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I. WINDING NUMBER FOR A UNIFORM DRIVE

In addition to an incommensurate quasiperiodic (QP) potential, one can also evaluate bulk
invariants corresponding to a homogeneous drive, that is µA = µB = λ

∑m=∞
m=−∞(t −mT ). Under

periodic boundary conditions, we can write down the static counterpart of the Hamiltonian in
momentum space as,

H =

 −µ P (k) 0 Q(k)
P ∗(k) −µ −Q∗(k) 0

0 −Q(k) µ −P (k)
Q∗(k) 0 −P ∗(k) µ

 , (1)

where,

P (k) = −t[(1 + δ) + (1− δ)e−ika] (2)

and

Q(k) = ∆[(1 + δ)− (1− δ)e−ika] (3)

Note that the effective Hamiltonian, as in Eq. 7 of the main text, for a uniform drive as above does
not necessarily pick up the same symmetry as that of the original Hamiltonian. Moreover, we are
interested in a µ ̸= 0 situation, where the chiral symmetry is defined by, Ĉ = σ̂x ⊗ σ̂0, such that
the Hamiltonian belongs to the BDI class. Hence, the computation of bulk invariants under the
same classification corresponding to a driven scenario requires a pair of symmetric time frames.
Following the expressions given in Eq. 9 and Eq. 10, one can obtain the effective Hamiltonian,
Hm

eff (m = 1, 2) corresponding to the symmetric time frames [1–3]. Hence, the topological phases
of the system can be characterized by a pair of winding numbers that satisfy Eq. 14 of the main
text.
Further, the evaluation of the winding numbers in each frame requires an introduction of a

unitary operator (Ûs) constructed using the chiral basis, with the help of which, Hm
eff can be

made off-diagonal in its canonical (chiral) basis representation. For a µ ̸= 0 scenario, the unitary

operator, Ûs takes the form,

Ûs =
1√
2

(
Î Î

−iÎ iÎ

)
, (4)

such that, if ÛsĈÛ†
s = diag(Î ,−Î), then,

ÛsĤ
m
effÛ

†
s =

(
0 S(k)

S†(k) 0

)
(5)

where,

S(k) =

(
−iµ i(P (k)−Q(k))

i(P ∗(k) +Q∗(k) −iµ

)
(6)

Now, one can define the chiral index by the following expression,

νm =
1

2πi

∫ π/a

−π/a

dk∂klnS(k) (7)
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FIG. 1: (a) shows the Floquet quasi-energy spectrum inside the first FBZ, as a function of µ and with fixed ∆, say
∆ = 0.5. The topological phase transitions are marked by the gap closing at E = 0 and π/T with the
corresponding appearance or disappearance of the zero and π energy modes. (b)-(c) depict the topological phase
diagram in the µ−∆ plane, computed using the winding numbers corresponding to the zero (ν0) and the π (νπ)
energy modes, respectively. The parameters used are, δ = 0.6, λ = 0.5.

One can evaluate the pair of winding numbers (ν0, νπ) by following Eq. 14. Fig. 1 shows topological
phase diagram in terms of ν0 and νπ respectively, plotted in µ − ∆ plane. The results correctly
predict the number of zero and π edge modes corresponding to the real space spectrum shown in
Fig. 1(a). Additionally, a line along ∆ = 0 signifies the importance of particle-hole symmetry in
protecting the topology of the system and is shown in Fig. 1(b) and Fig. 1(c).

II. METHOD FOR CALCULATIONS

Our research focuses on the properties of the dimerized Kitaev chain model, where the Hamil-
tonian is written as an N × N matrix (Eq. 1 of the main text) in the site basis. To incorporate
the effects of the periodic driving of the system, the Hamiltonian is allowed to evolve over a time
period using the time-ordered product of the exponential matrices to obtain the Floquet effective
Hamiltonian, as shown in Eq. 4 of the main text, which again appears in the form of an N × N
matrix. Hence, a diagonalization method is used to compute the eigenvalues and eigenvectors of
the matrices (both Eq. 1 and 4). These eigenvalues were plotted as a function of various parame-
ters of the Hamiltonian to obtain the energy spectrum and identify the zero Majorana modes, as
illustrated in Fig. 5. Further, the eigenvalues were used in our analyses, for the computation of the
level spacing statistics (Eq. 24) and the Hausdorff dimension (Eq. 26). Also, the eigenvectors were
employed to compute the real-space winding number (Eq. 28) and also the participation ratios
(Eq. 19 and 20) which aid us in studying the localization properties, as shown in Fig. 9. Further,
the fractal dimension (Eq. 23) too has been obtained using these eigenvectors and demonstrated
in Fig. 11.
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