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Supplementary materials

Invasive procedure and safety

The invasive procedure conducted in the study consisted in the insertion of a radial
arterial line catheter. This procedure was necessary for using the pulse contour waveform
technology that measures the blood pressures to calculate stroke volume and cardiac
output when doppler echocardiography was impossible to do. There was a need of a
technology that can be used out of hospital in emergency medicine cases where doppler
echocardiography is impossible to use.

To perform the invasive procedure, volunteers were met and taken care of by a dedicated
safety nurse when arriving at the hospital and throughout of the study. The safety nurse
put on EMLA cream (topical anaesthetic) on the skin over the radial artery 30 minutes

1



before canulation. A consultant in anesthesiology using an ultrasound (US) image inserted
an arterial line catheter according to the hospital’s standard for arterial access to the
artery under sterile conditions for each volunteer at the pre-operative area (entrance to
the operating theater). After the artery lumen was “hit” (verified by US visualization and
backflow of blood in the needle) but not penetrated, the catheter was flushed and secured.
The volunteer waited 15 minutes to verify no side effects before followed by the safety nurse
to the study area in the cardiology department. Trained personnel connected HemoSphere
FloTrac blood pressure sensor (Edwards Lifesciences Corporation, Nyon, Switzerland) to
the artery line for continuous monitoring. The volunteers were informed to verbally report
any discomforts. After each volunteer had been through the study protocol the arterial
line was removed by applying pressure to the insertion site for 10 minutes while observed
for bleeding or discomforts and a pressure bandage was applied. Volunteers were followed
up concerning pain or discomfort for 30 minutes. All volunteers could call a mobile phone
number 24/7 if they had any concerns or questions after the study day.

Adaptive extraction of the circulatory component

Healthy subjects present a pulse so that the ballistocardiogram (BCG) signal, sbcg(n), can
be expressed using the following additive model:

sbcg(n) = srest(n) + CC(n) (1)

where sample index n is related to time by t = n/fs, with a sampling frequency of
fs = 250 Hz. srest(n) contains the BCG baseline value and artifacts mostly due to sensor
movement and skin-sensor contact. Each effective contraction of the heart ejects blood into
the aorta and produces fluctuations in the BCG, that is the circulatory-related component,
CC(n). Consecutive fluctuations slightly vary in amplitude and duration. Hence, CC(n)
presents a quasi-periodic nature and can be modeled using a Fourier series with N terms
of slowly time-varying amplitudes and frequencies:

CC(n) =

N∑

k=1

ak(n) cos(k ω0(n)n) + bk(n) sin(k ω0(n)n) (2)

where N represents the number of harmonics. The Fourier coefficients ak(n) and bk(n)
represent the in-phase and quadrature amplitudes of the model, and ω0(n) = 2πf0(n)/fs
its fundamental frequency. The sample indices of the R peaks of the QRS complexes, ri,
were detected using the Hamilton-Tompkins algorithm [1, 2] and used to compute f0(n)
as follows:

f0(n) =
fs

ri+1 − ri
∀n ∈ (ri, ri+1] (3)

where f0(n) is constant within each QRS interval, but varies for consecutive intervals.

The estimation of ak(n) and bk(n) was carried out through the Recursive Least Squares
(RLS) adaptive algorithm [3, 4, 5]. The RLS algorithm was used with the classical
configuration for adaptive interference canceling proposed by Widrow et al. [6] illustrated
in Figure 2.
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Figure 1. Block diagram of the RLS adaptive filter used to extract the circulatory
component, CC(n).

Using matrix notation, CC(n) = xT (n)w(n) where

x(n) =




cos(ω0(n)n)
sin(ω0(n)n)

...
cos(N ω0(n)n)
sin(N ω0(n)n)




=




x1(n)
x2(n)

...
x2N−1(n)
x2N (n)



, (4)

w(n) =




a1(n)
b1(n)

...
aN (n)
bN (n)




=




w1(n)
w2(n)

...
w2N−1(n)
w2N (n)



, (5)

are the so-called reference signal (harmonics) and weight vector (coefficients), respectively.
The RLS algorithm searches for the w(n) that minimizes the following cost function

C(n) =

n∑

i=1

λn−i|e(i)|2 0 < λ ≤ 1 (6)

that represents a weighted squared error where the error, e(n), is the difference between
the desired signal, d(n) = sbcg(n), and the estimated circulatory component, CC(n):

e(n) = sbcg(n)− CC(n) = sbcg(n)− xT (n)w(n) (7)
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and λ is the so-called forgetting factor that governs the convergence rate and stability
of the RLS algorithm. A small λ speeds up the convergence rate at the risk of turning
the process unstable [4, 5, 7]. The minimization of C(n) results in the following update
equations for the w(n):

F(n) =
1

λ

[
F(n− 1)− F(n− 1)x(n)xT (n)F(n− 1)

λ+ xT (n)F(n− 1)x(n)

]
(8)

w(n) = w(n− 1) + F(n)x(n)e(n) (9)

where the gain matrix F(n) and the weight vector are initialized to F(0) = 0.03I2N and
w(0) = 0T with I2N representing the identity matrix of order 2N .

The optimization of the configuration of the RLS algorithm consists in tuning two
parameters N and λ. In this study, N = 4 and λ = 0.9993 were selected based on our
previous experiences extracting circulatory-related components [3, 7] and optimization
results obtained using the development set.
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Feature extraction

A total of 66 waveform features were computed to characterize the amplitude, duration,
area and length of the fluctuations for each 10-s analysis window of the carotid, CCc(n),
and abdominal, CCa(n), circulatory components. Specifically, 33 features were calculated
from each circulatory component. The first three features were the standard deviation,
skewness and kurtosis of the circulatory component aiming to describe its statistical
distribution. The last 30 features corresponded to the median and standard deviation
of the following 15 morphological characteristics were computed on a beat-to-beat basis:

1. Peak amplitude (aM): the amplitude of the highest peak in the fluctuation as
shown in Fig. 2.

aM

Figure 2. aM computation.

2. Onset-peak amplitude (A1): the peak-to-trough amplitude from onset to peak
of the fluctuation (see Fig. 3).

aon

aM

A1 A1 = aM − aon

Figure 3. A1 computation.

3. Offset-peak amplitude (A2): the peak-to-trough amplitude from offset to peak
of the fluctuation (see Fig. 4).

aoff

aM

A2A2 = aM − aoff

Figure 4. A2 computation.

4. Maximum amplitude (Amax): the maximum amplitude between A1 and A2.

5. Mean amplitude (Amean): the mean value of amplitudes A1 and A2.

6. Onset-peak duration (D1): the duration from the onset to the peak of the
fluctuation as illustrated in Fig. 5.

ton tM toff

D1

D1 = tM − ton

Figure 5. Calculation of D1.
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7. Peak-offset duration (D2): the duration from the peak to the offset of the
fluctuation as shown in Fig. 6.

ton tM toff

D2

D2 = toff − tM

Figure 6. Calculation of D2.

8. Total duration (Dt): the duration from the onset to the offset of the fluctuation
(see Fig. 7).

ton tM toff

Dt

Dt = toff − ton

Figure 7. Calculation of Dt.

9. Pulse width (Pw): the duration of the upper half of fluctuation (see Fig. 8).

ti tf

Pw

Pw = tf − ti

Figure 8. Calculation of Dt.

10. Onset-peak area (Ar1): the area from the onset to the peak of the fluctuation
as illustrated in Fig. 9 where Ts = 1/fs represents the sampling period, the inverse
of the sampling frequency, fs.

ton tM toff

Ar1

Ar1 =
∑

n
|CC(n)|+|CC(n+1)|

2
Ts ton ≤ nTs < tM

Figure 9. Computation of Ar1.

11. Peak-offset area (Ar2): the area from the peak to the offset of the fluctuation as
shown in Fig. 10.

ton tM toff

Ar2

Ar2 =
∑

n
|CC(n)|+|CC(n+1)|

2
Ts tM ≤ nTs < toff

Figure 10. Computation of Ar2.
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12. Total area (Art): the area from the onset to the offset of the fluctuation (see Fig.
11).

ton tM toff

Art

Ar2 =
∑

n
|CC(n)|+|CC(n+1)|

2
Ts ton ≤ nTs < toff

Figure 11. Computation of Art.

13. Onset-peak length (L1): the curve length from the onset to the peak of the
fluctuation as illustrated in Fig. 12.

ton tM toff

L1

L1 =
∑

n

√
(Ts)2 + (CC(n + 1) − CC(n))2 ton ≤ nTs < tM

Figure 12. Calculation of L1.

14. Peak-offset length (L2): the curve length from the peak to the offset of the
fluctuation as shown in Fig. 13.

ton tM toff

L2

L2 =
∑

n

√
(Ts)2 + (CC(n + 1) − CC(n))2 tM ≤ nTs < toff

Figure 13. Calculation of L2.

15. Total length (Lt): the curve length from the onset to the offset of the fluctuation
(see Fig. 14).

ton tM toff

Lt

Lt =
∑

n

√
(Ts)2 + (CC(n + 1) − CC(n))2 ton ≤ nTs < toff

Figure 14. Calculation of Lt.
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Multiple linear regression model

All the details of the final multiple linear regression model are shown in Table 1.

Table 1. Details of the adjusted multiple linear regression model.

Variable Estimate SE 95% CI t-statistic p-value

Intercept 6.70 0.023 [6.65, 6.75] 286.55 0

v1 -3.42 0.213 [-3.84, -3.00] -15.99 <0.001

v21 2.47 0.215 [2.05, 2.89] 11.46 <0.001
v2 -0.31 0.026 [-0.36, -0.26] -11.99 <0.001

v3 0.19 0.026 [0.14, 0.24] 7.16 <0.001

v23 0.05 0.025 [0.00, 0.10] 1.91 0.056
v4 -1.11 0.120 [-1.35, -0.87] -9.26 <0.001

v24 1.00 0.123 [0.76, 1.24] 8.19 <0.001

v5 -0.01 0.069 [-0.15, 0.13] -0.22 0.828
v25 0.24 0.068 [0.11, 0.37] 3.54 <0.001

Abbreviations: SE standard error, CI confidence interval.

Additional results

Figure 15 shows boxplots representing the evolution of the absolute error across the
different phases of the study protocol for development (top panels) and validation (bottom
panel) sets, respectively.
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Figure 2. Bland-Altman plots for each phase in the development (top) and validation
(bottom) sets.
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