Appendix A EFFECTIVE MASS

The effective mass of the antenna that a transducer sees according to Zhou [65] is the mass
that placed on the surface of the sphere acquires the same energy that the sphere has. Let
us start calculating the equivalent mass for the quadrupole modes. The kinetic energy of
the antenna for the quadrupole mode m is
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The velocity of the surface at the position of the transducer a in radial direction for the
mode m is

Vima = am‘Pm c€y = amaYm(ga’ ¢a)- (]-4]-)
The kinetic energy for the effective mass of the mode m in this position is
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Comparing (140) and (142) we have the equation for the effective mass for the mode m
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and rearranging the equation we have
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The sum over all modes gives
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The sum rule for spherical harmonics for the quadrupole gives
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If we define the equivalent mass for the modes of the sphere as
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and using Mg = 1124 kg and o? = 8.28584 we have
My, = 0.30228M; = 340.934 ke. (149)

As we show explicitly in the next section the effective mass for N transducers considering
five modes is given by

5
Mg = NMeq for six transducers Mg = 284.111kg. (150)



A Explicit effective mass calculation for N transducers
B For N=1

With the transducer at the position a we have
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The velocity of the sphere surface at this position is
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The square is given by
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and the mean over the angles is
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The mean of both sides of Eq.(151) results
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C For N transducers

If we have N transducers the kinetic energy is function of
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In matrix notation Eq.(151) can be written

The model matrix
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D For six transducers in truncated icosahedron configuration
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has special properties obtained, or directly from the matrix B of with the help of spherical
harmonics sum rules
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Furthermore, the Moore-Pensore pseudo inverse of B, B* is
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From Eq.(159) we have
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Appendix B MOVEMENT EQUATION IN TERMS OF SURFACE DEFORMATION

We have seen that the movement equation for the modes of a bare sphere under the action
of N external forces of the type f, = f,0(x — x,)e, at the positions x, is given by

1
4+ 2Ba+wia= V“Bf' (166)
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Multiplying this equation by B’ we obtain it in terms of the sphere surface deformation u

1
ii + 280 + wiu = M—azBTBf (167)
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and using Eq.(161) results in
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Finally the movement equation for the deformation of the sphere surface at the position of
transducers is
Mgii + 2M 80 + M gwiu = T, (169)

Appendix C REAL VECTOR SPHERICAL HARMONICS

The orthogonal real vector spherical harmonics are given by [66]

Y,(0,6) = Y£ (6, $)F (170)
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Y0, ¢) = F X Y6, 9), (172)

where the real spherical harmonics Yan are given by the real and imaginary part of the
traditional spherical harmonics, Eq.(6), [67]. The real vector spherical harmonics obey the
normalization condition
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Appendix D TRANSFORMATION OF h;; FROM WAVE FRAME TO LAB FRAME

The polarization tensor for a GW propagating in Z direction of the wave frame with polar-
izations h, and hy is [49]
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Let the matrix A(6, ¢,¥) = R, ()R, (O)R (¢) rotates the lab reference frame to the direction

(0, ¢,¢) using Euler’s-y convention. Any vector v can be rotated by this direction using

the transpose of this matrix A7(6,¢,¥) = RI(®)RI(OR!(¥). In the case GW we are not

interested in ¥ rotation because this only mixes the h,, hy polarizations. Without the
rotation the matrix A becomes
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If we have an incoming wave in the direction of the z axis of the lab frame, after a rotation
to the direction (0, ¢) it is seen from the lab frame as

hLF = AThWFA. (].76)



