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1 Computation times
In Fig. 1 we show the required time in seconds to run 1000 sweeps of MC or
SGD-like algorithms (with the code available at https://www.dropbox.com/
sh/in2wxrycx6nhznh/AADsYarQaaSYRkgLYYbzNm17a?dl=0). Remember that a
sweep corresponds to the attempt to change the color of N variables. The
time for a single sweep grows linearly with the size of the system N . SGD-like
algorithm is a bit slower than the MC algorithm because it needs to extract c ·N
random numbers at each sweep to build the mini-batch (while MC only needs
at most N random numbers for each sweep). This part of the code could be
optimized, but we leave it for future work, given that running times are anyhow
short enough to use both algorithms on large instances.

The runs have been performed on a single CPU, with processor Intel(R)
Core(TM) i7-6500U CPU @ 2.50GHz.

2 Additional numerical experiments
In this section, we will show additional numerical evidence to complement the
results already illustrated in the main text.

In the main text, we have described the Gradient-Descent (GD)-like algorithm.
It finds a solution to the planted coloring problem only for connectivities larger
than cGD(N): In the left part of Fig. 2 we show the probability of recovering
the planted solution, as a function of the average connectivity of the graph c.
We can define cGD(N) as the connectivity at which the recovery probability
becomes different from 1. This threshold seems to scale logarithmically with
N : cGD(N) ≃ A log(N), with A = O(1). In fact in the right part of Fig. 2 we
show the probability to recover the planted solution as a function of c/ log(N).
When plotted as a function of this rescaled parameter, the points at which the

1

https://www.dropbox.com/sh/in2wxrycx6nhznh/AADsYarQaaSYRkgLYYbzNm17a?dl=0
https://www.dropbox.com/sh/in2wxrycx6nhznh/AADsYarQaaSYRkgLYYbzNm17a?dl=0


 0

 5

 10

 15

 20

 25

 30

 0  20000  40000  60000  80000  100000

t 
(s

)

N

SGD-like
MC

Figure 1: Required time in seconds to run 1000 sweeps of MC or SGD-like
algorithms as a function of the size of the system. The continuous lines are the
best linear fits.

recovery probability becomes different from 1 collapse for different N , indicating
that the connectivity at which the recovery fails scales as cGD(N) ≃ A log(N).
The threshold for the GD-like algorithm thus diverges in the large N limit.

In the main text, we have then introduced two algorithms, the MC and the
SGD-like algorithm, for which stochasticity helps to find the signal. We call
nucleation time the time at which the signal is nucleated. Comparing the MC
and SGD-like algorithm at values of the parameter T and B such as to have the
same plateau energy, as in Fig. 2 of the main text, we have shown in Fig. 3 of
the main text that also the average nucleation time and its standard deviation
above different samples match for the two algorithms. Here, in Fig. 3 we show
that indeed the whole distribution of the nucleation times coincides for the two
algorithms at a fixed size N of the graphs.

In the main text, we have shown that there is an equivalence between the
MC and the SGD-like algorithms when performing an inference task. However,
this equivalence also works if one wants to solve the optimization problem of
finding a good coloring configuration in a problem without the planted solution.
The model we have studied is always the same — the planted 5-coloring problem
on random graphs — but for low enough connectivities (c < cMC = 18) the
inference task is impossible to solve and thus the algorithms are performing an
optimization task over random problems. In Fig. 4, we show that also for the
optimization problem, the two algorithms behave quantitatively in the same
way. At high T (low B) the two algorithms reach a paramagnetic state while at
low T (high B) the two algorithms enter glassy states and the dynamics is an
out-equilibrium one.
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Figure 2: Left: Probability to recover the planted solution with a Monte Carlo
algorithm at zero temperature, that is a gradient-descent-like algorithm, as a
function of the average connectivity of the graph c. The recovery probability
changes by changing the size of the system N and seems to go to 0 in the
thermodynamic limit for any finite connectivity. Right: Probability to recover
the planted solution with a GD-like algorithm, as a function of c/ log(N). The
points at which the recovery probability becomes different from 1 collapse for
different N , indicating that the connectivity at which the recovery fails scales as
log(N) and thus diverges in the thermodynamic limit.
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Figure 3: Histogram of nucleation times for the MC algorithm at temperature T
(filled curves) and for SGD-like algorithm at mini-batch size B (lines), at the
same values of T and B extracted in Fig. 2 of the main text. Three different
sizes are considered in each panel from left to right, N = 103, 104, and 105 and
the distribution is extracted from 280 different samples. Vertical lines show the
average nucleation time for each case (the ones shown in Fig. 3 of the main
text).

We also underline that the fact that the detailed balance (eq. 5 in the main
text) is not fully satisfied is consistent with the numerical findings of figure 4,
which shows that the effective value of B for T = 0.4 changes slightly from
B = 0.95 to B = 0.94 when going from c = 19 to c = 15. If eq.5 in the main

3



 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000  100000  1x10
6

tw=10
4

tw=10
5

tw=10
6

e

c
(t

,t
w

)

t-tw

MC, T=0.4 (lines)
SGD-like, B=0.94 (points)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000  100000  1x10
6

 1x10
7

tw=10
4

tw=10
5

tw=10
6

e

c
(t

,t
w

)

t-tw

MC, T=0.2 (lines)
SGD-like, B=0.995 (points)

Figure 4: Same as figure 4 of the main text but for c = 15, single system of
size N = 105. In this case, for c = 15, there is no temperature interval between
the paramagnetic and aging regimes where the planted state can be retrieved.
At high T (low B) the two algorithms reach a paramagnetic state while at
low T (high B) the two algorithms enter glassy states and the dynamics is an
out-equilibrium one.

text was to be satisfied, then the resulting expression for G would imply a
T (B) relation which is independent of c. Here we can explain the observed c
dependence as coming from the fact that increasing c also the number of curves
G(B, s, u) increases (we have more choices for s and u), and thus the effective
T (B) relation (that we modeled with the arithmetic average of the curves) will
reasonably slightly vary with c.
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