.

Similar to VAEs, the latent state vectors zt are fed into the decoder D to learn the reconstruction distribution p(x̂t |zt). A
popular choice for p(x̂t |zt) is Gaussian with unit variance2, 3, 5. The decoder D is parametrized by an NN composed of a linear
fully-connected layer and 4 transpose convolutional layers with 32 filters each. The convolutional filters are of size (3×3) and
shifted across the images with stride 1 (again, the last convolutional layer has stride 2). Batch normalization is used after the
2nd and 4th convolutional layers, and ELU activations are employed for all the layers except the last one. The outputs are the
mean µx̂ and variance σ2

x̂t
of N (µx̂t ,σ

2
x̂t
).

A.2 SVDKL Dynamical Model Architecture
Given a sample zt from the latent state distribution p(zt |xt), we predict the evolution of the dynamical system forward in time
with a control input u using the SVDKL dynamical model F . The SVDKL dynamical model is composed of 3 fully-connected
layers of size 512, 512, and 20, respectively, with ELU activations except the final layer with a linear activation. Analogously to
the SVDKL encoder, the output features of the neural network are fed to 20 independent GPs to produce a 20-dimensional next
state distribution p(zt+1|zt ,ut). Again, we sample the next latent states zt+1 using the reparametrization trick.

A.3 Pendulum Environment
The pendulum environment used for collecting the data tuples is the Pendulum-v1 from Open-Gym6.

A.4 KL Balancing
Similar to Dreamer-v25, we employ the KL balancing. The method allows for balancing how much the prior is pulled towards
the posterior and vice versa, and can be easily implemented as follows:

LKL =Ext ,xt+1∼X,ut∼U

[
αKL

[
stop_grad(p(zt+1|xt+1))||p(zt+1|zt ,ut)

]
+(1−α)KL

[
p(zt+1|xt+1)||stop_grad(p(zt+1|zt ,ut))

]]
,

where α is a hyperparameter balancing the contribution of the two terms of the KL divergence, and stop_grad is the function
stopping the propagation of the gradients during the update step of the SVDKL parameters.

A.5 Hyperparameter Summary
The hyperparameters are chosen via grid search among the values reported in Table 1. The final values used in the experiments
are indicated in bold. Other parameters used in the experiments are listed in Table 2.

B Comparison with Variational Autoencoder

We compare the proposed SVDKL-based scheme with a VAE-based counterpart4 in the low-dimensional learning of state
representation and latent forward model (for the pendulum) using high-dimensional noisy measurements.

B.1 Architecture
For a fair comparison, the VAE- and SVDKL-based schemes have very similar model architectures. We use the same encoding
architecture (see Section A.1), and the two models only differ in the last layer of encoder, i.e., the outputs of the VAE are the
means and standard deviations of the Gaussian distributions for latent states. Similarly, the NN-based latent forward models are
formulated identically (see Section A.2), expect that the means and standard deviations of the next latent states are defined as
outputs in the VAE-based scheme.

1/4

Hyperparameter Value

learning rate of NN [1e−5,1e−4,2e−4,3e−4,4e−4,5e−4,1e−3,1e−2]
learning rate of GP [1e−1,1e−2,1e−3]

L2 regularization coefficient [1e−1,1e−2,1e−3,1e−4,1e−5]
α [0.8,0.9,1.0]
β [1.0]

latent state dimension [5,10,20,50]
number of inducing points [32,64]

Table 1. Hyperparameters in the proposed SVDKL-based scheme. Bold font indicates the actual value used for generating the
results.

Other parameter Value

image dimension 84×84×3
measurement dimension 84×84×3×2
control input dimension 1
mass of the pendulum 1

length of the pendulum 1
σ2

x [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]
σ2

u [0.2,0.4,0,5,0.6,0.8,1.0,1.5]
σ2

dyn [0.5,1.0,5.0,10.0,50.0,100.0,200.0]

Table 2. Other parameters used in numerical experiments.

B.2 Loss Function
To train the VAE-based models, we employ a VAE loss LE(θE ,θD), a dynamical model loss LF(θF), and the overall loss
LREP(θE ,θF ,θD) defined as their combination, all of which take the same form as their counterparts in the SVDKL-based
scheme respectively, expect that there are no longer kernel hyperparameters to be determined. Because the VAE directly learns
the mean and the standard deviation of the Gaussian distribution, we do not need to perform variational inference as in the case
of the SVDKL-based models.

B.3 Hyperparameters
The hyperparameters for the VAE-based model training are set to the same values as in the SVDLK-based scheme, reported in
Table 3.

Hyperparameter Value

learning rate of NN 3e−4
L2 regularization coefficient 1e−2

α 0.9
β 1.0

latent state dimension 20

Table 3. Hyperparameters in the VAE-based scheme for comparative purposes.

B.4 Results
To empirically demonstrate the advantages in using the SVDKL-based scheme over the VAE-based models for state estimation
and denoising, we show the reconstructed images under different noise levels in Figure 1. The SVDKL-based models, especially
in the case of high measurement noise (e.g., σu = 0.7 or σx = 1.0), provide sharper reconstructions.

2/4

(a) σx = 0.0,σu = 0.7 (b) σx = 0.5,σu = 0.5 (c) σx = 1.0,σu = 0.0

(d) σx = 0.0,σu = 0.7 (e) σx = 0.5,σu = 0.5 (f) σx = 1.0,σu = 0.0

(g) σx = 0.0,σu = 0.7 (h) σx = 0.5,σu = 0.5 (i) σx = 1.0,σu = 0.0

Figure 1. Measurements (Figure 1a-1c) with different noise levels and the corresponding reconstructions through the
VAE-based scheme (Figure 1d-1f) and the SVDKL-based scheme (Figure 1g-1i).

3/4

References
1. Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D. & Wilson, A. G. Gpytorch: Blackbox matrix-matrix gaussian process

inference with gpu acceleration. Adv. neural information processing systems 31 (2018).

2. Hafner, D. et al. Learning latent dynamics for planning from pixels. In International conference on machine learning,
2555–2565 (PMLR, 2019).

3. Hafner, D., Lillicrap, T., Ba, J. & Norouzi, M. Dream to control: Learning behaviors by latent imagination. arXiv preprint
arXiv:1912.01603 (2019).

4. Kingma, D. P. & Welling, M. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013).

5. Hafner, D., Lillicrap, T., Norouzi, M. & Ba, J. Mastering atari with discrete world models. arXiv preprint arXiv:2010.02193
(2020).

6. Brockman, G. et al. Openai gym. arXiv preprint arXiv:1606.01540 (2016).

4/4

	Implementation Details
	SVDKL-AE Architecture
	SVDKL Dynamical Model Architecture
	Pendulum Environment
	 KL Balancing
	Hyperparameter Summary

	Comparison with Variational Autoencoder
	Architecture
	Loss Function
	Hyperparameters
	Results

	References

