
Section I: FEM Calculations

Electromagnetic Theory
To calculate the electronic transition of the metal Drude Lorentz model has been used because it focuses on the free-electron
present in the metals which causes surface plasmons resonance. Drude Free electron model is proven to be more suitable for
the materials which have more free electrons as compared to bound electrons. Dielectric constant was calculated according to
the Drude’s free-electron theory1 by using Eq. S.1:

ε(ω) = 1−
ωp

2

ω(ω + j/τ)
(S.1)

Here, ωp is the plasma angular frequency equal to
√

4πNe2

m0
, where N and m0 are the conduction electron density and

effective optical mass respectively, and τ is the relaxation time. This can be separated into its real and imaginary parts of the
dielectric constant1.
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(S.3)

For metals at near-infrared frequencies when ω >> 1/τ , Eqs. (S.2 and S.3) simplified with the help of Johnson and Cristy1.
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The calculated real and imaginary parts of the dielectric constant are shown in Figure 1, which have been used to calculate
the transmission and reflection coefficients.
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Figure 1. Real and Imaginary parts of the dielectric constant of gold data from Johnson and Cristy1

In order to investigate the physical plasmonic properties, conventional Maxwell equation is solved by using the FEM
considering the harmonic dependence of Electric field E(r, t) = E(r)e− jwt . Helmholtz equation can be derived from the
Maxwell’s equations and shown below,

∇
2E + k2

0εE = 0 (S.5)

where k0 is the wavevector and the time harmonic the propagating field is defined as E(x,y,z) = E(x,y,z)e jβ z and where β

is the propagation constant. In complex form γ = α + jβ , if α = 0 then γ = jβ represents the propagation dependence in the z
direction. A x-polarized wave in z-direction is launched from the top surface to excite the antenna, which generates the LSPR
after the interaction with the proposed gold nano shapes.
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Computational model Description:
The schematic diagram of a paired gold nano structured antenna on the quartz substrate is shown in Figure 2, the unit cell
of quartz substrate on which a paired gold nano structure is placed. All the numerical simulations were carried out by using
COMSOL Multiphysics based on the FEM. To reduce the simulation time, we have simulated one unit cell enforcing periodic
boundary conditions as shown in Figure 2a. The metal disk was excited by x-polarized light launched in the z-direction from
the top with wave excitation ’ON’ and additionally Scattering boundary conditions (SBC) has been placed at the bottom and
top of the computational domain. The entire numerical problem was solved in frequency domain to obtain the scattered field
distributions and the transmission and reflection spectra.

(a) (b)

Figure 2. Designed model on COMSOL Multiphysics (a) Computational model of paired gold nano antenna along with the
boundary conditions. (b) Top and Side views of a paired elliptical and circular shaped gold nano antenna.

In the FEM solver, the entire structure was discretised into ’study’ mesh elemental size. Additionally, Perfectly matched
layer (PML) with 200 nm height on the top of the air domain and bottom of the quartz substrate were introduced to avoid
the artifacts of back reflection in the simulations. The periods along x and y directions were taken as 400 nm and 200 nm,
respectively. The height of the metal disks was initially taken as 40 nm from the surface of the quartz substrate. Perfect magnetic
conductor (PMC) and Perfect electric conductor (PEC) have been used along the x and y-directions, respectively to enforce the
periodicity of the structure. As shown in Figure 2b, in this work unit cell has been designed to reduce the computational cost in
the COMSOL but still the computational cost was quit high which cannot be neglected, hence to overcome that drawback we
have developed the DL based algorithm which shows the efficient performance in terms of the computational cost. Also, it can
also be said if we further reduce the COMSOL computational model to quarter structure then the computational cost can be
reduced further.

ON/OFF Resonance point Description:
Next, the transmission spectra has been shown for the paired circular/elliptical structure on the quartz crystal is studied and the
transmission spectra of a circular dimer with a = b = 110 nm, g = 20 nm gold nano disk and an elliptical dimer with a = 110 nm,
b = 10 nm, g = 20 nm which were surrounded by a material of different refractive indices are shown in Figure 3. Here, it can be
clearly observed that as the refractive index is increasing, the resonating wavelength is shifting towards the higher range and the
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resonance dips are more sharper and stronger for elliptical shaped antenna compared to a circular structure. The sensitivity
values has also been calculated 168.85 nm/RIU and 454.34 nm/RIU for circular and elliptical dimers, respectively to observe
the performance of the sensing system (d = 110 nm for circular dimer, a = 110 nm, b = 10 nm and g = 20 nm for elliptical
dimers).
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Figure 3. Transmission Spectra of paired circular nano disk with a = b = 110 nm, g = 20 nm and h = 40 nm. (b) Transmission
Spectra of paired elliptical disk with a = 110 nm, b = 10 nm, g = 20 nm and h = 40 nm.

Section II: Description of DL neural network

Training dataset discussion:
This section describes the training data that has been used to train the DL neural network. This training set helps to learn
the hidden patterns and to make accurate predictions. With the help of sufficient and accurate training dataset the DL neural
network shows the abilities to take the diverse inputs and weigh them with the help of corresponding activation function in the
individual neurons.
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Figure 4. Histogram of the Input and Output datasets for elliptical and Circular paired nano structure. (a) Shows the scaled
input (Major, Minor Axis and Separation Distance) dataset used to train the neural network. (b) Shows the trend of the Output
(Reflection, Transmission and Absorption Spectra) dataset used to train the developed neural network

Figure 4a shows the input training dataset that has been used to train the developed neural network where the used
dataset containing 54,397 data-points (calculated from COMSOL multiphysics) for Major axis, Minor axis and Separation gap
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represented by black, red and blue bars, respectively. However, Figure 4b represents the output dataset that has been used to
train and to make predictions on the developed DL neural network where the used spectral dataset (calculated from COMSOL
multiphysics) for reflection spectra and transmission spectra and absorption spectra are shown by black, red and blue bars,
respectively.

Hyper parameter optimization to enhance the performance of DL neural network:
Typically a hyper parameter has a prominent effect on a DL neural network, hence in this section we have chosen the best
set of the hyper parameters to achieve the best performance of the neural network in terms of the MSEs between the actual
and predicted values. While making all the prediction the learning rate was set to be 0.001 in order to obtain the optimal
performance. Figure 5a shows the MSE values when the neurons = 50 and epoch = 5000. It can be observed here that as
epoch is increased, theMSE values are reduced. From this figure, it can also be seen that as the hidden layer increases the MSE
value decreased and at hidden layer = 10 the calculated MSE are almost similar as that with hidden layer = 5. Hence, we have
considered that hidden layer = 5 as the best optimized hyper parameter with almost similar MSE values and computational load.
Figure 5b shows the calculated MSE when hidden layer = 5 and neurons = 50 at variable epoch. It can be seen from this this
that as the epoch increases the MSE between the actual and predicted value decreased faster and got saturated at epoch = 5000.
However, increment in epochs can increase the computation cost but in order to make accurate predictions with less MSEs we
have compromised with the computational cost a bit and used epoch = 5000 for further observations.
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Figure 5. Hyper-parameter tuning

Comparison in computational cost between the COMSOL multiphysics and the developed
DL neural network:
This section discusses the comparison in the computational cost of the in-house developed DL neural network and the COMSOL
multiphysics. Figure 6 shows the computational cost = 1,72,800 sec of the COMSOL multiphysics when manual meshing was
used. This computational cost increases to 8,100 sec, 10,200 sec, 14,100 sec, 38,160 sec, 86,400 sec for coarse, normal, fine,
finer and extremely fine meshing, respectively. However, the computational cost was significantly reduced to 236 sec when DL
is used, which was an excellent agreement as in the upcoming research and modern devices computational cost plays the vitals
role in order to save user’s time. In this research, we offer an alternate strategy wherein we train a deep learning network to
predict spectral values with reduced DL neural network processing time. The time-frames for these separate components may
then be combined to determine the total execution time. This has the potential of being able to represent more complicated
scenarios than linear techniques. It can also anticipate execution times for scenarios that haven’t been experienced in the
training data. As a result, our method may be used not only to estimate the execution time for a batch or an extended epoch, but
also to aid in the selection of adequate technology and models a wide range of practical, intricate and complex photonic devices.
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Figure 6. Comparative analysis of computational cost between Comsol multiphysics and in house developed neural network.
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