
Supplementary Information to “Adaptive
physics-informed neural operator for coarse-grained
non-equilibrium flows”
Ivan Zanardi1, Simone Venturi1, and Marco Panesi1,*

1Center for Hypersonics and Entry Systems Studies, Department of Aerospace Engineering, University of Illinois
Urbana-Champaign, Urbana, IL 61801, USA
*mpanesi@illinois.edu

ABSTRACT

This work proposes a new machine learning (ML)-based paradigm aiming to enhance the computational efficiency of non-
equilibrium reacting flow simulations while ensuring compliance with the underlying physics. The framework combines
dimensionality reduction and neural operators through a hierarchical and adaptive deep learning strategy to learn the solution
of multi-scale coarse-grained governing equations for chemical kinetics. The proposed surrogate’s architecture is structured as
a tree, with leaf nodes representing separate neural operator blocks where physics is embedded in the form of multiple soft
and hard constraints. The hierarchical attribute has two advantages: i) It allows the simplification of the training phase via
transfer learning, starting from the slowest temporal scales; ii) It accelerates the prediction step by enabling adaptivity as the
surrogate’s evaluation is limited to the necessary leaf nodes based on the local degree of non-equilibrium of the gas. The model
is applied to the study of chemical kinetics relevant for application to hypersonic flight, and it is tested here on pure oxygen gas
mixtures. In 0-D scenarios, the proposed ML framework can adaptively predict the dynamics of almost thirty species with a
maximum relative error of 4.5% for a wide range of initial conditions. Furthermore, when employed in 1-D shock simulations,
the approach shows accuracy ranging from 1% to 4.5% and a speedup of one order of magnitude compared to conventional
implicit schemes employed in an operator-splitting integration framework. Given the results presented in the paper, this work
lays the foundation for constructing an efficient ML-based surrogate coupled with reactive Navier-Stokes solvers for accurately
characterizing non-equilibrium phenomena in multi-dimensional computational fluid dynamics simulations.

S.1 Physical modeling
The gaseous mixtures considered in the proposed framework consist solely of oxygen atoms and molecules, both assumed to
be in their ground electronic states. The set of pseudo-species, i, is defined as I =

{
O,O(i)

2

}
, encompassing all the possible

internal energy degrees of freedom of the system.

S.1.1 Thermodynamics
The gas pressure follows from Dalton’s law,

p = ∑
i∈I

nikBT , (S1)

where ni stands for the number density of the pseudo-species i, whereas kB denotes Boltzmann’s constant. The gas density
reads ρ = ∑i∈I ρi, where the partial densities are related to the number densities via ρi = mini, with mi being the (particle)
mass of i. The energy per unit-mass of the individual pseudo-species may be written as

ei = ei,tr + ei,int +∆hi,f , (S2)

where translational contribution follows from the principle of equipartition of energy1:

ei,tr =
3
2

kB

mi
T . (S3)

The symbol ∆hi,f in equation (S2) denotes the formation enthalpy at 0 K, whereas the remaining term, ei,int, accounts for the
internal energy degree of freedom of the pseudo-species i:

1

i. If the state-to-state (StS) modeling is used, the term ei,int represents a particular rovibrational energy state, denoted as εi,
where i = (s,v,J) with s representing the species, v representing the vibrational quantum number, and J representing the
rotational quantum number.

ii. If coarse-grained modeling is used, ρi indicates the density of a group of states and ei,int can be expressed as follows:

ei,int = eP = ∑
i∈IP

qi (TP)

QP (TP)
εi , (S4)

with the additional new terms appearing in equation (S4) described in Section S.1.2.

iii. If multi-temperature (MT) models2 are employed, ei,int accounts for the energy of thermalized internal degrees of freedom
(e.g., rotation, vibration). For a conventional two-temperature (2T) formulation2, 3, which is a particular class of MT
models, the expression of ei,int for a diatomic molecule described by the rigid-rotor and harmonic oscillator models is4, 5:

ei,int = ei,r (Tr)+ ei,v (Tv) , (S5)

with

ei,r (Tr) =
kB

mi
Tr , (S6)

ei,v (Tv) =
kB

ms

θ v
s

exp(θ v
s /Tv)−1

, (S7)

where Tr and Tv are, respectively, the rotational and vibrational temperatures, whereas θ v
s is the characteristic vibrational

temperature. In Park’s two-temperature model, the fast equilibration between rotational and translational energy mode is
assumed (i.e., Tr = T).

Collecting the above formulae, the energy per unit-mass of the gas as a whole can be defined as follows:

e = ∑
i∈I

Yi (ei,tr + ei,int +∆hi,f) , (S8)

where the mass fractions are Yi = ρi/ρ .

S.1.2 Coarse-grained modeling
This work employs a log-linear form of the distribution function to represent the population within each individual bin, which
results in a thermalized local Boltzmann distribution defined as follows:

F i
P (εi) : log

(
gi

ni

)
= αP +βPεi . (S9)

The bin-specific coefficients αP and βP are formulated in terms of the macroscopic constraints, total bin population nP and
energy eP,

nP = ∑
i∈IP

ni , eP = ∑
i∈IP

niεi , (S10)

where IP indicates the set of rovibrational states contained in the P-th group. The bin internal temperature TP can be used
instead of βP to characterize the bin distribution function,

βP =
1

kBTP
, (S11)

while the coefficient αP can then be defined as follows:

αP = log
(

QP

nP

)
, (S12)

where QP is the group internal partition function,

QP (TP) = ∑
i∈IP

qi (TP) , (S13)

with

qi (TP) = gegi exp
(
− εi

kBTP

)
(S14)

being the i-th level contribution, kB the Boltzmann’s constant, and ge the degeneracy of the electronic ground state.

2/12

S.1.2.1 Zero-dimensional macroscopic equations
Considering O2+O system, as the group temperatures TP are assumed to be equal to the translational temperature T , only the
zeroth-order moment of the StS master equations6, 7 is required to model the reactor dynamics:

dnP

dt
= Ω

0
P =− ∑

IQ∈IO2

KE
PQnPnO + ∑

IQ∈IO2

KE
QPnQnO−KD

P nPnO +KR
P n3

O ∀ IP ∈IO2

dnO

dt
= Ω

0
O = ∑

IP∈IO2

KD
P nPnO− ∑

IP∈IO2

KR
P n3

O

, (S15)

with IO2 being the set of pseudo-species, i.e., groups, of O2. The group-specific rate coefficients, KE
PQ and KD

P , are obtained
from the state-specific ones, kE

i j and kD
i , as a weighted average based on the Boltzmann distribution function over IP:

KE
PQ (T,TP) = ∑

i∈IP

∑
j∈IQ

qi (TP)

QP (TP)
kE

i j (T) , (S16)

KD
P (T,TP) = ∑

i∈IP

qi (TP)

QP (TP)
kD

i (T) . (S17)

S.2 Neural operators
S.2.1 DeepONet
S.2.1.1 Vanilla architecture
The vanilla version of the DeepONet consists of one branch net and one trunk net. To account for the problem’s multi-
dimensionality, the feature embedding ααα (and equivalently φφφ) has a dimension of p×D, where p is the number of modes (in a
POD sense) and D is the number of output variables. To ensure a continuous and differentiable representation of the output
functions, the branch and trunk network outputs are split into D p-dimensional vectors, which are merged together via dot
product as follows:

Ĝ(i)(uuu)(yyy) =
ip

∑
k=(i−1)p+1

αk(uuu)φk(yyy) for i = 1, . . . ,D . (S18)

To ensure a fair comparison, the vanilla DeepONet, summarized in table S1, has been designed to have almost the same number
of parameters (231 388) as the CG-DeepONets described in Section S.2.2, and it has been trained and tested on the same
datasets. The entirely optimization has been performed under identical conditions in terms of hyper-parameters, including
number of epochs, optimizer type, learning rate, and regularization. Table S2 presents the four largest errors of the inferred

Sub-networks Type Layers Width σ

Branch FNN [240, 240, 224] tanh×2 + linear
Trunk FNN [240, 240, 224] tanh×2 + linear

Table S1. Vanilla DeepONet architecture. FNN is the conventional feed-forward neural network, and σ are the
activation functions.

solution using the vanilla DeepONet, following the same procedure described in the Manuscript Section “Accuracy”. In the
table, the apex refers to the O2 group. The results demonstrate that although the errors are within acceptable limits, they are
nearly double compared to the ones reported in Table 3 in the manuscript, indicating that the vanilla DeepONet does not
perform as well as the CG-DeepONets on this particular problem. Furthermore, the vanilla DeepONet cannot perform adaptive
inference, which is essential for achieving increased speedup in the prediction phase.

S.2.1.2 Shared-trunk architecture
As depicted in Figure S1, the shared-trunk architecture is characterized by multiple branches, each corresponding to an output
variable and a shared trunk network. This design allows for computational efficiency, as the shared trunk can be used for
multiple output variables. However, it is effective only when the dynamics of the modeled variables are similar enough to share
the same basis, as discussed in reference 8.

3/12

Group Rel. error [%]

Ŷ (27) 6.80±4.61

Ŷ (26) 6.55±4.39

Ŷ (24) 6.43±4.12

Ŷ (23) 6.42±3.88

Table S2. Vanilla DeepONet test error. The four highest mean relative L2-norm testing errors (with standard
deviations) of the trained vanilla DeepONet.

Figure S1. Multi-output DeepONet. The modified architecture consists of multiple “branch nets” (one for each
output) for extracting latent representations of the input functions and one “trunk net” for extracting latent
representations of the input coordinates at which the output functions are evaluated.

S.2.2 Multi-scale hierarchical coarse-grained model
S.2.2.1 Hyper-parameter settings
Table S3 summarizes the CG-DeepONets architecture, where a modified version of the DeepONet proposed by Wang et al.
[Eqs. (3.23)-(3.29) in reference 9] is used. The network is trained via mini-batch stochastic gradient descent for 104 iterations
using the Adam optimizer for each step (a-d) described in the Manuscript Section “Training Strategy”. The last step using
physics-informed optimization techniques has been performed for 5×103 epochs. For each training step, to obtain a set of
training and validation data, 2×N initial conditions have been sampled using the Latin Hypercube strategy with N = 2048.
Half of them have been selected as training scenarios using the stratified sampling method, and the remaining half as validation.
For each i-th initial condition, P = 128 and P = 32 data points for training and validation have been log-uniformly sampled
in time. To generate the test data set, we randomly sampled 100 unseen initial conditions and obtained the corresponding
numerical solutions by integrating the ODE using a conventional numerical integrator.

It has to be mentioned that an input transformation layer is used to modify the input features. For the trunk net, the time t
has been linearly scaled by a factor of 107, while for the branch net, the temperature T has been normalized between 0 and 1.
The total number of parameters of the network is 230106.

S.2.2.2 Extra test cases
Figure S2 shows extra testing cases, similarly to what has been shown in the Manuscript Section “Inference”.

S.2.2.3 Loss histories
In this section, only the last and most interesting hybrid training step of the strategy described in the Manuscript Section
“Training Strategy” is presented. Figures S3(a-b) show the training and validation losses, respectively, while Figure S3(c) shows
the evolution of the weights coefficients λi, automatically tuned every 50 iterations with the learning rate annealing technique
described by Alg. 2.1 in reference 10. λr is fixed and equal to 1 since the ODE residual loss, Lr, is used as the reference value
for computing λd and λic, while the hyper-parameter α of the tuning procedure has been set to 0.7.

4/12

DeepONets Single DeepONet

Sub-networks Type p Layers Width σ

Timescale 1 1 2 Branches ResFNN 8 [32, 32, p] tanh×3
1 Trunk ResFNN [32, 32, p] tanh×3

Timescale 2 1 3 Branches ResFNN 16 [48, 48, p] tanh×3
1 Trunk ResFNN [48, 48, p] tanh×3

Timescale 3 3 3 Branches ResFNN 16 [48, 48, p] tanh×3
1 Trunk ResFNN [48, 48, p] tanh×3

Timescale 4 9 3 Branches ResFNN 16 [48, 48, p] tanh×3
1 Trunk ResFNN [48, 48, p] tanh×3

Table S3. CG-DeepONets architecture. p is the dimension of the features embedding, ResFNN is a novel
neural network architecture proposed by Wang et al. [Eqs. (2.33)-(2.37) in reference 10], and σ are the activation
functions.

10−12 10−10 10−8 10−6 10−4

t [s]

10−11

10−9

10−7

10−5

10−3

10−1

Y

(a)

10−12 10−10 10−8 10−6 10−4

t [s]

10−10

10−8

10−6

10−4

10−2

100

Y

(b)

10−12 10−10 10−8 10−6 10−4

t [s]

10−11

10−9

10−7

10−5

10−3

10−1

Y

(c)

10−12 10−10 10−8 10−6 10−4

t [s]

10−12

10−10

10−8

10−6

10−4

10−2

100

Y

(d)

Figure S2. Extra test cases for CG-DeepONets.

5/12

(a) (b) (c)

Figure S3. Loss histories of the last physics-informed training step. (a) Training losses. (b) Validation losses.
(c) Loss weighting coefficients.

S.2.3 Adaptive inference
S.2.3.1 Hyper-parameter settings
Table S4 summarizes the Neq-DeepONets architecture. We trained the model by employing a similar strategy used for the
CG-DeepONets, except that all the timescales have been trained simultaneously in this case. The version of the DeepONet
used to construct the controller-acting surrogate is an augmented version called flexDeepONet proposed by Venturi and Casey
[figure (8) in reference 8]. The network is trained via mini-batch stochastic gradient descent for 2×104 iterations using the
Adam optimizer and the mean absolute percentage error as the loss function. How concerns the input transformation layer,

DeepONets Single DeepONet

Sub-networks Type p Layers Width σ

Timescale 1 1
1 Branch FNN 8 [32, 32, p] tanh×2 + linear
1 Trunk FNN [32, 32, p] tanh×2 + linear
1 PreNet FNN - [16, 16, 2] tanh×2 + linear

Timescale 2 1
3 Branches FNN 16 [48, 48, p] tanh×2 + linear

1 Trunk FNN [48, 48, p] tanh×2 + linear
1 PreNet FNN - [16, 16, 2] tanh×2 + linear

Timescale 3 3
3 Branches FNN 16 [48, 48, p] tanh×2 + linear

1 Trunk FNN [48, 48, p] tanh×2 + linear
1 PreNet FNN - [16, 16, 2] tanh×2 + linear

Table S4. Neq-DeepONets architecture. p is the dimension of the features embedding, FNN is the conventional
feed-forward neural network, and σ are the activation functions.

for the trunk net, the time t has been linearly scaled by a factor of 107 and then log-transformed, while for the branch net, the
temperature T has been normalized between 0 and 1. An exponential transformation function is applied to the output of each
DeepONet. The total number of parameters of the network is 75487.

S.2.3.2 Inference solution and accuracy
In figure S5, a comparison between the exact and inferred solutions of the trained model is presented for different test cases,
while table S5 reports the four highest errors of the inferred solution, similar to what has been done in Section the Manuscript
Section “Accuracy”.

S.2.3.3 Adaptive inference algorithm
Algorithm S1 presents in detail all the steps of the adaptive technique used to get the inferred solutions.

6/12

(a) (b)

Figure S4. Underpredicted non-equilibrium metrics. Dynamics of underpredicted non-equilibrium metrics
evaluated by reconstructing the 27 groups with predictions from Timescale 1 (a) and Timescale 3 (b) for the same
test case shown in figure 9.

Neq. metric Rel. error [%]

δ (3,2,6) 1.81±1.50

δ (3,1,3) 1.48±1.34

δ (2,1,2) 1.46±1.25

δ (3,2,5) 1.44±1.24

Table S5. Neq-DeepONets test error. The four highest mean relative L2-norm testing errors (with standard
deviations) of the trained Neq-DeepONets surrogate.

7/12

10�12 10�10 10�8 10�6 10�4

t [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

�

�(1,1,1)

10�12 10�10 10�8 10�6 10�4

t [s]

0.0

0.2

0.4

0.6

0.8

�

�(2,1,1)

�(2,1,2)

�(2,1,3)

10�12 10�10 10�8 10�6 10�4

t [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

�

�(3,1,1)

�(3,1,2)

�(3,1,3)

�(3,2,4)

�(3,2,5)

�(3,2,6)

�(3,3,7)

�(3,3,8)

�(3,3,9)

(a)

10�12 10�10 10�8 10�6 10�4

t [s]

0.0

0.5

1.0

1.5

2.0

2.5

�

�(1,1,1)

10�12 10�10 10�8 10�6 10�4

t [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

�
�(2,1,1)

�(2,1,2)

�(2,1,3)

10�12 10�10 10�8 10�6 10�4

t [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

�

�(3,1,1)

�(3,1,2)

�(3,1,3)

�(3,2,4)

�(3,2,5)

�(3,2,6)

�(3,3,7)

�(3,3,8)

�(3,3,9)

(b)

10�12 10�10 10�8 10�6 10�4

t [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

�

�(1,1,1)

10�12 10�10 10�8 10�6 10�4

t [s]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

�

�(2,1,1)

�(2,1,2)

�(2,1,3)

10�12 10�10 10�8 10�6 10�4

t [s]

0.0

0.2

0.4

0.6

0.8

�
�(3,1,1)

�(3,1,2)

�(3,1,3)

�(3,2,4)

�(3,2,5)

�(3,2,6)

�(3,3,7)

�(3,3,8)

�(3,3,9)

(c)

10�12 10�10 10�8 10�6 10�4

t [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

�

�(1,1,1)

10�12 10�10 10�8 10�6 10�4

t [s]

0.0

0.1

0.2

0.3

0.4

�

�(2,1,1)

�(2,1,2)

�(2,1,3)

10�12 10�10 10�8 10�6 10�4

t [s]

0.00

0.05

0.10

0.15

0.20

�

�(3,1,1)

�(3,1,2)

�(3,1,3)

�(3,2,4)

�(3,2,5)

�(3,2,6)

�(3,3,7)

�(3,3,8)

�(3,3,9)

(d)

Figure S5. Test cases for Neq-DeepONets. Case (a) is the one shown in figure 9.

8/12

Algorithm S1: Adaptive inference

Input: Initial conditions matrix and times instants vector

X =
[{(

T i,ρ i,YYY i
O20

)}n

i=1
∈ Rn×(2+NG),

{
t i}n

i=1 ∈ Rn
]

Output: Mass fractions matrix

Y =
{

ŶYY
i}n

i=1
∈ Rn×(1+NG)

define T S = Number of timescales considered
define δtol = Underpredicted non-equilibrium tolerance metric

Step 1: Evaluate underpredicted non-equilibrium metric
for ts = 1, . . . ,T S−1 do

define NG ts = Number of groups in Timescale ts
if ts = 1 then

Compute δδδ
(1,1,1) ∈ Rn with Neq-DeepONet(1,1)

else
if ts 6= T S−1 and all

({
δ
(ts−1,·,P)
i ≤ δtol

}n

i=1

)
∀ P = 1, . . . ,NG ts−1 then

break
else

for P = 1, . . . ,NG ts−1 do
define Np = Number of micro-groups p contained in macro-group P, Ip ⊂IP

if any
({

δ
(ts−1,·,P)
i > δtol

}n

i=1

)
then

• Mask out input data points for which
{

δ
(ts−1,·,P)
i ≤ δtol

}m

i=1
with m < n

• Compute δδδ
(ts,·,p) ∈ Rn−m ∀ Ip ⊂IP with Neq-DeepONet(ts,P)

• Assign δδδ
(ts,·,p) = 000 ∈ Rm ∀ Ip ⊂IP

else
Assign δδδ

(ts,·,p) = 000 ∈ Rn ∀ Ip ⊂IP

Step 2: Employ computed underpredicted non-equilibrium metric to evaluate mass fractions
for ts = 1, . . . ,T S do

define NG ts = Number of groups in Timescale ts
if ts = 1 then

Compute
{

ŶYY O, ŶYY
(1,1,1)
O2

}
∈ Rn×2 with CG-DeepONet(1,1)

else
if ts 6= T S and all

({
δ
(ts−1,·,P)
i ≤ δtol

}n

i=1

)
∀ P = 1, . . . ,NG ts−1 then

Reconstruct ŶYY
(T S,·,p)
O2

∈ Rn ∀ Ip ⊂IP from ŶYY
(ts−1,·,P)
O2

∈ Rn ∀ P = 1, . . . ,NG ts−1 by employing the Boltzmann distribution function
break

else
for P = 1, . . . ,NG ts−1 do

define Np = Number of micro-groups p contained in macro-group P, Ip ⊂IP

if any
({

δ
(ts−1,·,P)
i > δtol

}n

i=1

)
then

• Mask out input data points for which
{

δ
(ts−1,·,P)
i ≤ δtol

}m

i=1
with m < n

• Compute ŶYY
(ts,·,p)
O2

∈ Rn−m ∀ Ip ⊂IP with CG-DeepONet(ts,P)

• Reconstruct ŶYY
(ts,·,p)
O2

∈ Rm ∀ Ip ⊂IP from ŶYY
(ts−1,·,P)
O2

∈ Rm by employing the Boltzmann
distribution function

else
Reconstruct ŶYY

(ts,·,p)
O2

∈ Rn ∀ Ip ⊂IP from ŶYY
(ts−1,·,P)
O2

∈ Rn by employing the Boltzmann distribution function

9/12

S.3 One-dimensional numerical experiment
In this section, the construction of the surrogates used in the one-dimensional numerical experiment is described, which involves
the following steps:

i. Running the exact solution using the computational framework described in Section S.3.2 and the configuration described
in the Manuscript Section “One-dimensional numerical experiment”.

ii. Collecting all the possible thermochemical states experienced by the gas in the 1-D simulation and fitting a 29-dimensional
multivariate Gaussian-based kernel density estimator (KDE) to the data, which includes temperature, T , and densities ρi of
O and the 27 groups of O2.

iii. Sampling N = 5120 initial thermochemical states from the constructed KDE for training and validation, and using N = 100
states for testing. Then, performing 0-D simulations for all the sampled initial states.

iv. Conducting a singular value decomposition (SVD) analysis on the trajectories obtained from the previous step to estimate
the number of modes required for modeling each timescale in the CG-DeepONets surrogate8. Similarly, utilizing
Equation (21) to obtain data for Neq-DeepONets surrogate from the generated trajectories, and performing the same SVD
analysis.

v. Constructing the datasets for CG-DeepONets and Neq-DeepONets by sampling 72 points for training and 18 points for
validation from the previously generated trajectories in a time window of [10−10,10−6] s, which encompasses the time
steps used in the numerical experiment.

vi. Training both models, CG-DeepONets and Neq-DeepONets, following the procedures described in Section S.2.2.1 and
Section S.2.3.1, respectively. However, in this case, the hybrid step described in the Manuscript Section “Training Strategy”
is not performed.

S.3.1 Surrogate hyper-parameter settings
The architectures of CG-DeepONets and Neq-DeepONets employed for the 1-D test case are summarized in Table S6 and
Table S7, respectively. Each trunk of the Neq-DeepONets has been fitted with a radial basis function (RBF) interpolator after
training to accelerate the network evaluation. The version of DeepONet used to construct the CG-DeepONets surrogate is
the flexDeepONet proposed by Venturi and Casey8. In this case, a unique global PreNet for each modeled Timescale is used,
constructed with a feedforward neural network (FNN) architecture consisting of layers with widths [16, 16, 2] and activation
functions [tanh, tanh, linear]. Both initial conditions and time inputs are log-transformed in both surrogates. Additionally, an
exponential transformation function is applied to the output of each DeepONet in the Neq-DeepONets surrogate, as well as to
the one modeling the temperature in the CG-DeepONets surrogate.

S.3.2 Computational framework
To perform the numerical experiments presented in this work, three different software are used:

i. HEGEL (High-fidElity tool for maGnEto-gasdynamics simuLations), a parallel multi-block structured fluid solver for
LTE/NLTE plasmas written in modern object oriented Fortran 200811–13.

ii. PLATO (PLAsmas in Thermodynamic nOn-equilibrium), a physico-chemical library to evaluate thermodynamic, transport
and optical properties as well as source terms due to NLTE collisional and radiative processes11–13.

iii. PyCOMET (Physics-informed machine learning for scientific computing and operator discovery) is a TensorFlow-based14

machine learning library that is used to construct neural operators and generic deep neural network (DNN)-based surrogates
for scientific computing15, 16. Previous approaches to integrating machine learning models into computational fluid
dynamics (CFD) codes have included remote function calls from legacy Fortran codes to modern machine learning
libraries, re-implementation of the full fluid solver in TensorFlow, or direct embedding of the network into the code. In this
work, the approach used leverages the in-house Fortran and C++ PyCOMET interfaces, which rely on CppFlow17, a C++
wrapper of the TensorFlow C API. One significant benefit of this approach is its flexibility, as the interfaces can read and
import any network or generic ML-based architectures into external codes without requiring complicated supplementary
coding, and support both CPU and GPU operations.

The PLATO library is responsible for performing the integration of the reactive step in equation (9) employed for evaluating the
speedup in the one-dimensional shock case scenario (see the Manuscript Section “One-dimensional shock case scenario”).
The ODE integrator employed is the second-order backward differentiation formula (BDF-2) from the LSODE (Livermore
Solver for Ordinary Differential Equations) library18, with an absolute tolerance and a relative tolerance set to 10−9 and 10−6,
respectively.

10/12

PreNets # DeepONets Single DeepONet

Sub-networks Type p Layers Width σ

Temperature 1 1 1 Branches FNN 4 [6p, 6p, p] tanh×2 + linear1 Trunk

Timescale 1 1 1 2 Branches FNN 4 [4p, 4p, p] tanh×2 + linear1 Trunk

Timescale 2 1 1 3 Branches FNN 12 [4p, 4p, p] tanh×2 + linear1 Trunk

Timescale 3 1

1 3 Branches

FNN

4

[4p, 4p, p] tanh×2 + linear

1 Trunk

1 3 Branches 81 Trunk

1 3 Branches 121 Trunk

Timescale 4 1

3 3 Branches

FNN

4

[4p, 4p, p] tanh×2 + linear

1 Trunk

3 3 Branches 81 Trunk

3 3 Branches 121 Trunk

Table S6. CG-DeepONets architecture for 1-D shock case scenario. p is the dimension of the features
embedding, FNN is the conventional feed-forward neural network, and σ are the activation functions. Total
parameters: 125460.

DeepONets Single DeepONet

Sub-networks Type p Layers Width σ

Timescale 1 1 1 Branches FNN 8 [24, 24, p] tanh×2 + linear1 Trunk

Timescale 2 1 3 Branches FNN 16 [36, 36, p] tanh×2 + linear1 Trunk

Timescale 3 3 3 Branches FNN 8 [24, 24, p] tanh×2 + linear1 Trunk

Table S7. Neq-DeepONets architecture for 1-D shock case scenario. p is the dimension of the features
embedding, FNN is the conventional feed-forward neural network, and σ are the activation functions. Total
parameters: 30325.

11/12

References
1. Callen, H. B. & Scott, H. L. Thermodynamics and an Introduction to Thermostatistics, 2nd ed. Am. J. Phys. 66, 164–167,

DOI: 10.1119/1.19071 (1998).

2. Park, C. Nonequilibrium Hypersonic Aerothermodynamics (Wiley, New York, 1990).

3. Park, C. Review of chemical-kinetic problems of future NASA missions. I - Earth entries. J. Thermophys. Heat Transf. 7,
385–398, DOI: 10.2514/3.431 (1993).

4. Vincenti, W. G. & Kruger, C. H. Introduction to physical gas dynamics, vol. 1 (Wiley, New York, 1965).

5. Anderson, J. D. Hypersonic and High-Temperature Gas Dynamics, Third Edition (American Institute of Aeronautics and
Astronautics, Inc., Reston, VA, 2019).

6. Panesi, M., Jaffe, R. L., Schwenke, D. W. & Magin, T. E. Rovibrational internal energy transfer and dissociation of
N2(1Σ+

g)-N(4Su) system in hypersonic flows. The J. Chem. Phys. 138, 044312, DOI: 10.1063/1.4774412 (2013).

7. Panesi, M., Munafò, A., Magin, T. E. & Jaffe, R. L. Nonequilibrium shock-heated nitrogen flows using a rovibrational
state-to-state method. Phys. Rev. E 90, 013009, DOI: 10.1103/PhysRevE.90.013009 (2014).

8. Venturi, S. & Casey, T. SVD perspectives for augmenting DeepONet flexibility and interpretability. Comput. Methods
Appl. Mech. Eng. 403, 115718, DOI: 10.1016/j.cma.2022.115718 (2023).

9. Wang, S., Wang, H. & Perdikaris, P. Improved Architectures and Training Algorithms for Deep Operator Networks. J. Sci.
Comput. 92, 35, DOI: 10.1007/s10915-022-01881-0 (2022).

10. Wang, S., Teng, Y. & Perdikaris, P. Understanding and mitigating gradient flow pathologies in physics-informed neural
networks (2020). 2001.04536.

11. Munafò, A., Alberti, A., Pantano, C., Freund, J. B. & Panesi, M. A computational model for nanosecond pulse laser-plasma
interactions. J. Comput. Phys. 406, 109190, DOI: 10.1016/j.jcp.2019.109190 (2020).

12. Alberti, A., Munafò, A., Pantano, C. & Panesi, M. Self-Consistent Computational Fluid Dynamics of Supersonic Drag
Reduction via Upstream-Focused Laser-Energy Deposition. AIAA J. 59, 1214–1224, DOI: 10.2514/1.J059612 (2021).

13. Alberti, A. et al. Non-equilibrium plasma generation via nano-second multi-mode laser pulses. J. Appl. Phys. 131, 033102,
DOI: 10.1063/5.0065999 (2022).

14. Abadi, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, DOI: 10.48550/ARXIV.1603.
04467 (2016).

15. Zanardi, I., Venturi, S. & Panesi, M. Towards Efficient Simulations of Non-Equilibrium Chemistry in Hypersonic Flows:
A Physics-Informed Neural Network Framework. In AIAA SCITECH 2022 Forum, DOI: 10.2514/6.2022-1639 (American
Institute of Aeronautics and Astronautics, Reston, Virginia, 2022).

16. Sharma Priyadarshini, M., Venturi, S., Zanardi, I. & Panesi, M. Efficient Quasi-Classical Trajectory Calculations by means
of Neural Operator Architectures, DOI: 10.26434/chemrxiv-2022-fs3rv (2022).

17. Izquierdo, S. cppflow: Run TensorFlow models in C++ without installation and without Bazel, DOI: 10.5281/zenodo.
7107618 (2019).

18. Radhakrishnan, K. & Hindmarsh, A. C. Description and use of LSODE, the Livemore Solver for Ordinary Differential
Equations. Tech. Rep., Lawrence Livermore National Laboratory (LLNL), Livermore, CA (1993). DOI: 10.2172/15013302.

12/12

10.1119/1.19071
10.2514/3.431
10.1063/1.4774412
10.1103/PhysRevE.90.013009
10.1016/j.cma.2022.115718
10.1007/s10915-022-01881-0
2001.04536
10.1016/j.jcp.2019.109190
10.2514/1.J059612
10.1063/5.0065999
10.48550/ARXIV.1603.04467
10.48550/ARXIV.1603.04467
10.2514/6.2022-1639
10.26434/chemrxiv-2022-fs3rv
10.5281/zenodo.7107618
10.5281/zenodo.7107618
10.2172/15013302

	Physical modeling
	Thermodynamics
	Coarse-grained modeling
	Zero-dimensional macroscopic equations

	Neural operators
	DeepONet
	Vanilla architecture
	Shared-trunk architecture

	Multi-scale hierarchical coarse-grained model
	Hyper-parameter settings
	Extra test cases
	Loss histories

	Adaptive inference
	Hyper-parameter settings
	Inference solution and accuracy
	Adaptive inference algorithm

	One-dimensional numerical experiment
	Surrogate hyper-parameter settings
	Computational framework

	References

