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Figure S1: Preclinical 7 Tesla MR Scanner (MRS*DRYMAG, MR solutions, Guildford, UK) used for MRI
image acquisition.
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Figure S2: Overview of damaged tissue (y = 1) of different CAM methods and CNN backbone combinations
on the same sample. The plot on the top right shows the supervised classification in which the dark pink
illustrates the damaged regions.

Figure S3: Overview of damaged tissue (y = 1) of different CAM methods and CNN backbone combinations
on the same sample. The plot on the top right shows the supervised classification in which the dark pink
illustrates the damaged regions.
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Figure S4: Accuracy and loss (columns) for each epoch (x-axis) and for each of the CNN backbones (rows).
Training was done for a maximum of 2,500 epochs with early stopping enabled if the validation error did not
increase for 200 epochs. We trained with stochastic gradient descent and a learning rate of 5 x 10−3. All
training was performed on a 3 x GPU RTX Titan with a Xeon W-2295 36-thread CPU on Ubuntu v.18.04 with
TensorFlow 2.1. Batch size was 32.
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Figure S5: Mean intersection over union (mIoU) between CAM images and supervised classification separated
by the three freezing protocols and for different threshold values (tCAM ).
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Figure S6: Spearman’s rank (r) correlation (y-axis) of damaged CAM regions (y = 1) with the amount of
liquid loss for each CNN model and for various tCAM threshold values (x-axis).
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Figure S7: The IoU agreement across CAM methods and for different tCAM threshold values. It reflects the
degree to which CAM activations obtained from different CAM methods have a high IoU with each other while
fixing the CNN model.
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Figure S8: The IoU agreement across different CNN models and for different tCAM threshold values while
fixing the CAM method. This agreement is measured by calculating the average intersection over union between
unique combinations of CNN models.
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