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Data required for a Subject Specific Classifier
Subject-specific classification faces the main challenge of the scarce amount of data that can be used for training. In
this context, we extend the investigation reported in the main text of the manuscript by addressing the following
question: What is the minimal dataset size required for the training of a robust subject-specific
classifier?

The approach presented in the main text of the manuscript (see Sect. Methods) is based on Leave-One-Out
Cross-Validation (LOOCV) experiments, where:

• the model is trained on all but one seizure file and then validated on the excluded file;

• this process is repeated for all seizure events (each seizure file being left out once);

• the results are averaged over all iterations.

In this Supplementary Information, we extend these analyses in order to account for the varying data volumes in
each training loop. Specifically, we present ablation experiments, directly comparing to the results with the full
dataset size from the original experiments (see Sect. Methods of the manuscript) and revealing the impact of the
amount of training data on the different performance metrics.

Methods
Experiments are conducted as follows. For each subject, data are split into distinct seizure events files (the total
number of seizure events Ns for each subject is indicated in Table 1 of the manuscript). Furthermore, each
seizure event file can have more than one seizure, thereby the number of seizure event files NF is smaller than Ns.
Subsequently:

• We initially train a classifier on one single seizure file and perform validation on the remaining NF −1 ones.
The process is repeated by executing all unique permutations of such training over the single seizure event files.

• In progressive iterations, we include one additional seizure file and validate on the remaining ones, exploring
all possible unique permutations.

• The last iteration corresponds to the case of training on NF − 1 files and validating on the remaining one
(exploring all possible unique permutations).



For each iteration, the number of explored permutations corresponds to
(NF

Nt

)
, where NF and Nt are the total

number of seizure files and the number of seizure files used in training. Hence, the total number of explorations for
the complete study of a single subject (with NF seizure files) corresponds to:

∑NF −1
k=1

(NF
k

)
.

For example, for a subject with NF = 7 seizure files, we:

• Train on one event and validate on the remaining six (7 runs in total).

• Train on two events and validate on the remaining five (21 runs in total).

• Continue this pattern up to training on six events and validating on one.

for a total of 126 runs. Subjects with a greater number of files require a progressively larger number of runs to cover
the whole design space (for instance, Subject 15, who features 14 distinct event files, required 16,382 runs). We also
repeated the experiments for each window size (1, 2, 4, and 8 seconds). As such, the proposed experiments have a
combinatorial complexity.

For each run, we calculate the average of the performance metrics — specificity, sensitivity, and false positive
rate. We also record the mean training duration in hours. This enabled us to analyze the classifier’s performance
relative to the amount of training data used.

Noticing the variability in the amount of training data in each patient, we perform linear interpolations to
estimate performance metrics for standard hour ranges (5 to 65 hours of EEG signals). Interpolations are based on
the available data points for each patient. For instance, if a patient had data points at 5 and 15 hours, we linearly
interpolate the performance at the 10-hour mark. Similarly, if a patient does not have enough hours of data, they
are omitted from further averaging as indicated on the x-axis in Figure S1.

Furthermore, we determine the optimal window size for each patient by comparing the interpolated results across
different window sizes within each hour range. An average plot is then calculated by iterating through all the hour
ranges and patients, providing a comprehensive view of the optimal window sizes for seizure detection.

Finally, beyond displaying average data across patients, to account for the great inter-subject variability that
significantly affects the averages, especially when a very small number of subjects is considered, we also report
numbers on a per-subject basis.

Results
Aggregated performance analysis
Figure S1 presents the mean performance metrics aggregated across all participants. This illustration corroborates
the anticipated hypothesis: a direct correlation between the enhancement in classifier efficiency and the augmentation
of training data volume. Detailed statistical representations, including the mean values corresponding to each
duration of the training and the associated 95% confidence intervals, are tabulated in Table S1.

Further analysis of Figure S1 reveals a notable increment in the false positives per hour (FP/h) metric between
20 and 25 hours and 35 and 40 hours. These increments are attributed to the drop in the number of patients
featuring such a high number of recording hours. More specifically, the drop results from the exclusion of the two
high-performing subjects C1 and C15 (see Fig. 2 of the manuscript), who do not have more than 40 hours of data,
thereby negatively affecting the 40-hour data point. The same reasoning can be applied to the increase of FP/h
from 20 (17 averaged patients) to 25 (10 averaged patients) hours. Concurrently, subjects C5 and C9, characterized
by elevated FP/h rates, are retained (as illustrated also in Figure 2 of the manuscript, they present a less efficient
performance).

Similarly, a decline in sensitivity is observed around the 45-hour mark, attributed to the loss of two proficient
subjects (C7 and C10) while retaining a challenging subject, C6. This subject is also identified as one of the lower
performers in the main manuscript’s Figure 2. This pattern persists in subsequent training durations, marked by the
attrition of higher-performing subjects and the persistence of those presenting greater challenges.

Per-subject analysis
In Figure S2, we delineate the individual patient variability in classifier metrics as juxtaposed against their respective
asymptotic baselines. Specifically, for each performance metric M calculated at each training-hour range M(h), we
plot a “saturation index” S(M,h), defined as S(M,h) = M(h)/M(h = ∞), where M(h = ∞) represents the value at
the last data point (at the highest number of training hours). Such quantity enables to better visualize and identify
at which training-hour range the performance metric converges to the final asymptotic value. Upon examination, a
general trend of metric saturation is discernible for most subjects around the 30-hour training threshold. However,
while a general saturation trend applies across all subjects, the quantitative minimum number of hours of data
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Figure S1. Averaged classifier performance metrics over diverse training durations. The x-axis on the plots also
indicates the number of patients used for averaging within parenthesis, and the number decreases as fewer patients
have long hours of recordings. Dataset: CHB-MIT
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needed for training differs across subjects, also in agreement with the discussion articulated in the manuscript (Sect.
Results and Discussion). In short, this observation underscores the potential utility of the proposed methodology
within a select patient cohort characterized by high sensitivity and minimal false positives per hour. Alternatively, it
suggests the feasibility of this approach as an initial step in a progressively adaptive learning framework tailored to
individual patient profiles.

Extending beyond the fundamental premise that increased hours of personalized training improve performance
metrics, the reported results reveal how the specificity of our model tends to saturate beyond a certain threshold
of training data (50 hours). This saturation suggests a limit to the benefits of additional data in enhancing the
model’s specificity, implying that further data collection may yield diminishing returns beyond this point. As regards
the sensitivity, the same conclusions can be derives observing that the model continues to show improvement with
more data until 55 hours of training. These findings highlight the nuanced balance between data volume and model
performance, especially in the context of the practical challenges in personalized training for real-life applications.
Thus, the development of strategies to make personalized training more efficient and feasible for a real-world setting
appears of paramount importance and will be explored as future work.

Table S1. Comparison across different durations of training hours for variable window size. The 95% confidence
interval range is indicated below each number; the range has been cut where applicable so numbers are within a
logical range.

Hours of training data Sensitivity [%] Specificity [%] FP/h # Patients

5 57.36 99.66 2.01 23(47.54,67.17) (99.40,99.92) (0.79,3.24)

10 59.02 99.75 1.70 22(49.42,68.62) (99.59,99.92) (0.70,2.70)

15 63.03 99.80 1.05 20(54.90,71.16) (99.61,99.99) (0.21,1.89)

20 66.62 99.84 0.83 17(57.69,75.54) (99.63,100) (0,1.78)

25 68.55 99.71 1.40 10(58.23,78.82) (99.32,100) (0,3.12)

30 67.74 99.86 1.22 9(51.04,84.44) (99.66,100) (0,3.02)

35 70.55 99.91 0.79 8(52.21,88.89) (99.79,100) (0,1.88)

40 70.01 99.86 1.21 6(43.07,96.95) (99.62,100) (0,3.44)

45 63.51 99.91 0.83 4(15.36,100) (99.74,100) (0,2.33)

50 56.01 99.95 0.49 3(0,100) (99.71,100) (0,2.59)

55 40.22 100 0 2(0,100) (100,100) (0,0)

60 60.00 100 0 1(60.00,60.00) (100,100) (0,0)

65 60.00 100 0 1(60.00,60.00) (100,100) (0,0)
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Figure S2. Individual patient variability in classifier metrics relative to asymptotic baselines. This figure illustrates
the “saturation index” in classifier performance metrics for each patient, compared to their asymptotic baseline,
which is determined by each individual’s last available data point. The x-axis represents training duration in hours,
showcasing how each patient’s metrics evolve relative to their ending values. As the training duration increases, the
number of represented patients decreases, indicating the varying extents of available data among individuals.
Dataset: CHB-MIT.
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