

1

Supplementary Information for

“Quantum AI simulator using a hybrid CPU–FPGA approach”

Teppei Suzuki1, *, Tsubasa Miyazaki1, Toshiki Inaritai1, and Takahiro Otsuka1

1 Research and Development Center, SCSK Corporation, Toyosu Front, 3-2-20 Toyosu, Koto-ku, Tokyo

135-8110, Japan

Supplementary Note 1. Recurrence relation for an 𝒏-qubit entanglement operation matrix

We discuss how we can calculate a unitary matrix 𝑈2𝑛 = ∏ 𝐂𝐍𝐎𝐓𝑞,𝑞+1
𝑛−1
𝑞=1 , without actually conducting

tensor product operations. The matrix 𝑈2𝑛 is a sparse matrix that can be recursively obtained using

Proposition 1.

Proposition 1 (Recurrence relation). Let 𝑛 ∈ ℕ. Let {𝑈2𝑛} and {𝑌2𝑛} be sequences of square matrices such

that

𝑈2𝑛+1 ∶= (𝐼2𝑛−1⨂𝐂𝐍𝐎𝐓)(𝑈2𝑛⨂𝐈𝐃),

𝑌2𝑛+1 ∶= (𝐼2𝑛−1⨂𝐂𝐍𝐎𝐓)(𝑌2𝑛⨂𝐈𝐃),

(A1)

where 𝐂𝐍𝐎𝐓 and 𝐈𝐃 are the matrices representing the controlled NOT gate and the identity gate,

respectively and 𝐼2𝑛 denotes the 2𝑛 × 2𝑛 identity matrix, with 𝐼20 ∶= 1; and let 𝑈2 and 𝑌2 be defined by

the 2 × 2 identity matrix and the Pauli X matrix, respectively:

𝑈2 ∶= 𝐼2 = [
1 0
0 1

]; 𝑌2 ∶= 𝑋 = [
0 1
1 0

].

(A2)

Then 𝑈2𝑛+1 and 𝑌2𝑛+1 can be calculated by recursion

𝑈2𝑛+1 = [
𝑈2𝑛 𝑂2𝑛

𝑂2𝑛 𝑌2𝑛
] (𝑛 ≥ 1),

𝑌2𝑛+1 = [
𝑂2𝑛 𝑈2𝑛

𝑌2𝑛 𝑂2𝑛
] (𝑛 ≥ 1),

(A3)

where 𝑂2𝑛 denotes the 2𝑛 × 2𝑛 zero matrix.

Proof. We prove the statement by induction on 𝑛.

Step I. Base case (𝑛 = 1):

2

𝑈4 = (1⨂𝐂𝐍𝐎𝐓)(𝑈2⨂𝐈𝐃) = (1⨂𝐂𝐍𝐎𝐓)(𝐼2⨂𝐈𝐃) = [
𝐼2 𝑂
𝑂 𝑋

] [
𝐼2 𝑂
𝑂 𝐼2

] = [
𝑈2 𝑂2

𝑂2 𝑌2
],

(A4)

and

𝑌4 = (1⨂𝐂𝐍𝐎𝐓)(𝑌2⨂𝐈𝐃) = (1⨂𝐂𝐍𝐎𝐓)(𝑋⨂𝐈𝐃) = [
𝐼2 𝑂
𝑂 𝑋

] [
𝑂 𝐼2

𝐼2 𝑂
] = [

𝑂 𝐼2

𝑋 𝑂
] = [

𝑂2 𝑈2

𝑌2 𝑂2
].

(A5)

Hence, the statement is true for 𝑛 = 1. Note that 𝑈4 is the 𝐂𝐍𝐎𝐓 gate itself.

Step II. Induction step: we assume that the statement holds for some natural number 𝑘. For 𝑛 = 𝑘+1,

we have

𝑈2𝑘+2 = (𝐼2𝑘⨂𝐂𝐍𝐎𝐓)(𝑈2𝑘+1⨂𝐈𝐃)

= [
𝐼2𝑘−1⨂𝐂𝐍𝐎𝐓 𝑂2𝑘+1

𝑂2𝑘+1 𝐼2𝑘−1⨂𝐂𝐍𝐎𝐓
] [

𝑈2𝑘⨂𝐈𝐃 𝑂2𝑘+1

𝑂2𝑘+1 𝑌2𝑘⨂𝐈𝐃
]

= [
(𝐼2𝑘−1⨂𝐂𝐍𝐎𝐓)(𝑈2𝑘⨂𝐈𝐃) 𝑂2𝑘+1

𝑂2𝑘+1 (𝐼2𝑘−1⨂𝐂𝐍𝐎𝐓)(𝑌2𝑘⨂𝐈𝐃)
] = [

𝑈2𝑘+1 𝑂2𝑘+1

𝑂2𝑘+1 𝑌2𝑛+1
],

(A6)

and

𝑌2𝑘+2 = (𝐼2𝑘⨂𝐂𝐍𝐎𝐓)(𝑌2𝑘+1⨂𝐈𝐃)

= [
𝐼2𝑘−1⨂𝐂𝐍𝐎𝐓 𝑂2𝑘+1

𝑂2𝑘+1 𝐼2𝑘−1⨂𝐂𝐍𝐎𝐓
] [

𝑂2𝑘+1 𝑈2𝑘⨂𝐈𝐃

𝑌2𝑘⨂𝐈𝐃 𝑂2𝑘+1
]

= [
𝑂2𝑘+1 (𝐼2𝑘−1⨂𝐂𝐍𝐎𝐓)(𝑈2𝑘⨂𝐈𝐃)

(𝐼2𝑘−1⨂𝐂𝐍𝐎𝐓)(𝑌2𝑘⨂𝐈𝐃) 𝑂2𝑘+1

] = [
𝑂2𝑘+1 𝑈2𝑘+1

𝑌2𝑘+1 𝑂2𝑘+1
].

(A7)

We can see that the statement holds true for 𝑛 = 𝑘+1. Hence, the statement holds for all natural numbers

𝑛 ≥ 1. □

Note that matrices 𝑈2𝑛 and 𝑌2𝑛 are sparse; and the sparsity pattern visualization for 𝑈2𝑛 and 𝑌2𝑛 is

shown Supplementary Figure 1. In the calculation of our quantum feature map, we only need the index for

non-zero entry in each row vector of 𝑈2𝑛.

3

a

b

Supplementary Figure 1: Sparsity pattern visualization for 𝑈2𝑛 and 𝑌2𝑛. Shown are matrices 𝑈2𝑛 (a) and

𝑌2𝑛 (b) in the case of 𝑛 = 6 (i.e., 𝑈64 and 𝑌64). Values of one that are originally belonging to matrices 𝐼

and 𝑋 are represented by green and blue, respectively, while other entries are zero. The matrix 𝑈2𝑛

represents an 𝑛 -qubit entanglement operation ∏ 𝐂𝐍𝐎𝐓𝑞,𝑞+1
𝑛−1
𝑞=1 . The matrix 𝑈2𝑛 has a property

Tr(𝑈2𝑛) = 2 for all 𝑛.

4

Supplementary Note 2. FPGA architecture and block diagrams for computing the quantum kernel

In this section, we describe the details of our FPGA architecture and block diagrams for computing the

quantum kernel. The overview of the quantum kernel implementation is shown in Supplementary Figure 2.

Our quantum AI simulator based on a hybrid CPU–FPGA approach is implemented on Amazon Web

Services cloud platform, in which Amazon EC2 F1 instances of Xilinx FPGA hardware are accessible. First,

PCA-reduced features are sent from CPU (the host) to FPGA via PCIe. Second, the sine and cosine of the

input angles are computed using the CORDIC algorithm [S1] (Supplementary Figure 3). Third, the unitary

matrices 𝑈 and 𝑉 (which are defined by Eq. (7) in the text) are computed (Supplementary Figures 4 and

5). Fourth, the quantum feature map is calculated using the unitary matrices 𝑈 and 𝑉, as well as an

efficient implementation of 𝑛-qubit quantum entanglement (Supplementary Figure 6). Fifth, the square

of the norm of the inner product is obtained (Supplementary Figure 7). Finally, the data is sent back to the

host (CPU). In Supplementary Table 1, we give the details hardware utilizations for the quantum kernel

implementation.

 Supplementary Figure 2: Scheme for the quantum kernel implementation.

 Supplementary Figure 3: Schematic block diagram for the module that computes sine and cosine functions

of the input angles.

 Supplementary Figure 4: Block diagram for the module that computes the unitary matrices 𝑈𝑞 and 𝑉𝑞

using the sine and the cosine values.

 Supplementary Figure 5: Schematic block diagram for the module that computes the tensor product.

 Supplementary Figure 6: Schematic block diagram for the module that computes the quantum feature map.

 Supplementary Figure 7: Block diagram for the module that computes the square of the norm of the inner

product.

 Supplementary Table 1: Hardware utilizations for the quantum kernel implementation.

5

Supplementary Figure 2: Scheme for the quantum kernel implementation. Our quantum AI simulator based on

a hybrid CPU–FPGA system is implemented on Amazon Web Services cloud platform, in which Amazon EC2

F1 instances of Xilinx FPGA hardware are accessible. PCA-reduced features are sent from CPU (the host

application) to FPGA via PCIe. The quantum feature map can be obtained in the following steps (denoted by

the yellow boxes): First, the sine and cosine of the input angles are computed using the CORDIC algorithm.

Second, the unitary matrices 𝑈 and 𝑉 (which are defined by Eq. (7) in the text) are computed. Third, the

quantum feature map is calculated using the unitary matrices 𝑈 and 𝑉, as well as an efficient implementation

of 𝑛-qubit quantum entanglement. The square of the norm of the inner product is computed (denoted by the

green boxes), generating the quantum kernel entry 𝐾𝑖𝑗 . Finally, the data is sent back to the host.

6

Supplementary Figure 3: Schematic block diagram for the module that computes sine and cosine functions of the

input angles. Data input (PCA-reduced features) in CPU are sent and recognized as a streaming data by AXI,

which is an interface between the host application (CPU) and FPGA. The data are divided into units consisting

of
𝑥1

2
,

𝑥2

2
, ⋯ ,

𝑥𝑛

2
 (via the data divider); and each value is stored in RAM. Then the stored data are read out and

the sine and cosine of the input angles are computed using the CORDIC algorithm.

7

Supplementary Figure 4: Block diagram for the module that computes the unitary matrices 𝑈𝑞 and 𝑉𝑞 using the

sine and the cosine values. (Top) Complex-valued entries 𝜒1
(𝑞)

 and 𝜒2
(𝑞)

 are generated using the sine and cosine

of the input data in order to obtain the first column vector of each 2 × 2 unitary matrix 𝑈𝑞 = 𝑅𝑦(𝑥𝑞)𝑅𝑧(𝑥𝑞)𝐻;

the prefactor associated to the Hadamard gate will be multiplied later in the calculation. (Bottom) Complex-

valued entries 𝜙1
(𝑞)

 and 𝜙2
(𝑞)

 are generated in order to obtain the diagonal elements of each 2 × 2 unitary

matrix 𝑉𝑞 = 𝑅𝑧(𝑥𝑞) . Re and Im in the figure denote the real and imaginary parts of a complex number,

respectively.

8

Supplementary Figure 5 (continued on next page). (Caption shown on next page.)

a

b

9

Supplementary Figure 5 (continued).

Supplementary Figure 5: Schematic block diagram for the module that computes the tensor product. Re and Im

denote the real and imaginary parts of a complex number, respectively. (a) Schematic block diagram for a tensor-

product subunit. Shown is an example for the input (𝜒1
(𝑛−1)

, 𝜒2
(𝑛−1)

) and (𝜒1
(𝑛)

, 𝜒2
(𝑛)

), which is the first layer in

panel c. CM denotes complex multiplier, which is given in panel b. (b) Block diagram for complex multiplier:

𝑧 = (𝑥1 + 𝑖𝑦1) ∙ (𝑥2 + 𝑖𝑦2). (c) Schematic representation of the tensor product operation in FPGA. The tensor-

product subunits are denoted by the yellow boxes, each of which contains four complex multipliers (see also part

a). In our quantum feature map, only the first column of the matrix 𝑈 = 𝑈1⨂ ⋯ ⨂𝑈𝑛 is needed; thus, it can be

computed by Eq. (8), which is also shown in the right corner of panel c. From the schematic diagram depicted

by panel c, we can see that the number of complex multipliers for this module is 4 ∙ (2𝑛−1 − 1). During the

calculation, a prefactor of 1 2⁄ , which is associated to the Hadamard gate, is multiplied every two steps (if the

total number of the steps is odd, then a prefactor of 1 2⁄ = (1/√2) ∙ (1/√2) is multiplied at the very end of the

calculation of the square of the norm of the inner product (see also Supplementary Figure 7)). In a similar manner,

we can also obtain 𝑉 = 𝑉1⨂ ⋯ ⨂𝑉𝑛, where 𝑉𝑞 is given by the rotation operator gate 𝑅𝑧(𝑥𝑞); in this case, only the

operations involving the diagonal elements of 𝑉 are needed and there is no need for the prefactor adjustment.

10

Supplementary Figure 6: Schematic block diagram for the module that computes the quantum feature map. On

the basis of Eq. (9), the quantum state 𝒇 ∈ ℂ𝟐𝒏
 can be computed using the unitary matrices 𝑈 and 𝑉 (which

are obtained by the modules described in Supplementary Figures 4 and 5). The vector 𝒖 is the first column of

the unitary matrix 𝑈; and the vector 𝒗 is the diagonal element of the diagonal matrix 𝑉. In our quantum feature

map defined by Eq. (7), the role of 𝑛-qubit entanglement ∏ 𝐂𝐍𝐎𝐓𝑞,𝑞+1
𝑛−1
𝑞=1 can be viewed as ‘rearranging’ the

elements of the vector 𝒖 in accordance with the matrix 𝑈2𝑛 defined in Supplementary Figure 1a. For instance,

𝑓3 = 𝑣3𝑢𝜉3
= 𝑣3𝑢4 and 𝑓4 = 𝑣4𝑢𝜉4

= 𝑣4𝑢3, which are indicated by red in the figure. Such technique leads to an

efficient implementation of the quantum state including quantum entanglement. The complex conjugate of the

state vector 𝒇 can also be computed by changing the sign of the imaginary part of 𝒇. The quantum states can

thus be obtained for a pair of 𝑖th and 𝑗th samples, which are denoted by the green and the blue arrows,

respectively. Re and Im in the figure denote the real and imaginary parts of a complex number, respectively.

For the block diagram of complex multiplier (CM), see panel b of Supplementary Figure 5.

11

Supplementary Figure 7: Block diagram for the module that computes the square of the norm of the inner product.

The inner product can be obtained using complex multipliers: 𝑘𝑙 ∶= 𝑓𝑙
∗(𝒙(𝑖))𝑓𝑙(𝒙(𝑗)) ∈ ℂ (𝑙 = 1, ⋯ , 𝑀) for a

pair of 𝑖th and 𝑗th samples, which are denoted by the green and the blue arrows, respectively. Then the

quantum kernel entry 𝐾𝑖𝑗 is given by the sum of (∑ Re[𝑘𝑙]𝑙)2 and (∑ Im[𝑘𝑙]𝑙)2, which are indicated by the

light-blue and the red arrows, respectively. The data are stored in RAM and sent back to the host. For the block

diagram of complex multiplier (CM), see part b of Supplementary Figure 5.

12

Supplementary Table 1: Hardware utilizations for the quantum kernel implementation

Chip XCVU9P (AWS F1 instance) XCVU9P (AWS F1 instance)

Number of qubits 2 6

Train size 1024 1024

LUT 175077/1180984 (15%) 237681/1180984 (20%)

LUTRAM 17335/591440 (3%) 57360/591440 (10%)

FF 250576/2364480 (11%) 327521/2364480 (14%)

BRAM 365.5/2160 (17%) 515/2160 (24%)

URAM 43/960 (4%) 43/960 (4%)

DSP 61/6840 (1%) 1154/6840 (17%)

Clock frequency (MHz) 250 250

Abbreviations: LUT, look-up table; RAM, random access memory; FF, flip flop; BRAM, block

RAM; URAM, ultraRAM; DSP, digital signal processor.

13

Supplementary Note 3. Grid search over the hyperparameters for the classical and quantum kernels

Supplementary Figure 8: Grid search over the hyperparameters for the classical and the quantum SVM on binary

classification as a function of features. Fashion-MNIST dataset was used. The hyperparameters giving the

optimal test accuracy are indicated by the open red square. (a) Grid search over the hyperparameter 𝛾 for the

Gaussian kernel: (a) test accuracy and (b) the number of the corresponding support vectors. Grid search over

the scaling parameter λ for the quantum kernel. (c) test accuracy and (d) the number of the corresponding

support vectors. Note that, in our quantum kernel (panel c), the case of λ = 1 typically gave the near-optimal

performance (indicated by the open blue rectangle), implying that our quantum kernel gave a reasonable

performance without introducing any hyperparameter. Nonetheless, to further optimize the value for λ, we

narrowed the range for λ and performed another grid search over the scaling parameter: (e) test accuracy

and (f) the number of the corresponding support vectors. A slightly better was obtained.

14

Supplementary Note 4. Details of numerical simulations

We used the scikit-learn library [S2] for support vector machines. In order to compare our FPGA

implantation with a quantum computing simulator, we used Qiskit, an open source software development

kit [S3] (ver. 0.31.0) and Qiskit Aer (ver. 0.9.1) to perform quantum computing simulations in order to

generate the quantum kernel in Fig. 2d in the main text.

Supplementary References

[S1] Volder, J. E. The CORDIC trigonometric computing technique. IRE Trans. Electron. Comput. 3, 330–334

(1959).

[S2] Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

[S3] Aleksandrowicz, G. et al. Qiskit: An open-source framework for quantum computing.

https://github.com/qiskit (Accessed September 13, 2022).

