
Supplementary Material
Appendix A.1
We prove Theorem 2.1.

Theorem 2.1:
Let F be a family of functions from domain P to [0,1], for each f ∈ F taken the probability uniform distribution µ over

the P, it holds:

var = sup
f∈F

Eµ [ f 2]. (1)

Proof: Due to the normalization factor of 1
n(n−1) , the value of BC is almost zero, especially on large-scale networks1. It is

reasonable to be considered:

var = Eµ [ f 2]−{E( f )}2 ≤ Eµ [ f 2].

Appendix A.2
We are now ready to prove Theorem 2.2. Our most significant technical contributions are in this paper.

Theorem 2.2:
For k,m ≥ 1 and the function f ∈ F , where F be a family of functions from P to [0,1]. Let λ ∈ {−1,+1}k×m be an k×m

matrix of Rademacher random variables, so that λ ∈ {−1,+1} independently and with equal probability 1
2 . Let S be a sample

size of m drawn i.i.d. from P, taken a distribution µ . For each δ ∈ (0,1), define:

V ( f ) .
= α +

ln 3
δ

m
+

√
(

ln 3
δ

m
)2 +

2αln 3
δ

m

R̃(F ,S) .
= R̃k

m(F ,S,σ)+
2ln 3

δ

km
+

√
(

2ln 3
δ

km
)2 +

4(R̃k
m(F ,S,λ )+α)ln 3

δ

km

R(F ,m)
.
= R̃(F ,S)+

ln 3
δ

m
+

√
(

ln 3
δ

m
)2 +

2R̃(F ,S)ln 3
δ

m

ε
.
= 2R(F ,m)+

ln 3
δ

3m
+

√
(

ln 3
δ

3m
)2 +

2R(F ,m)ln 3
δ

m
,

(2)

With the probability at least 1−δ over the choice of S and λ .
We first prove the origin of each formula in four steps.
Step 1:
Theorem A.2.1 (Thm.7.5.82) :
With probability ≥ 1−η over S, it holds:

sup
f∈F

E( f 2)≤ α +
ln 1

η

m
+

√
(

ln 1
δ

m
)2 +

2αln 1
η

m
.

Proof: From Theorem 2.1, V ( f ) = sup
f∈F

E( f 2), thus replacing 1
λ

with 3
δ

, we can obtain the result.

Step 2:

Before proving that R̃(F ,S) .
= R̃k

m(F ,S,λ )+
2ln 3

δ

nm +

√
(

2ln 3
δ

nm )2 +
4(R̃n

m(F ,S,λ )+α)ln 3
δ

nm , we need to define two functions that
we need to use: the self-boundary function and g j,i(σ).

Definition 1: (ϕ,γ)-self-bounding function
Let X = (X1, ...,Xn) be a vector of random variables Xi, each taking values in a measurable set χ and let g: χn map R be a

non-negative measurable function. The denote gi a function from χn−1 map R.
A function g is a (ϕ,γ)-self-bounding function, for each X ∈ χn:
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0 ≤ g(X)−gi(X (i))≤ 1
n

∑
i=1

{g(X)−gi(X i)} ≤ φg(X)+ γ ,
(3)

where X (i) = (X1, ...,Xi−1,Xi+1, ...,XN) ∈ χn−1.
Theorem A.2.2:
Let σ ∈ {−1,+1}n×m be a n×m matrix, define the function of g(σ):

g(σ)
.
= nmR̃n

m(F ,m,σ) , (4)

g(σ) is a self-bounding function of (1,2nmα). Where α = sup
f∈F

1
m

m
∑

i=1
( f (si))

2.

Definition 2: the function of g j,i(σ), for j ∈ [1,n]and i ∈ [1,m] is defined as:

g j,i(σ)
.
= in f

σ ′ j,i∈{−1,+1}

{ n

∑
q=1,q̸= j

[
sup
f∈F

m

∑
q=1

f (sz)σq,z

]
+

sup
f∈F

{
∑

z=1,z ̸=i
(σ j,z f (sz))+(σ ′

j,i f (si))

}}
,

we denote by g(σ) the function that replaces the element σ j,i at the position (i, j) of σ with σ ′, and we take the smallest value
over σ ′.

Proof of Theorem A.2.2:
Now proceed to prove Theorem A.2.2, i.e., prove that:

0 ≤ g(σ)−g j,i(σ)≤ 1
n

∑
j=1

m

∑
i=1

(g(σ)−g j,i(σ))2 ≤ φg(σ)+ γ,(φ ,γ)≥ 0.

First, we can rewrite g(σ) as the following:

g j,i(σ) = min
[ n

∑
q=1,q̸= j

[
sup
f∈F

m

∑
z=1

σq,z f (sz)

]
+ sup

f∈F

{ m

∑
z=1,z ̸=i

(σ j,z f (sz)− f (si))

}
,

n

∑
q=1,q̸= j

[
sup
f∈F

m

∑
z=1

σq,z f (sz)

]
+ sup

f∈F

{ m

∑
z=1,z ̸=i

(σ j,z f (sz)+ f (si))

}]
.

It is easy to see that at least one element of this min equation is equal to g(σ), so the minimum is either g(σ) or smaller
than g(σ). Next, we start the proof of Theorem A.2.2 that:

g j,i(σ)
.
= in f

σ ′ j,i

n

∑
q=1,q̸= j

[
sup
f∈F

m

∑
z=1

σq,z f (sz)

]
+ sup

f∈F

{ m

∑
z=1,z ̸=i

(σ j,z f (sz)+σ
′
j,i f (si)))

}
=

n

∑
q=1,q̸= j

[
sup
f∈F

m

∑
z=1

σq,z f (sz)

]
+ in f

σ ′ j,i

{
sup
f∈F

{ m

∑
z=1,z ̸=i

(σ j,i f (sz))+σ
′
j,i f (si)

}}
≥

n

∑
q=1,q̸= j

[
sup
f∈F

m

∑
z=1

σq,z f (sz)

]
+ sup

f∈F

{
in f

σ ′ j,i∈{−1,+1}

{ m

∑
z=1,z ̸=i

(σ j,i f (sz))+σ
′
j,i f (si)

}}
=

n

∑
q=1,q̸= j

[
sup
f∈F

m

∑
z=1

σq,z f (sz)

]
+ sup

f∈F

{ m

∑
z=1,z ̸=i

(σ j,i f (sz))+ in f
σ ′ j,i∈{−1,+1}

{σ
′
j,i f (si)}

}
.
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For a given σ , let f ⋆j be one of the functions of F attaining the supremum of sup
f∈F

m
∑

z=1
σ j,i f (sz). Thus, We can keep writing

this up here:

g j,i(σ)≥
n

∑
q=1,q̸= j

[
sup
f∈F

m

∑
z=1

σq,z f (sz)

]
+ sup

f∈F

{ m

∑
z=1,z ̸=i

(σ j,i f (sz))+ in f
σ ′ j,i∈{−1,+1}

{σ
′
j,i f (si)}

}
≥

n

∑
q=1,q̸= j

[
sup
f∈F

m

∑
z=1

σq,z f (sz)

]
+

m

∑
z=1,z ̸=i

(σ j,i f ⋆j (sz))+ in f
σ ′ j,i∈{−1,+1}

{σ
′
j,i f ⋆j (si)}

=
n

∑
q=1,q̸= j

[
sup
f∈F

m

∑
z=1

σq,z f (sz)

]
+

m

∑
z=1,z ̸=i

(σ j,i f ⋆j (sz))+σ j,i f ⋆j (si)−σ j,i f ⋆j (si)

+ in f
σ ′ j,i∈{−1,+1}

{σ
′
j,i f ⋆j (si)}

= g(σ)−σ j,i f ⋆j (si)+ in f
σ ′ j,i∈{−1,+1}

{σ
′
j,i f ⋆j (si)} ,

where f ⋆j (si) ∈ [0,1], we can obtain that: g j,i(σ)≥ g(σ)−σ j,i f ⋆j (si)−| f ⋆j (si)| ≥ g(σ)−1.
Now, the proof of φ = 1,γ = 2nm as follows:

n

∑
j=1

m

∑
i=1

(
g(σ)−g j,i(σ)

)2

≤
n

∑
j=1

m

∑
i=1

(
σ j,i f ⋆j (si)+ | f ⋆j (si)|

)2

=
n

∑
j=1

m

∑
i=1

(
[σ j,i f ⋆j (si)]

2 + | f ⋆j (si)|2 +2σ j,i f ⋆j (si)| f ⋆j (si)|
)

=
n

∑
j=1

m

∑
i=1

(
2 f ⋆j (si)

2 +2σ j,i f ⋆j (si)| f ⋆j (si)|
)

≤
n

∑
j=1

m

∑
i=1

σ j,i f ⋆j (si)+2
n

∑
j=1

m

∑
i=1

f ⋆j (si)
2

= g(σ)+2
n

∑
j=1

m

∑
i=1

f ⋆j (si)
2

≤ g(σ)+2n sup
f∈F

m

∑
i=1

( f (si))
2

= g(σ)+2nmα ,

obtaining the statement.
Theorem A.2.33

let λ ∈ {−1,+1}n×m be an n×m matrix of matrix of Rademcher random variables, λ j,i ∈ {−1,+1} with probability 1
2

taken each one and independent. Then, for all 0 ≤ τ ≤ R̃(F ,S):

Pr(R̃(F ,S)≥ R̃n
m(F ,S,λ )+ τ)≤ exp(− nmτ2

4(Ř(F ,S)+α)
). (5)

Theorem A.2.3 plays a role in solving the second formula, so we prove it as follows:
The function of f , defines:

F̂
.
= f̂ (x) .

=
f (x)
2

: f ∈ F ,∀x ∈ χ.

With theorem A.2.2, we know that g(σ) = nmR̃n
m(F̂ ,S,λ ) is a 1,2nmσ self-bounding function. It is easily to get the

statement that Eλ [nmR̃n
m(F̂ ,S,λ )] = nmR̃(F̂ ,S). We apply (Theorem.73), obtaining:
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Pr(nmR̃(F̂ ,S)≥ nmR̃n
m(F̂ ,S,λ )+ t)≤ exp(− t2

2(nmR̃(F̂ ,S)+2nmα)
) , (6)

we use the fact that R̃(F̂ ,S) = R̃(F ,S)
2 , R̃n

m(F̂ ,S,λ ) = Řn
m(F ,S,λ )

2 and αF̂ = α

4 .
It follows that:

Pr(
nm
2

R̃(F ,S)≥ nm
2

R̃n
m(F ,S,λ )+ t ≤ exp(− t2

nm(R̃(F ,S))+α
)) , (7)

replacing t by τnm
2 achieve the Theorem A.2.3.

The proof of the key equation begins below:

R̃(F ,S) = R̃n
m(F ,S,λ )+

2ln 1
δ

nm
+

√
(

2ln 1
δ

nm
)2 +

4(R̃n
m(F ,S,λ )+α)ln 1

δ

nm
.

Proof: From Theorem A.2.3, we have the fact that, with probability ≥ 1−δ ,

R̃(F ,S)≤ R̃n
m(F ,S,λ )+

√
4(R̃(F ,S)+α)ln 1

δ

nm
.

The bound of R̃(F ,S) can be obtained by the function of b(x), which can find the fixed point.

b(x) .
= R̃n

m(F ,S,λ )+

√
4(x+α)ln 1

δ

nm
.

Lemma 1. let d, j,v ≥ 0. The fixed point of

b(x) .
= d +

√
j+ vx ,

is at

x .
= d +

v
2
+

√
v2

4
+ j+ v j.

Therefore, we apply lemma 1 to obtain the statement.
Step 3:
We have rigorously proved the two formulas before, and then our main technical proof Theorem 2.2 is based on the

concentration inequality for Rademachaer Averages, for the supremum deviation S(F ,S) = sup
f∈F

|ρs( f )−ρµ( f )|. To facilitate

the discussion, we write S(F ,S) as Z4.
We now start to describe. Then, define the Rademacher complexity (RC)R(F ,m) of a set of functions F as the expection

of the ERA over S. R(F ,m)
.
= ES[R̃(F ,S)]. The following central results correlate R̃(F ,m) with the expected supremum

deviation.
Lemma 2. Symmetrization lemma5

ES[Z]≤ 2R(F ,m). (8)

The following shows the deviation of the variance-dependent constraint above its expected value.
Theorem A.2.46 Let Z = sup

f∈F
| ˙ρs( f )−ρµ( f )|. Then, with probability at least 1−λ over S, it holds
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Z ≤ E[Z]+
ln 1

λ

3m
+

√
(

ln 1
λ

3m
)2 +

2(E[Z]+1)ln 1
λ

m
.

We apply lemma 2. to Theorem A.2.3 can obtain

ε
.
= 2R(F ,m)+

ln 1
λ

3m
+

√
(

ln 1
λ

3m
)2 +

2R(F ,m)ln 1
λ

m
,

the next result bounds R(F ,m) above its estimated R̃(F ,S).
Step 4:
Theorem A.2.5.7
With probability ≥ 1−λ over S, it holds

R(F ,m)≤ R̃(F ,S)+
ln 1

λ

m
+

√
(

ln 1
λ

m
)2 +

2R̃(F ,S)ln 1
λ

m
.

Conclusion:
Now we prove Theorem 2.2 in its entirety, the most important part in our paper.
Proof. In the 4 formulas for our most vital results, replace 3

δ
with 1

λ
to obtain Theorem 2.2.

Appendix A.3
We now prove Theorem 3.1, which provides probabilistic quality assurance for the CBCA algorithm.

Theorem 3.1:
With probability at least 1−δ for the CBCA algorithm, the output (B̃,ε), such that |b(v)− b̃(v)≤ ε|.
Before proving, we need to understand the following facts will improve the efficiency of proof.
Facts:
(1). At the end of each iteration, the wimpy variance V ( f ), for any f ∈ F , can be computed by replacing δ with probability

δ

2i+1 by the Eq.(2) in Theorem 2.2.
(2). At the end of each iteration, Monte Carlo empirical Rademacher, empirical Rademacher values, and Rademacher

values, for any f inF , can be computed by replacing δ with probability δ

2i+1 by the Eq.(2) in Theorem 2.2.
(3). At the end of each iteration, ε , for any f ∈ F , can be computed by replacing δ with probability δ

2i+1 by the Eq.(2) in
Theorem 2.2.

(4). After sampling m samples, the maximum error S(F ,S) is at most ε (i.e., mi ≥ m1), and the probability is 1− δ

2 . (this
can refer to the Matteo8)

(5). For each i ≥ 1,Si = {m1, ...,msi} is the set of Si independent uniform samples from P.
The probability in Theorem 3.1 is taken on all realizations of sequence Si, that is, on all realizations of sequence m j.
Proof: Let events E1 and E2 be defined as:

E1 = {∃i ≥ 1s.t. |b(v)− b̃(v)|> ε}
E2 = {∃ j, i ≥ 1s.t. |b(v)− b̃(v)|> ε}.

It can be known that the output of the algorithm satisfies the ε −approximation condition when both events E1, E2 are
wrong. Thus, we only need to prove Pr(E1∪E2)≤ δ .

For statement the sake of fact (4), we can obtain that Pr(E1)≤ δ

2 .
In consideration of fact (1)(2)(3)(5), we can be calculated:

Pr(E2) = Pr(∃ j, i s.t. |b(v)− b̃si j
|> ε)≤ ∑

i
Pr(|b(v)− b̃si j

|> ε)

≤ ∑
i

δ

2i+1 ≤ δ

2
.
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We can obtain that

Pr(E1∪E2)≤ Pr(E1)+Pr(E2)≤ δ .
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