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Appendix A EFFECTIVE MASS

The effective mass of the antenna that a transducer sees according to Zhou [65] is the mass
that placed on the surface of the sphere acquires the same energy that the sphere has. Let
us start calculating the equivalent mass for the quadrupole modes. The kinetic energy of
the antenna for the quadrupole mode m is
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The velocity of the surface at the position of the transducer a in radial direction for the
mode m is

vrma = ȧm m · ea = ȧm↵Ym(✓a, �a). (141)
The kinetic energy for the effective mass of the mode m in this position is
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Comparing (140) and (142) we have the equation for the effective mass for the mode m
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and rearranging the equation we have
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The sum over all modes gives
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The sum rule for spherical harmonics for the quadrupole gives
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If we define the equivalent mass for the modes of the sphere as
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then
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and using MS = 1124 kg and ↵2 = 8.28584 we have

Meq = 0.30228MS = 340.934 kg. (149)

As we show explicitly in the next section the effective mass for N transducers considering
five modes is given by
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Meq for six transducers Me↵ = 284.111 kg. (150)
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A Explicit effective mass calculation for N transducers

B For N=1

With the transducer at the position a we have
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The velocity of the sphere surface at this position is

va = ↵
5X

m=1
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The square is given by
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The mean of both sides of Eq.(151) results
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such that
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C For N transducers

If we have N transducers the kinetic energy is function of
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such that
Me↵N

=
1

N

4⇡

↵2
MS =

5

N

4⇡

5↵2
MS =

5

N
Meq. (158)



3

D For six transducers in truncated icosahedron configuration

In matrix notation Eq.(151) can be written
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has special properties obtained, or directly from the matrix B of with the help of spherical
harmonics sum rules
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Furthermore, the Moore-Pensore pseudo inverse of B, B+ is
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From Eq.(159) we have
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Appendix B MOVEMENT EQUATION IN TERMS OF SURFACE DEFORMATION

We have seen that the movement equation for the modes of a bare sphere under the action
of N external forces of the type fa = fa�(x � xa)ea at the positions xa is given by
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Multiplying this equation by ↵BT we obtain it in terms of the sphere surface deformation u
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and using Eq.(161) results in
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Finally the movement equation for the deformation of the sphere surface at the position of
transducers is
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Appendix C REAL VECTOR SPHERICAL HARMONICS

The orthogonal real vector spherical harmonics are given by [66]
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where the real spherical harmonics Y

R
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traditional spherical harmonics, Eq.(6), [67]. The real vector spherical harmonics obey the
normalization condition Z
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Appendix D TRANSFORMATION OF hi j FROM WAVE FRAME TO LAB FRAME

The polarization tensor for a GW propagating in Z direction of the wave frame with polar-
izations h+ and h⇥ is [49]
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Let the matrix A(✓, �, ) = Rz( )Ry(✓)Rz(�) rotates the lab reference frame to the direction
(✓, �, ) using Euler’s-y convention. Any vector v can be rotated by this direction using
the transpose of this matrix AT

(✓, �, ) = RT

z
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interested in  rotation because this only mixes the h+, h⇥ polarizations. Without the  
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If we have an incoming wave in the direction of the z axis of the lab frame, after a rotation
to the direction (✓, �) it is seen from the lab frame as

hLF = AT hWFA. (176)


